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Abstract: We employ a recently introduced class of artificial structurally-disordered phononic
structures that exhibit large and robust elastic frequency band gaps for efficient phonon guiding.
Phononic crystals are periodic structures that prohibit the propagation of elastic waves through
destructive interference and exhibit large band gaps and ballistic propagation of elastic waves
in the permitted frequency ranges. In contrast, random-structured materials do not exhibit band
gaps and favour localization or diffusive propagation. Here, we use structures with correlated
disorder constructed from the so-called stealthy hyperuniform disordered point patterns, which can
smoothly vary from completely random to periodic (full order) by adjusting a single parameter.
Such amorphous-like structures exhibit large band gaps (comparable to the periodic ones),
both ballistic-like and diffusive propagation of elastic waves, and a large number of localized modes
near the band edges. The presence of large elastic band gaps allows the creation of waveguides in
hyperuniform materials, and we analyse various waveguide architectures displaying nearly 100%
transmission in the GHz regime. Such phononic-circuit architectures are expected to have a direct
impact on integrated micro-electro-mechanical filters and modulators for wireless communications
and acousto-optical sensing applications.
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1. Introduction

Phononic crystals are artificial materials with periodically arranged components. They were
introduced more than two decades ago as the elastic waves’ analogue of photonic crystals [1].
These materials can exhibit large frequency regions of prohibited propagation of elastic waves—the
so-called phononic band gaps (PBGs)—in either two or three dimensions. Phononic band gap
materials [2] have a direct impact on a vast number of applications, including audible filters [3],
acoustic diodes [4], ultrasound imaging [5], optomechanics [6], heat conduction, and energy
harvesting [7–10], etc. On the other hand, disorder in elastic media [11–14] is important for a large range
of applications including acoustic filters [15], piezoelectric materials [16], biological materials [17],
fracture [18], and manipulation of the thermal conductance [7,19], etc. Despite this and in contrast
to the vast body of studies dealing with the effects of disorder on photonic structures, the research
of disordered phononic systems and the effect of disorder on phononic band gaps has been sparse,
with a few notable exceptions [12,20–22].

In general, hyperuniform disordered structures [23], which exhibit short- and long-range
uniformity, have been investigated in the last decade as an intermediate regime between ordered and
totally (uncorrelated) disordered structures [20,21,24] and have received increasing attention in the
context of controlling the flow of electromagnetic radiation at the micron scale. The recently introduced
hyperuniform disordered phononic structures (HDPS) [21], have the advantage of combining the
properties of both periodic and random counterpart extremes. This combination makes them ideal
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for phonon manipulation since they can exhibit large band gaps, statistical isotropy, localization,
and diffusive propagation at the same time. In this work, we theoretically analyse propagation of elastic
waves in the GHz frequency region and extensively explore various architecture designs to discuss
2D and 3D waveguided architectures. We demonstrate that waveguides in hyperuniform structures
display transmission field profiles with nearly 100% transmission in for a very thin, freeform-shape 3D
waveguided architecture.

2. Phononic Band Gaps in Two-Dimensional HDPS

2.1. The Hyperuniform Structure

In this work, we consider a hyperuniform point pattern made [25,26] of 500 points distributed
within a square of 22.4-µm side length, using periodic boundary conditions for the box (super-cell)
as shown in the left-hand panel of Figure 1.

Figure 1. (a) The 2D structure considered in this work and (b) its corresponding diffraction pattern.

The diffraction pattern, proportional to the intensity of the Fourier (shown in the right-hand panel
of Figure 1), exhibits a disk of practically zero interior intensity, with a radius 2.5 µm, corresponding to
a stealthy parameter of χ = 0.5 [25]. The average distance among the cylinders is 1 µm and the
diameter of each cylinder is 0.5 µm. For material parameters, we consider that the cylinders are
made of lead with density of 11.4 g/cm3, shear wave velocity of 860 m/s2, and longitudinal wave
velocity of 2160 m/s. The surrounding matrix is assumed to consist of epoxy with density of 1.2 g/cm3,
shear wave of velocity 1160 m/s, and longitudinal wave velocity of 2830 m/s. These parameters have
been used in the study of disorder in phononic structures in the past [14] and provide optimized band
gaps for the corresponding periodic structures.

2.2. Band Structure for Out-of-Plane Elastic Wave Modes

We start our discussion with 2D structures, i.e., assuming infinite (homogeneous) extent along the
third (z) dimension. In this case, elastic waves polarized within the plane propagate independently of
elastic waves polarized normal to this plane. All the results are obtained from theoretical simulations
with the help of well-established finite element commercial software (COMSOL Multiphysics R©).
The scattering cross for a (shear) out-of-plane polarized incident plane wave is shown in Figure 2a.
The isolated cylinder is excited at 0.28 GHz, with z component of the elastic field and the mode
profile shown in the Figure 2a (inset). When considering a photonic crystal made out of identical
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cylinders, the mode described above hybridizes and evolves in the mode located at the lower edge of
the phononic band gap. This mode contributes to the opening of the band gap, which in the case of
a square periodic structure (PC) of lattice constant a = 1 µm has a relative size of 64%, extending from
0.36 GHz to 0.70 GHz, as shown in Figure 2b. The band structure of the HDPS made of of identical
cylinders (Figure 1a) is shown in Figure 2c. We note that, due to the 500-time folding of the BS
(compared to the periodic case), the bands appear almost flat. However, the effective velocity in
both the PC and the HDPS remains the same in the long wavelength limit. Figure 2d shows that the
transmission from a finite (along the x axis) slab of the structure becomes very small in the region
of the band gap, as expected. Compared to previous approaches in correlated disordered phononic
structures [13,14], we find band gaps of similar size. However, we emphasize that our structures
originate from completely disordered structures, without any signature of an underlying periodicity,
and are hence much more flexible. We will exploit this for the design freeform waveguides. Moreover,
we also note that as the χ parameter decreases, disorder and non-uniformity of the structure increase
and, as a result, the size band gap also decreases. Therefore, in the current study we keep the χ

value fixed to 0.5 to achieve the largest band gap and hence, the spectral range over which freeform
waveguiding can be implemented.

Figure 2. Out-of-plane modes. (a) Scattering cross section of a single Pb (infinite) cylinder in epoxy.
The z component of the elastic field for excitation from the left with a z-polarized plane wave at
0.28 GHz is shown in the inset (black circle denotes the position of the cylinder). (b) The 2D band
structure of the periodic crystal of Pb in epoxy. The horizontal broken lines denote the band gap edges
of the hyperuniform disordered phononic structures (HDPS). (c) The 2D band structure of the HDPS.
(d) Transmission of the HDPS for a z- polarized incident plane wave.

2.3. Band Structure for in-Plane Elastic Wave Modes

The scattering cross for a shear in-plane polarized incident plane wave is shown in Figure 3a.
We consider excitation of a mode of the cylinder at 0.64 GHz, with the magnitude of the elastic field
shown in the inset of Figure 3a. In the case of the photonic crystal structure, this evolves again in the
lower edge mode of the phononic band gap. In the case of a square PC of lattice constant a = 1 µm,
the phononic band gap has a relative size of 32%, extending from 0.67 GHz to 0.93 GHz, as shown in
Figure 3b. The band structure of the HDPS Figure 1a is shown in Figure 3c. We note again that, due to
the folding of the band structure, the bands appear almost flat. The effective velocity in both the PC and
the HDPS remains the same in the long wavelength limit. However, the band gap decreases a little bit
(relative size 26%) extending from 0.67 GHz to 0.87 GHz. We also note that the coincidence of the lower
band edge in the two cases is related to the existence of the single-cylinder mode described above,
which develops into the lower band-edge mode in both the periodic and disordered structure cases.
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Figure 3d shows that the transmission from a finite (along the x axis) slab of the structure becomes
very small, for both in-plane shear (polarized along the y axis) and longitudinal (polarized along the
x axis) incident waves in the region of the band gap.

Figure 3. In-plane modes. (a) Scattering cross section of a single Pb (infinite) cylinder in epoxy.
The magnitude of the elastic field for excitation from the left with a shear plane wave at 0.64 GHz is
shown in the inset (black circle denotes the position of the cylinder). (b) The 2D band structure of the
periodic crystal of Pb in epoxy. The horizontal broken lines denote the band gap edges of the HDPS. (c)
The 2D band structure of the HDPS. (d) Transmission of the HDPS for the longitudinal (solid line) and
transverse (dashed line) incident plane wave.

3. Freeform Waveguides

3.1. 2D Modes in Nearly-Hyperuniform Structures

The existence of large band gaps in the HDPS can be exploited to construct efficient waveguide
structures. We employ here the bottom-up approach discussed previously [21,27–30], which leads
to a nearly-hyperuniform distribution of points. Specifically, we consider an arbitrarily-shaped
waveguide path formed by equidistant scattering centres and surrounded by a bulk hyperuniform-like
material. In contrast to previous works, we assume here only a single line of equidistant cylinders
homogeneously aligned parallel to the waveguide path. The rest of the structure is defined within
a square region of side 40 µm. The position of the points is found by minimizing a repelling potential
of the form r−4, r being the distance among the points, under periodic boundary conditions. In total,
we consider 1600 points within our domain, decorated with identical cylinders. We consider three
different arbitrary waveguide paths, as shown in Figure 4. All these paths have a continuously
changing slope throughout the entire shape and therefore cannot be implemented on a photonic crystal
platform. While for some of the paths one can identify alternatives possible to implement in either
periodic phononic crystals or curvilinear defined periodic structures, the hyperuniform-like platform
described here allows for ultimate flexibility both in terms of the arbitrariness of the waveguide path
and the ability to accommodate various freeform designs on a single platform. The unique feature is
directly related to the nearly-deal statistical isotropy and homogeneity of the hyperuniform surround.
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(b) (c)(a)

Figure 4. (a) A hyperbolic tangent-shaped waveguide; (b) a cosine-shaped waveguide; and (c)
a 90◦-bend waveguide.

3.2. Out-of-Plane 2D Waveguide Modes

Transmission for the out-of-plane modes through these arbitrary-shaped waveguide is shown
in Figure 5a, together with transmission of a straight waveguide. Our results demonstrate that in
the region of the band gap, the freeform HDPS waveguides provide efficient guiding as compared
to the straight waveguide. In the case of the 90◦-bend waveguide, the efficiency drops after 0.6 GHz,
while for the hyperbolic tangent shaped waveguide, the efficiency is remains high up to 0.6 GHz.
We also note that in the high transmission regions, the elastic field is nearly perfectly confined around
the waveguide path (Figure 5b–e).

(a)

(b) (c) (d)

Figure 5. (a) Transmission of the out-of-plane 2D modes for the waveguides in Figure 4a,c is shown
by the blue, red, and green lines, respectively. With the black lines the corresponding transmitted
power of a straight waveguide is shown with the black line for comparision. A snapshot of the elastic
field vertical component at a propagating frequency of 0.46 GHz is shown in (b–d) for the straight
waveguide, and the waveguides in Figure 4a,c, respectively.

3.3. In-Plane 2D Waveguide Modes

Transmission for the in-plane modes through these arbitrary shaped waveguide is shown in
Figure 6a, together with transmission of a straight waveguide. In the region around 0.7 GHz and
0.8 GHz, the efficiency of the freeform waveguides reaches 100%. We also note that at the high
transmission regions, the fields are again very well localized around the waveguide path, as shown
in Figure 6b–e. The sharp drops of the transmission for the arbitrary shaped waveguides are due to
excitation of localized modes at the sharper corners of the bends, which block transmission at certain
frequencies. These regions of low-transmission could, in principle, be eliminated through further
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optimisation of the waveguide surround. Elsewhere, transmission is comparable to that of a periodic
straight waveguide. Moreover, lower-efficiency waveguiding occurs even beyond the spectral region
of the phononic band gap.

(a)

(b) (c) (d) (e)

Figure 6. (a) Transmitted power for the waveguides in Figure 4a–c as shown by the blue, red,
and green lines, respectively. With the black lines the corresponding transmitted power of a straight
waveguide is shown with the black line for comparision. A snapshot of the elastic field magnitude at
a propagating frequency of 0.71 GHz is shown in (b–e) for the straight waveguide, and the waveguides
in Figure 4a–c, respectively.

3.4. Waveguide Modes in 3D Slabs

Motivated by the recent progrss in the fabrication of finite-height hypersonic band gap
structures [31–33], we now consider a realistic 3D slab architecture. For simplicity, we assume that our
structure is suspended in air. In this case the modes of the out-of-plane and in-plane polarization are
no longer separable. Hence, we do not expect an absolute band gap, since there is no spectral overlap
between the out-of-plane and in-plane band gaps found in the 2D structures. However, these structures
exhibit spectral regions of very low transmission [21], which we plan to exploit to create practical 3D
slab waveguides with a height equal to the average separation distance of the cylinders, i.e., 1 µm.
We note that for much larger heights the finite size effects should be minimal and therefore one should
retrieve the same results as in the 2D case.

In Figure 7, we identify a nearly-optimal confined waveguided mode at a frequency of 0.52 GHz,
displaying overall transmission above 95%. We note that due to the suspended-membrane architecture,
the main losses are related to in-slab propagation outside the waveguide channel. While the vertical
losses do not play a major role, in order to improve the guiding performance and extend the
spectral range over which the guiding occurs, further optimization of the structure may be necessary.
The main main target of such an optimization procedure would be to identify configurations that
allow for the formation of a complete 2D band, which can be employed in 3D slab architectures.
However, such an optimization and the the study broadband response of the waveguide architecture
is a computer resource-intensive problem and is beyond the scope of our study.
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Figure 7. Snapshot of the elastic field profile at an incident wave frequency of 0.52 GHz for the waveguide
shown in Figure 4a, with a finite height of 1 µm. The color scale represents the magnitude of the elastic
field while the local disturbance is proportional (with orders of magnitude larger, for visualization) to
the actual disturbance due to the elastic field traveling through the waveguide.

4. Conclusions

We have analysed structurally-disordered hyperuniform phononic crystals (HDPS). These structures
originate from random point patterns by optimizing their Fourier spectrum to achieve an isotropic
structure factor that vanishes for all k vectors within a specific radius. The resulting hyperuniform
structures display amorphous-like short-range ordering and well-defined long-range uniformity
(Figure 1), with an average separation distance of 1 µm among cylinders. In such structures both
ballistic-like propagation (at lower wavelengths) and diffusive transport (at higher frequencies)
together with large and robust phononic band gaps coexist. By using finite-element methods
and supercell techniques, we have calculated the band structure of HDPS in the sub-GHz regime.
Large PBGs, comparable to their periodic counterparts, have been identified, accompanied by huge
transmission drops in the relevant frequency regions for all possible polarizations. We note that our
results should be qualitatively similar for a wide range of material parameters, provided that a strong
enough contrast between the cylinders and the matrix is maintained [31–33].

We have shown that the presence of the phononic band gaps in hyperuniform disordered
structures makes them ideal candidates for the implementation of highly efficient, freeform waveguides.
There is a high efficiency of such structures as arbitrary-shaped waveguides in 2D (very large
height). The designed waveguides perform very well for both in-plane and out-of-plane polarization
guiding and even for 3D-slab waveguide architectures. Our study predicts transmission efficiency
up to 100% within the frequency regions of the band gaps of the relevant HDPS for the freeform
waveguides. Our findings can provide a significant advance in the design of phononic integrated
circuits providing a versatile platform on which various circuit elements can be connected with
highly-efficient waveguides following arbitrary-shaped pathways. Although we have focused on
microscale applications, we expect that the understanding and control of such coupling between
random and short-range ordered structures is important for other length-scale regimes, e.g., macroscale,
for exploring seismic wave propagation in correlated disorder materials, fracture in complex structures,
and the nanoscale in applications related to thermal transport.

Supplementary Materials: The data underlying the findings of this study are available without restriction.
Details of the data and how to request access are available from the University of Surrey publications repository:
http://doi.org/10.15126/surreydata.00845033.
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