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* Correspondence: iwank74@gmail.com (I.V.K.); m.piasecki@ajd.czest.pl (M.P.); Tel.: +48-504-274-600 (M.P.)

Academic Editor: Shujun Zhang
Received: 30 September 2017; Accepted: 4 November 2017; Published: 7 November 2017

Abstract: The studies of the laser operated third order nonlinear optical features of novel TlGaSn2Se6

crystal were done. The main efforts were devoted to a search of a possibility to apply these crystals as
laser operated optoelectronic material. For this reason, the third harmonic generation of the Nd:YAG
pulse laser 1064 nm as the fundamental beam with varied energy density of up to 200 J/m2 was
studied. As a source of laser operated light, we have used the cw laser (532 nm), exciting the material
above the energy gap. Additionally, the influence of middle-energy Ar+ ions on the XPS spectra of
the TlInSn2Se6 surface has been explored. We have shown that the main contribution of the Se4p
states is manifested in the upper part of the valence band of TlInSn2Se6 We have established that
for the TlGaSn2Se6 crystal there exists a possibility of variation of the third harmonic generation
efficiency using illumination by external continuous wave laser beam. The discovered effect makes it
possible to utilize TlGaSn2Se6 crystal in advanced optoelectronic laser operated devices.

Keywords: chalcogenides; crystal structure; electronic structure; XPS; nonlinear optics; photoinduced
effects

1. Introduction

Before the consideration of the TlGaSn2Se6 compound, it is necessary to discuss the similar well
studied ternary thallium gallium selenide TlGaSe2, which belongs to a known class of TlCIIIXVI

2

ferroelectrics semiconductors with layered structure. The later causes strong anisotropy of their
parameters [1,2]. The properties of TlGaSe2 are currently quite well studied (see, e.g., [3–8]). The material
has high photosensitivity, for instance, being used in low-inertia photoresistors as well as in optical
analyzers, detectors for visible and IR spectral regions [1,9]. The detector’s properties of TlGaSe2
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were studied in [7,8], and it was shown as a good opportunity to use them for γ- and X-ray radiation
(with principal parameters µτe = 6.0 × 10−5 cm2 V−1, µτh = 9.2 × 10−6 cm2 V−1) [8].

It is well known that the improvement of the parameters of such kinds of compounds and
consequently their wider application can be attained by the modification with various dopants. This is
best achieved by the systematic studies of phase diagrams based on these compounds. When such
an approach was applied to the systems AgGaS2–GeS2 and AgGaSe2–GeSe2 [10–15] to improve
non-linear optical parameters of the ternary compounds AgGaS2 and AgGaSe2, it resulted in the
synthesis of quaternary chalcogenides AgGaGeS4 and AgxGaxGe1–xSe2. Like their ternary analog,
they also crystallize in the acentric structure, but they have wider transparency windows, higher laser
damage threshold (which is particularly important as they are intended for the operating range of the
powerful CO- and CO2-pulsed lasers), and a simpler crystal growth technique.

As another example, the study of the CuInSe2–CuGaSe2 system determining the formation of
continuous solid solutions series CuIn1–xGaxSe2 (CIGS) is of particular interest. It leads to a significant
increase of the photovoltaic parameters of thin film solar cells [16] when compared to those using
CuInSe2 (CIS). Interesting results were also obtained by us in the study of several TlCIIIXVI

2-based
systems. For instance, the TlInSe2–DIVSe2 systems (DIV = Si, Ge, Sn) [17,18] exhibit larger solid
solution ranges of TlInSe2, the enhanced transport, and better photoelectric and non-linear optical
parameters [19–22]. The fundamental difference of the TlInSe2–DIVSe2 systems with respect to many
other chalcogenide crystals is the presence of heavy Tl ions which determine the high polarization of
the compounds. In addition, chalcogenide complexes provide significant phonon anharmonicities [23]
that play an important role in photoinduced IR optical second-order susceptibilities [24]. The particular
role for nonlinear optics play is also Li-based ternary/quaternary chalcogenides, which possess high
laser damage [25,26].

The chalcogenide crystals studied by us possess a laser damage threshold up to 0.85 GW/cm2.
At the same time, laser radiation causes irreversible changes that do not exceed 0.3%. Comprehensive
studies of photoconductivity, particularly for thallium-bearing compounds, along with calculations of
band structure, have shown an essential role of intrinsic cationic defects in the observed effects [19–22]
with energy levels within the forbidden energy gap.

In addition to the formation of solid solutions, the TlCIIIX2
VI–DIVX2

VI systems feature intermediate
compounds of several different compositions. The most numerous group are the 1-1-1-4 compounds
with the equimolar ratio of the system components. Currently, six such sulphide compounds are known:
TlInSiS4 (SG Pbmn) [25], TlInGeS4 (dimorphous, SG Pa3 and Pnma) [27], TlInSnS4 (SG P63/mmc) [28,29],
TlAlSiS4, TlGaSiS4, and TlGaGeS4 (SG Pbmn) [30]. The crystal structure is fully determined only for the
first three of these compounds. Selenium-containing compounds of equimolar composition exist for all
of the TlGa(In)Se2–DIVSe2 cases [17], but for the TlInSe2–SnSe2 system [18] no intermediate quaternary
compounds were found. When testing the formation of the phases of other compositions, a 1-1-2-6
series of compounds was established. The TlInSe2–GeSe2 system features the TlInGe2Se6 compound
that crystallizes in its own structure type (SG R3) [31]. Two other compounds were found in the similar
sulfur-containing system, TlInGe2S6 (SG R3) [32] and a 1-1-3-8 composition (TlInGe3S8 (SG P21/c) [33]).
The substitution of tin by germanium in the selenide system yielded a new compound, TlGaSn2Se6.

In the present work, we present the results of investigations of crystal structure for TlGaSn2Se6

performed by the X-ray powder method, its electronic structure using X-ray spectroscopy methods,
as well as its optical and non-linear optical properties. Studies of the third order nonlinear optical
properties of the TlGaSn2Se6 crystal have shown that the third harmonic generation is sensitive for
external photoinducing radiation giving unique material properties, namely an opportunity to manage
the third harmonic generation (THG) magnitude by photoinduced radiation.

2. Materials and Methods

TlGaSn2Se6 single crystal was grown by melting the batches of high-purity elements (Tl, 99.99 wt. %,
Ga, 99.9997 wt. %, Sn, 99.99 wt. %, Se, 99.999 wt. %). The total batch mass was 5 g. The alloy was



Crystals 2017, 7, 341 3 of 16

synthesized in vacuum evacuated quartz containers (inner diameter 9 mm, length about 100 mm) in a
shaft-type furnace by heating to the maximum temperature 1070 K at the rate of 20 K/h, exposure at
1070 K for 6 h, cooling to 670 K at the rate of 10–20 K/h, annealing for 240 h, followed by quenching
in air.

A DRON 4-13 diffractometer (Bourevestnik, St. Petersburg, Russia) was used for X-ray
powder diffraction (PXRD) data collection (45 kV and 30 mA operation conditions, Cu Kα-radiation,
Bragg-Brentano geometry). Dark-gray pieces with metallic clusters were ground into fine powder of
maroon color using an agate mortar. XRD data were analysed with WinCSD program package [34].

Spectral dependence of the absorption coefficient near the energy gap was measured using
non-polarized light of MDR-206 monochromator (LOMO Photonics, St. Petersburg, Russia) in the
spectral wavelength range 360–1100 nm. The monochromator resolution was 0.3 nm. The absorption
coefficient was calculated similarly to the technique described in [20].

As-grown TlInSn2Se6 crystal was controlled by the X-ray photoelectron spectroscopy (XPS)
technique to clarify the main peculiarities of its electronic structure and chemical bonding. The general
features of the present XPS measurements are similar to that employed earlier when studying the
related quaternary selenide, TlInGe2Se6 [29]. Briefly, the present XPS experiments were carried out with
UHV-Analysis-System (SPECS Surface Nano Analysis Company, Berlin, Germany). The UHV-Analysis
-System is supplied with a hemispherical PHOIBOS 150 analyzer (SPECS Surface Nano Analysis
Company, Berlin, Germany). The XPS core-level and valence-band spectra of the TlInGe2Se6 alloy
were excited by a Mg Kα source of X-ray radiation (E = 1253.6 eV) and were registered at fixed
pass energy of 30 eV in an ion-pumped chamber having a base pressure of less than 6 × 10−10

mbar. The spectrometer energy scale was calibrated, as described elsewhere [35]. In order to take
into account the charging effects, we use the reference C 1s line of adventitious carbon, which the
binding energy (BE) was set to be 284.6 eV as it is proposed for respective quaternary Tl-, Ga- and/or
Sn-bearing chalcogenides [20,36–38]. We have also measured the X-ray emission (XE) Se Kβ2 band
(transition K→MII,III) giving information regarding the energy distribution of the valence Se p states
because it is well known that the electronic structure of the quaternary Tl-, Ga-, and/or Sn-bearing
selenides is determined substantively by contributions of the Se 4p states forming their valence band
region (see, e.g., Refs. [37–39]). The XE Se Kβ2 band was acquired with an energy resolution of about
0.3 eV using a Johann-type DRS-2M spectrograph, following the technique described in detail in
Ref. [40]. In addition, the impact of bombardment with middle-energy Ar+ ions on the XPS spectra of
the TlInGe2Se6 alloy surface was also within the scope of the present work, because such treatment is
regularly used in epitaxial technologies [31].

3. Results and Discussion

3.1. Experimental

3.1.1. Crystal Growth and Structure Determination

Preliminary results on the XRD structure analysis for TlGaSn2Se6 were presented in the abstract
of the presentation at XIII International Conference on Crystal Chemistry of Intermetallic Compounds
(Lviv, Ukraine, 2017) [41]. Here, we used more precise equipment with better resolution allowing
us to gather statistics for more experimental data. The crystal structure of TlGaSn2Se6 was refined
using initial atomic coordinates of structural type TlInGe2Se6 (space group R3) [42]. Experimental,
calculated, and difference powder XRD profiles of the sample with nominal composition corresponding
to TlGaSn2Se6 stoichiometry are shown in Figure 1. Details of the refinement are listed in Table 1.
Atomic coordinates and isotropic thermal parameters of the TlGaSn2Se6 structure are presented in
Table 2. Two types of metal atoms arrangement occur in the structure (see Figure 2). The selected
inter-atomic distances indicate bonding between the respective atoms and they are shown in Table 3.
The charge-balanced electronic formula of TlGaSn2Se6 reveals the following form: Tl+Ga3+Sn4+

2Se2−
6.

The ionic radii were used when drawing Figure 2 by the DIAMOND program [43].
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Figure 1. Observed (dots) and calculated (solid line) and their difference plot (bottom) of the XRD 
patterns of TlGaSn2Se6. Peak positions are marked by short vertical bars. 

Table 1. Details of the refinement of the crystal structure of TlGaSn2Se6. 

Chemical formula TlGaSn2Se6

Space group R3 (No. 146) 
Structure type TlInGe2Se6 

Pearson symbol and Z hR30, 3 
Unit cell parameters  

a, Å 10.3289(2) 
c, Å 9.4340(4) 

V, Å3 871.64(6) 
Calculated density, g cm−3 5.6301(4) 

Diffractometer DRON 4-13 
Radiation, λ Cu Kα, 1.54185 Å 

Mode of refinement Full with fixed elements per cycle 
2θ limits, step; (sinθ/λ)max 8.80–98.82, 0.02; 0.493 

Detector NaI(Tl) scintillation counter 
Scanning time/step, 2θ and sec 0.02, 20 

Number of reflections 199 
Number of parameters (all/free) 29/5 

Scale factor 0.31792(1) 
Goodness-of-fit 1.99 

Rb(I), RP, RPw 4.8%, 4.1%, 5.4% 

Table 2. Refined atomic coordinates and isotropic displacement parameters of TlGaSn2Se6 structure. 

Atom Site X y z Biso, Å2 
Tl 3 a 0 0 0.0000 (5) 1.25 (2) 
M 9 b 0.1944 (4) 0.2355 (5) 0.3882 (4) 0.87 (2) 

Se1 9 b −0.0456 (5) 0.2085 (5) 0.2874 (4) 1.11 (2) 
Se2 9 b 0.3919 (6) 0.4804 (5) 0.3159 (5) 0.90 (2) 

M = 1/3Ga + 2/3Sn. 

Figure 1. Observed (dots) and calculated (solid line) and their difference plot (bottom) of the XRD
patterns of TlGaSn2Se6. Peak positions are marked by short vertical bars.

Table 1. Details of the refinement of the crystal structure of TlGaSn2Se6.

Chemical formula TlGaSn2Se6
Space group R3 (No. 146)

Structure type TlInGe2Se6
Pearson symbol and Z hR30, 3
Unit cell parameters

a, Å 10.3289(2)
c, Å 9.4340(4)

V , Å3 871.64(6)
Calculated density, g cm−3 5.6301(4)

Diffractometer DRON 4-13
Radiation, λ Cu Kα, 1.54185 Å

Mode of refinement Full with fixed elements per cycle
2θ limits, step; (sinθ/λ)max 8.80–98.82, 0.02; 0.493

Detector NaI(Tl) scintillation counter
Scanning time/step, 2θ and sec 0.02, 20

Number of reflections 199
Number of parameters (all/free) 29/5

Scale factor 0.31792(1)
Goodness-of-fit 1.99
Rb(I), RP, RPw 4.8%, 4.1%, 5.4%

Table 2. Refined atomic coordinates and isotropic displacement parameters of TlGaSn2Se6 structure.

Atom Site X y z Biso, Å2

Tl 3 a 0 0 0.0000 (5) 1.25 (2)
M 9 b 0.1944 (4) 0.2355 (5) 0.3882 (4) 0.87 (2)

Se1 9 b −0.0456 (5) 0.2085 (5) 0.2874 (4) 1.11 (2)
Se2 9 b 0.3919 (6) 0.4804 (5) 0.3159 (5) 0.90 (2)

M = 1/3Ga + 2/3Sn.
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Figure 2. General crystallochemistry of TlGaSn2Se6. The unit cell and packing of metal atom 
coordination polyhedra are emphasized. 

Table 3. Selected inter-atomic distances (in Å) in the TlGaSn2Se6 structure. 

Atoms Distance Atoms Distance
Tl: – 3 Se1 3.636 (5) M: – Se2 2.422 (7) 

3 Se1 3.810 (5) Se2 2.468 (6) 
3 Se2 3.835 (6) Se1 2.518 (6) 
3 Se2 4.022 (6) Se2 2.537 (6) 

Se1: – M 2.518 (6) Se2: – M 2.422 (7) 
M 2.537 (6) M 2.468 (6) 
Tl 3.636 (5) Tl 3.835 (6) 
Tl 3.810 (5) Tl 4.022 (6) 

M = 1/3Ga + 2/3Sn. 

3.1.2. XPS and XES Data 

Survey XPS spectra recorded for as-derived and Ar+ ion-irradiated surfaces of the TlGaSn2Se6 
alloy are presented in Figure 3. From this figure, it evident that all of the spectral peculiarities of the 
survey XPS data, except for the carbon and oxygen 1s core levels and Auger KLL lines, are well 
assigned to the core-levels or Auger lines of atoms, which compose the TlGaSn2Se6 alloy. It is worth 
mentioning that the relative intensities of the XPS C 1s and O 1s core-level spectra for the pristine 
surface are relatively small, as Figure 3 depicts. Their origin is a result of adsorption from the air of 
hydrocarbons and oxygen-containing species because prior to our XPS experiments, the surface of 
the synthesized TlGaSn2Se6 alloy was exposed to air over several weeks. It should be mentioned that 
in the case of the TlGaSn2Se6 crystal, the Auger Ga L3M23M45 line is superimposed on the C 1s core-
level spectrum, as can be seen from Figure 3. Therefore, in order to overcome the effects of the sample 
charging during X-ray radiation, we also monitored the binding energy values of measuring core-
level spectra employing an electron flood gun, as is recommended in such an occurrence [42–44]. The 
binding energy of the XPS O 1s core-level spectrum is equal to 531.9 ± 0.1 eV for the as-derived 
TlGaSn2Se6 alloy surface, and this binding energy value corresponds to adsorbed oxygen-containing 
species [43]. However, as can be seen from Figure 3, the Ar+ ion-irradiation of the TlGaSn2Se6 alloy 
surface causes substantial decreasing of the relative intensities of the XPS C 1s and O 1s core-level 
spectra.  

Figure 2. General crystallochemistry of TlGaSn2Se6. The unit cell and packing of metal atom coordination
polyhedra are emphasized.

Table 3. Selected inter-atomic distances (in Å) in the TlGaSn2Se6 structure.

Atoms Distance Atoms Distance

Tl: – 3 Se1 3.636 (5) M: – Se2 2.422 (7)
3 Se1 3.810 (5) Se2 2.468 (6)
3 Se2 3.835 (6) Se1 2.518 (6)
3 Se2 4.022 (6) Se2 2.537 (6)

Se1: – M 2.518 (6) Se2: – M 2.422 (7)
M 2.537 (6) M 2.468 (6)
Tl 3.636 (5) Tl 3.835 (6)
Tl 3.810 (5) Tl 4.022 (6)

M = 1/3Ga + 2/3Sn.

3.1.2. XPS and XES Data

Survey XPS spectra recorded for as-derived and Ar+ ion-irradiated surfaces of the TlGaSn2Se6

alloy are presented in Figure 3. From this figure, it evident that all of the spectral peculiarities of the
survey XPS data, except for the carbon and oxygen 1s core levels and Auger KLL lines, are well assigned
to the core-levels or Auger lines of atoms, which compose the TlGaSn2Se6 alloy. It is worth mentioning
that the relative intensities of the XPS C 1s and O 1s core-level spectra for the pristine surface are
relatively small, as Figure 3 depicts. Their origin is a result of adsorption from the air of hydrocarbons
and oxygen-containing species because prior to our XPS experiments, the surface of the synthesized
TlGaSn2Se6 alloy was exposed to air over several weeks. It should be mentioned that in the case of
the TlGaSn2Se6 crystal, the Auger Ga L3M23M45 line is superimposed on the C 1s core-level spectrum,
as can be seen from Figure 3. Therefore, in order to overcome the effects of the sample charging
during X-ray radiation, we also monitored the binding energy values of measuring core-level spectra
employing an electron flood gun, as is recommended in such an occurrence [42–44]. The binding
energy of the XPS O 1s core-level spectrum is equal to 531.9 ± 0.1 eV for the as-derived TlGaSn2Se6

alloy surface, and this binding energy value corresponds to adsorbed oxygen-containing species [43].
However, as can be seen from Figure 3, the Ar+ ion-irradiation of the TlGaSn2Se6 alloy surface causes
substantial decreasing of the relative intensities of the XPS C 1s and O 1s core-level spectra.
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Figure 3. Survey X-ray photoelectron spectroscopy (XPS) spectra recorded for (1) pristine and (2) Ar+ 
ion-irradiated surfaces of the TlGaSn2Se6 alloy. 

Figure 4 compiles the most essential XPS core-level spectra related to atoms forming the 
quaternary selenide under consideration, while binding energy values of the core-level electrons 
recorded for both surfaces, as-derived and Ar+ ion-irradiated, are collected in Table 4. The present 
XPS results confirm that irradiation of the TlGaSn2Se6 alloy with 3.0 keV Ar+ ions during 5 min (at ion 
current density installed to be equal to 14 μA/cm2) does not significantly change the values of the 
binding energies of the core-level electrons related to thallium, gallium and selenium atoms. 
However, the binding energies of the XPS Sn 3d and Sn 4d core-level electrons decrease by about 0.25 eV 
in such cases (Table 4). A similar effect was observed previously when studying the influence of the 
middle-energy Ar+ ion-bombardment on other Sn-bearing quaternary selenides. 

Tl1–xIn1–xSnxSe2 (x = 0.1, 0.2, and 0.3), namely Ag2In2SiSe6 and Ag2In2GeSe6 [20]. In our opinion, 
the above-mentioned effect of decreasing the binding energies of the Sn 3d and Sn 4d core-level 
electrons can be attributed to the removing of a very thin tin oxide species that are formed on the 
pristine TlGaSn2Se6 alloy surface due to its exposure to air. Taking into consideration the relative 
intensities of the XPS Tl 4f7/2, Ga 3p3/2, Sn 3d5/2, and Se 3d core-level lines and the related atomic 
sensitivity factors (ASF) reported in Ref. [45], we can conclude that in the case of ignoring the presence 
of carbon and oxygen adsorbed species the Ar+ ion-bombardment does not cause visible changes of 
the stoichiometry of the TlGaSn2Se6 topmost surface layers. Literature data indicate that the binding 
energy values for the Sn 3d5/2 core-level electrons in highest tin oxide, SnO2, correspond to 286.8–287.0 eV 
[46,47], which are rather close to those in the TlGaSn2Se6 alloy under study (see Table 4). As can be 
seen from the survey spectra presented in Figure 4, the Ar+ ion-irradiation induces almost complete 
elimination of the O 1s core-level line from the TlGaSn2Se6 alloy surface. The effect of such elimination 
of a very thin SnO2 species is detected in the present XPS experiments, as the above-mentioned 
decreasing the binding energies of the XPS Sn 3d and Sn 4d core-level electrons in the case of the Ar+ 
ion-bombardment of the TlGaSn2Se6 alloy surface. Our XPS measurements unambiguously show that 
the Ar+ ion-irradiation does not bring visible changes of the shapes of the XPS core-level spectra 
(Figure 4), as well as energy distribution of the electronic states within the valence-band region of the 
TlGaSn2Se6 alloy (Figure 5). This fact allows us to conclude that the TlGaSn2Se6 crystalline alloy 
surface is rather rigid with respect to the influence on it the X-ray irradiation.  

Figure 3. Survey X-ray photoelectron spectroscopy (XPS) spectra recorded for (1) pristine and (2) Ar+

ion-irradiated surfaces of the TlGaSn2Se6 alloy.

Figure 4 compiles the most essential XPS core-level spectra related to atoms forming the quaternary
selenide under consideration, while binding energy values of the core-level electrons recorded for both
surfaces, as-derived and Ar+ ion-irradiated, are collected in Table 4. The present XPS results confirm
that irradiation of the TlGaSn2Se6 alloy with 3.0 keV Ar+ ions during 5 min (at ion current density
installed to be equal to 14 µA/cm2) does not significantly change the values of the binding energies
of the core-level electrons related to thallium, gallium and selenium atoms. However, the binding
energies of the XPS Sn 3d and Sn 4d core-level electrons decrease by about 0.25 eV in such cases
(Table 4). A similar effect was observed previously when studying the influence of the middle-energy
Ar+ ion-bombardment on other Sn-bearing quaternary selenides.

Tl1–xIn1–xSnxSe2 (x = 0.1, 0.2, and 0.3), namely Ag2In2SiSe6 and Ag2In2GeSe6 [20]. In our opinion,
the above-mentioned effect of decreasing the binding energies of the Sn 3d and Sn 4d core-level electrons
can be attributed to the removing of a very thin tin oxide species that are formed on the pristine
TlGaSn2Se6 alloy surface due to its exposure to air. Taking into consideration the relative intensities of
the XPS Tl 4f7/2, Ga 3p3/2, Sn 3d5/2, and Se 3d core-level lines and the related atomic sensitivity factors
(ASF) reported in Ref. [45], we can conclude that in the case of ignoring the presence of carbon and
oxygen adsorbed species the Ar+ ion-bombardment does not cause visible changes of the stoichiometry
of the TlGaSn2Se6 topmost surface layers. Literature data indicate that the binding energy values for the
Sn 3d5/2 core-level electrons in highest tin oxide, SnO2, correspond to 286.8–287.0 eV [46,47], which are
rather close to those in the TlGaSn2Se6 alloy under study (see Table 4). As can be seen from the survey
spectra presented in Figure 4, the Ar+ ion-irradiation induces almost complete elimination of the O 1s
core-level line from the TlGaSn2Se6 alloy surface. The effect of such elimination of a very thin SnO2

species is detected in the present XPS experiments, as the above-mentioned decreasing the binding
energies of the XPS Sn 3d and Sn 4d core-level electrons in the case of the Ar+ ion-bombardment of the
TlGaSn2Se6 alloy surface. Our XPS measurements unambiguously show that the Ar+ ion-irradiation
does not bring visible changes of the shapes of the XPS core-level spectra (Figure 4), as well as energy
distribution of the electronic states within the valence-band region of the TlGaSn2Se6 alloy (Figure 5).
This fact allows us to conclude that the TlGaSn2Se6 crystalline alloy surface is rather rigid with respect
to the influence on it the X-ray irradiation.
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Figure 4. XPS core-level spectra recorded for: (1) pristine and (2) Ar+ ion-irradiated surfaces of the 
TlGaSn2Se6 alloy: (a) Ga 2p; (b) Sn 3d; (c) Tl 4d; (d) Se 3p and Tl 4f (with some nearby core-level spectra 
and Auger lines); and, (e) Se 3d. 

Table 4. Binding energies (in eV *) of constituent element core levels of pristine and bombarded with 
Ar+ ions of the TlGaSn2Se6 crystalline surfaces. 

Core-Level TlGaSn2Se6/Pristine Surface TlGaSn2Se6/Ar+ Ion-Bombarded Surface 

Tl 5d5/2 113.17 13.26 
Ga 3d 19.61 19.66 
Sn 4d 25.81 25.57 
Se 3d 54.25 54.22 
Tl 4f7/2 118.44 118.35 
Tl 4f5/2 122.84 122.77 
Se 3p3/2 160.47 160.51 
Se 3p1/2 165.61 165.77 

Tl 4d5/2 ** 385.6 385.5 
Tl 4d3/2 ** 406.3 406.2 
Sn 3d5/2 486.35 486.10 
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Ga 2p3/2 ** 1117.8 1117.7 
Ga 2p1/2 ** 1144.7 1144.6 

* Uncertainty of the measurements is ±0.05 eV. ** Uncertainty of the measurements is ±0.1 eV. 

Figure 4. XPS core-level spectra recorded for: (1) pristine and (2) Ar+ ion-irradiated surfaces of the
TlGaSn2Se6 alloy: (a) Ga 2p; (b) Sn 3d; (c) Tl 4d; (d) Se 3p and Tl 4f (with some nearby core-level spectra
and Auger lines); and, (e) Se 3d.

Table 4. Binding energies (in eV *) of constituent element core levels of pristine and bombarded with
Ar+ ions of the TlGaSn2Se6 crystalline surfaces.

Core-Level TlGaSn2Se6/Pristine Surface TlGaSn2Se6/Ar+ Ion-Bombarded Surface

Tl 5d5/2 113.17 13.26
Ga 3d 19.61 19.66
Sn 4d 25.81 25.57
Se 3d 54.25 54.22

Tl 4f7/2 118.44 118.35
Tl 4f5/2 122.84 122.77
Se 3p3/2 160.47 160.51
Se 3p1/2 165.61 165.77

Tl 4d5/2 ** 385.6 385.5
Tl 4d3/2 ** 406.3 406.2
Sn 3d5/2 486.35 486.10
Sn 3d3/2 494.76 494.52

Ga 2p3/2 ** 1117.8 1117.7
Ga 2p1/2 ** 1144.7 1144.6

* Uncertainty of the measurements is ±0.05 eV. ** Uncertainty of the measurements is ±0.1 eV.
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For the TlGaSn2Se6 alloy, we have also measured the XE Se Kβ2 band, bringing information
regarding the energy distribution of the Se 4p states and matching it on a common energy scale with
the XPS valence band spectrum. The results of such matching the above X-ray photoelectron and
emission spectra measured for the TlGaSn2Se6 alloy following technique [48] are depicted in Figure 6.
Following this figure, the spectral maximum of the XES Se Kβ2 band is positioned mainly at the upper
portion of the XPS valence-band spectrum. Therefore, the principal contributions of the Se 4p states are
detected at the upper part of the valence band for the TlGaSn2Se6 crystal, with the lesser contributions
in other parts of the band. Similar peculiarity of the valence band by the Se 4p states is typical for the
related quaternary selenide, TlInGe2Se6, as it established in Ref. [31]. It is worth mentioning that one
can also expect substantial contributions of the Tl s, Sn d, and Ga p electronic states to the valence
band of the TlGaSn2Se6 compound, however, the present available facilities do not allow for recording
the energy distribution of these states by our group.
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It is well-known that when recording the XPS spectra for chemical elements that constitute
semiconductors, they are very sensitive to methods of calibrations of the surface charging effects [45,49].
In such a case, the binding energy difference parameter, e.g., ∆Tl–Se, which is a difference of the binding
energies of the Tl 4f7/2 and Se 3d core levels, is not-sensitive to the charging effects [49]. Such a binding
energy difference parameter can be effectively used for the determination of iconicity degree of the
Tl–Se chemical bonds: a higher value of the ∆ difference parameter induces an enhanced degree of
the ionic component for this chemical bond. From the data listed in Table 4, the difference parameter
∆Tl–Se in the TlGaSn2Se6 alloy is equal to 64.19± 0.5 eV. This value is very close to that of the difference
parameter ∆Tl–Se for the related selenide TlInGe2Se6, namely 64.1 eV [31]). This means that the iconicity
degree of the chemical Tl–Se bonds in the TlGaSn2Se6 compound corresponds to that in TlInGe2Se6.

3.1.3. Optical Properties

The spectral distribution of the absorption coefficient is presented in Figure 7a. To obtain the
detailed information about the energy band gaps in the crystal, the absorption band edge α vs.
photon energy is analyzed in the high energy absorption regions, where Eg can be presented by an
equation [50]:

αhν = A
(
hν− Eg

)n (1)

where A is a constant that is determined by the inter-band transition probabilities, n is a power
index characterizing the optical absorption process that (for perfect crystals) is equal to 2 and 1/2
for indirect and direct allowed transitions, respectively. However, this rule is substantially disturbed
for the chalcogenide crystals due to presence of a large number of intrinsic cationic defects and exact
application of this equation is limited. However, following the presented in Figure 7 dependence,
one can see that it is closer to the direct transition [51] (see Figure 7b) with Ed

g = 1.86 eV.
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Figure 7. (a) Typical absorption spectral edge obtained at 300 K; (b) assumed direct renormalized
absorption spectrum versus photon energy for TlGaSn2Se6.

The complex shape of the absorption edge is clearly seen (Figure 7b). A significant difference in the
spectral distribution of the absorption coefficient for TlGaSe2 [52] and TlGaSn2Se6 crystals is observed
at energies below the beginning of inter-band transitions, in the spectral range of about ~790 nm
(1.57 eV). However, due to a great number of intrinsic defects with energy levels below the conduction
band gap, a clear separation of the direct and indirect transitions is not possible. Moreover, the huge
anharmonic phonon contribution that is typical for chalcogenide crystals may also be superimposed.
Similar absorption spectra were obtained in [53] for TlGaSe2 with Fe admixtures. The authors suggest
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that these absorption bands are associated with the substitution of the “host” metal atoms by Fe atoms.
It was suggested in Ref. [54] that the substitution is possible because the ionic radii are nearly equal,
0.63 Å for Fe3+ and 0.61 Å for Ga3+. Therefore, it may be assumed that the ~790 nm peak (~1.57 eV) in
the TlGaSn2Se6 crystals is related to the statistical substitution of Ga3+ (0.61 Å) ions with Sn4+ ions
(0.69 Å), which agrees with the data reported in [19,28].

3.1.4. Nonlinear Optical Properties

We have performed studies of the third order nonlinear optical properties of the TlGaSn2Se6

crystal, focusing on the third harmonic generation (THG) of a fundamental 1064 nm Nd:YAG
pulse laser (pulse duration about 7 nm, frequency repetition about 10 Hz) operating in reflected
geometry (see Figure 8), with energy ranging up to 200 J/m2. For investigations of the influence
of photoinduced radiation on the THG intensity, we have used the continuous wave (cw) laser
(532 nm). The Nd:YAG laser (1064 nm ) interacting with crystals surface generated its THG signal,
which was spectrally separated by a UV optical filter at 355 nm form fundamental ones before the
Hamamatsu photomultiplier.
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Figure 8. Principal set-up for measurements of the reflected photoinduced third harmonic generation (THG).

Beginning from 170 J/m2 (Figure 9), a sharp increase of the THG intensity appears. As a reference
compound, we have chosen a Cu2ZnSiSe4 crystal that was calibrated earlier [55–57]. Figure 9 indicates
that such technique allows evaluating the efficiency of the THG intensity determined from angle
dependent maxima with respect to the reference sample.
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The nonlinear THG optical effects may exist both in centrosymmetric, as well as acentric media.
It is principally different to the second harmonic generation (SHG), which requires the existence of
non-centrosymmetry. However, using external photopolarization, it is possible to additionally operate
by the THG efficiency. We explore changes in the THG intensity under influence of the external laser
operating with polarized light (green 532 cw lasers). We chose wavelengths of the photoinduced light
that are higher than the energy gap value. Following the absorption coefficients measured at 355 nm
for the titled crystal corresponding to the THG signal, we have evaluated that the light penetration
depth is about 100 nm. The observed laser stimulated changes in the THG are determined alterations
of dipole moments, and particularly by vectoral difference between the excited and ground state
moments (Equation (2)). To explain such effects, we present the oversimplified expression describing
the microscopic hyperpolarizabilities that are responsible for the THG effects as follows:

γijkl
∼=
→
µ i
→
µ j∆

→
µ k∆

→
µ l

E4
g

(2)

where ∆µi are transition dipole moments vectorial differences between the excited and ground state
dipole moments for appropriate states.

It is well known that the THG intensity is determined by third rank hyperpolarizabilities. Since we
observe significant light induced alterations of the THG, it indicates the existence of effective changes
in appropriate materials constants (caused by light induced photopolarization).

Additional source of the effect is caused by space redistribution of the free carriers, which give
additional contribution to the changes in the THG. In Figure 10 are presented principal results
devoted to the laser induced changes of the THG. The red colour corresponds to the values of
the THG immediately after irradiation (up to 1 s). The blue colour corresponds to the effect after
stabilisation, which rated up to 200–400 s. The stabilisation of the laser operated changes is caused
by the redistribution of the photoinduced layers due to the photopolarization, photothermal effects,
and free carriers. The Cu2ZnSiSe4 crystals are used only as a reference. It is clear that, at the beginning,
the changes for the reference crystals are absent and only after few minutes corresponding changes
were observed. It is crucial that such behaviour is contrasted with the reference Cu2ZnSiSe4 crystals.
This fact may confirm the principal difference of the laser induced THG for different chalcogenides.

Contrary to other quaternary chalcogenides, the TlInGe2S6 crystal photoinduced THG intensity
signal decreases during photo-inducing treatment (see Figure 10). This behavior provides a unique
opportunity to change the intensity of the THG by additional laser irradiation. This TlInGe2Se6

crystal property gives the possibility to use the titled compound in the construction of advanced
optoelectronic devices.

Due to the extremely high degree of the phonon anharmonic components for such a kind of
materials [58], which is described by the third order polar tensors, one can expect a possibility to occur
of the additional contributions to the hyperpolarizabilities.

The principal manifestation of this effect is presented in the Figure 10. Following these results,
one can see that for the Cu2ZnSiSe4 crystals the effect is absent immediately after illumination and is
observed only after relaxation over 20–30 s. However, for the studied crystals, this effect is appeared
immediately after the illumination. This peculiarity may be explained by different photothermal
formed space gradients of free carriers and temperature, which also contribute in such a case. So, for the
studied crystals, a rare opportunity occurs to modulate the intensities of the THG signal that allow us
to propose the title compound to be considered a new type of nonlinear optical laser modulators [59].
It would be interesting in the future to perform the same studies for the Li-containing chalcogenide
crystals revealing high laser stability and nonlinear optical (NLO) efficiencies [60].
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4. Conclusions

Crystal structure of new quaternary selenide TlInSn2Se6 has been determined using powder XRD
method. Its crystal structure is isomorphous with a TlInGe2Se6 structure type (non-centrosymmetric
space group R3). For the TlInSn2Se6 alloy, we have recorded the X-ray photoelectron core-level and
valence-band spectra. The present XPS data indicate that all of the spectral peculiarities of the survey
spectra, except for the carbon and oxygen 1s core levels and Auger KLL lines, are well assigned to the
core-levels or Auger lines of atoms, which compose the TlGaSn2Se6 alloy. The relative intensities of
the XPS C 1s and O 1s core-level spectra of the pristine TlGaSn2Se6 alloy surface are relatively small,
and their origin is a result of adsorption from the air of hydrocarbons and oxygen-containing species.
The influence of middle-energy Ar+ ions on the XPS spectra of the TlInSn2Se6 alloy surface has been
investigated. The present XPS data indicate that the alloy surface is rather rigid with respect to the
influence on it the X-ray irradiation. An evaluation of the ionicity degree of the chemical Tl–Se bonds
in the TlGaSn2Se6 compound indicates that it is very close to that in the related quaternary selenide
TlInGe2Se6. Furthermore, a comparison on a common energy scale of the X-ray emission Se Kβ2 band,
retrieving information on the energy distribution of the Se 4p states, with the X-ray photoelectron
valence-band spectrum reveals that the main contributions of the Se 4p states occurs in the upper
portion of the valence band of TlInSn2Se6, with their substantive contributions in other portions of
the band as well. Optical band gap energy for directly allowed transitions was determined from the
spectral distribution of the absorption coefficient (Ed

g = 1.86 eV). The position of the deep admixture
level is estimated as ~1.57 eV. New quaternary selenide TlInSn2Se6 proved to be a very good nonlinear
material that is sensitive to photoinduction operations (see Figure 10), making it to be interesting from
the point of view of potential applications.
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