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Abstract: A novel Pr complex, constructed from a rigid three-connected H3TMTA and
praseodymium(III) ion, has been synthesized in a mixed solvent system and characterized by X-ray
single crystal diffraction, infrared spectroscopy, a thermogravimetric analysis, an element analysis,
and powder X-ray diffraction, which reveals that complex 1 crystallizes in a three-dimensional porous
framework. Moreover, the thermal stabilities and the fluorescent and gas adsorption and separation
properties of complex 1 were investigated systematically.
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1. Introduction

During the past few decades, a lot of effort has been devoted to the rational design and synthesis
of coordination polymers (CPs) in the field of chemical and material science due to their fascinating
architectures and topologies together with their potential applications [1–8]. Besides the N-containing
ligands, rigid multi-carboxylate ligands are intriguing components owing to their easily predictable
and stable resulting framework [9–17]. Among all of the multi-carboxylate ligands, many C3-symmetric
tricarboxylate ligands have been extensively investigated to construct CPs with interesting architectures
and properties, including H3TATB and H3BTB (TATB denotes 4,4′,4′′-s-triazine-2,4,6-triyltribenzoate
and BTB denotes benzene-1,3,5-tribenzoate) [18–20]. At the same time, with its three carboxylate
groups almost perpendicular to the central benzene ring, a nonplanar ligand H3TMTA (TMTA
denotes 4,4′,4′′-(2,4,6-trimethylbenzene-1,3,5-triyl)tribenzoate) has also been applied to build CPs
with appealing topologies [21–23].

On the other hand, thousands of CPs based on the transition metal ions have been intensively
investigated. Compared with transition metal ions, there exists a kind of rare earth metal ion, which
possesses abundant luminescent properties. It should be pointed out that although quite a lot of
coordination complexes have been developed using different ligands in the past years, to the best of
our knowledge, porous frameworks built from rigid three-tricarboxylate ligands and rare earth ions
are still rare.

In the present paper, a novel rare earth complex was constructed from a rigid three-connected
H3TMTA ligand and a praseodymium(III) ion, (Pr(TMTA)(H2O)2]·[DMF·2EtOH·4H2O] [1, H3TMTA =
4,4′,4′′-(2,4,6-trimethylbenzene-1,3,5-triyl)tribenzoic acid). Interestingly, complex 1 shows permanent
porosity and a moderate adsorption heat of CO2 (21.6 kJ·mol−1), which can be used as a platform for
the selective adsorption of CO2/CH4 (3.56).
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2. Experimental

2.1. Materials and Methods

All chemicals were used as commercially received without further purification. The FT-IR spectra
were collected from 400 to 4000 cm−1 using the KBr pellet method. The elemental analyses (for C,
H, or N) were performed on a Perkin-Elmer 240 elemental analyzer ((PerkinElmer, Billerica, MA,
USA). The powder X-ray diffraction measurements were performed with a Bruker AXS D8 Advance
instrument (Karlsruhe, Germany). The thermogravimetric analysis was recorded on a Mettler Toledo
instrument (Mettler Toledo, Zurich, Swiss). The gas uptake was performed on the surface area analyzer
ASAP-2020 (Micromeritics, Norcross, GA, USA).

2.2. Synthesis of [Pr(TMTA)(H2O)2]·[DMF·2EtOH·4H2O] (1)

H3TMTA (2 mg, 0.0045 mmol) and Pr(NO3)3·6H2O (9.2 mg, 0.02 mmol) were dissolved in mixed
solvents, DMF:EtOH:H2O (v:v:v = 1:1:1; 1 mL). The resulting green solution was sealed in a glass
tube, heated to 75 ◦C in 5 h, kept for 40 h, then slowly cooled to 30 ◦C in 8 h. The green rod crystals
were collected, washed with EtOH, and dried in the air (yield: 40%). Elemental analysis calcd (%) for
1: C 49.84, H 5.88, N 1.57; found: C 48.98, H 5.77, N 1.74%. IR (KBr): ν (cm−1) = 3349 (m), 1618 (m),
1554 (s), 1419 (s), 1367 (s), 1273 (w), 1101 (w), 894 (w), 839 (m), 771 (m), 724 (s), 640 (m).

2.3. X-ray Crystallography

The single-crystal structure of the complex 1 was collected by an Agilent Xcalibur Eos Gemini
diffractometer (Agilent Technologies, CA, USA) with a (Cu) X-ray Source (Cu-Kα λ = 1.54184 Å).
The multi-scan program SADABS was applied to do the absorption corrections [24]. SHELXS-97 and
SHELXL-97 were used to solve and refine the final structure of complex 1 by direct methods [25,26].
PLATON was used to add the symmetry of complex 1. [27]. Table 1 contains the crystallographic
details of complex 1 and Table 2 collects the selected bond lengths and angles for complex 1.

Table 1. Crystal data for complex 1.

Empirical Formula C30H25O8Pr

Formula weight 654.41
Temperature/K 298.15
Crystal system monoclinic

Space group P21/n
a/Å 9.531(3)
b/Å 16.417(5)
c/Å 27.409(8)
α/◦ 90.00
β/◦ 93.098(6)
γ/◦ 90.00

Volume/Å3 4282(2)
Z 4

ρcalcmg/mm3 1.015
m/mm−1 1.169

F(000) 1312.0
Index ranges −10 ≤ h ≤ 10, 0 ≤ k ≤ 18, 0 ≤ l ≤ 30

Reflections collected 6198
Independent reflections 6198[R(int) = 0.1019]

Data/restraints/parameters 6198/906/354
Goodness-of-fit on F2 1.002

Final R indexes [I >= 2σ (I)] R1 = 0.1012, wR2 = 0.2613
Final R indexes [all data] R1 = 0.1277, wR2 = 0.2752

Largest diff. peak/hole/e Å−3 5.28/−1.63
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Table 2. Selected bond lengths (Å) and angles (◦) for complex 1.

Pr1-O1 2.390(8) Pr1-O1w 2.496(8) Pr1-O2 1 2.384(8)
Pr1-O2w 2.488(8) Pr1-O3 2 2.535(8) Pr1-O4 2 2.570(8)
Pr1-O5 3 2.445(8) Pr1-O6 4 2.480(8) Pr1-O6 3 2.967(8)

O1-Pr1-O1w 77.9(3) O1-Pr1-O2w 78.6(3) O1-Pr1-O3 1 76.5(3)
O1-Pr1-O4 1 124.3(3) O1-Pr1-O5 2 155.4(3) O1-Pr1-O6 2 138.1(3)

1 1 − X, −Y, −Z; 2 −1/2 + X, −1/2 − Y, −1/2 + Z; 3 –1 + X, 1 + Y, +Z; 4 1 − X, −1 − Y, −Z.

CCDC 1582391 contains the supplementary crystallographic data of complex 1 for this
paper. These data could be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html
(or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; E-mail:
deposit@ccdc.cam.ac.uk).

3. Results and Discussion

3.1. Crystal Structure of Complex 1

Complex 1 was obtained in mixed solvents of DMF:EtOH:H2O by a hydrothermal reaction
of H3TMTA and Pr(NO3)3·6H2O at 75 ◦C. The single-crystal X-ray analysis shows that complex 1
crystalizes in a monoclinic crystal system with a p21/n space group. The asymmetry unit of complex
1 contains a praseodymium ion, a TMTA3− ligand, and two coordinated water molecules. The Pr-O
distances are 2.384(8) Å and 2.967(8) Å, and the distances of Pr-Ow are 2.488(8) Å and 2.496(8) Å,
respectively. As shown in Figure 1a, the Pr(III) ion in complex 1 adopts a nine-coordinated mode
forming a distorted {PrO9} coordination sphere. It is interesting that the carboxylic groups in 1 adopt
three different coordination modes: µ1-η1-η1, µ2-η1-η1, and µ2-η1-η2. The carboxylic groups connect
with the Pr(III) ion to form a one-dimensional infinite chain, and then the chains are linked by the
TMTA3− ligand to construct a three-dimensional framework (Figure 1b).
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three-dimensional porous framework of 1 viewed along the b axis.

3.2. The Fluorescent Property

Because of the presentation of rare earth ions and a rigid carboxylate group, the luminescent
property of complex 1 was tested in the solid state at 298 K. The emission band centered at
362 nm (λex = 320 nm) for H3TMTA, which could be assigned to the electronic transition based on
ligand-centered, which means the π*→n or π*→π electronic transition [28]. The emission of complex 1
was observed at 358 nm upon excitation at 320 nm for 1, which can be attributed to the emission of
H3TMTA ligands (Figure 2). There was no characteristic emission of rare earth ions.

www.ccdc.cam.ac.uk/conts/retrieving.html
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3.3. Powder X-ray Diffraction Analysis

The powder X-ray diffraction pattern was used to certify the phase purity of complex 1 (Figure 3).
Almost all of the peak positions of the simulated and experimental patterns match very well with each
other. The preferred orientation of the powder samples accounts for the differences in intensity.
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for the complex 1.

3.4. IR Spectra

The FT-IR spectrum of compound 1 was also tested. As depicted in Figure 4, the sharp bands
at 1554 cm−1 and 1419 cm−1 stand for the asymmetric and symmetric stretching vibrations of the
carboxylic group, respectively [29].
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3.5. Thermogravimetric Analyses

As shown in Figure 5, the thermogravimetric analysis (TGA) property of complex 1 was detected
under an N2 atmosphere. Complex 1 has two identifiable weight loss stages: the first stage is similar
to the removal of seven uncoordinated and two coordinated solvent molecules (obsd 26.37%, calcd
27.91%), which arises between room temperature and 273 ◦C. The second stage belongs to the collapse
of the framework, which appears at temperatures higher than 500 ◦C, which means that the present
complex 1 shows moderate thermal stability.
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3.6. Gas Sorption and Separation Measurements

Gas adsorption–desorption measurements of N2, CO2, CH4, and H2 on complex 1 were
collected on a Micromeritics ASAP 2020 surface area and pore size analyzer at different
temperatures: 77 K (liquid nitrogen bath), 273 K (ice-water bath), and 298 K (room temperature).
The Brunauer-Emmett-Teller (BET) surface area and pore size distribution data were calculated from
the N2 adsorption isotherms at 77 K.

The as-synthesized crystals of complex 1 were exchanged three times with dry methanol.
The activated phases samples were degassed at 353 K for 10 h for the gas sorption measurements.
As can be seen from Figure 6, the active phase is highly crystalline and remains almost identical to
its as-synthesized phase. The permanent porosity of complex 1 was confirmed by the reversible N2

sorption measurements at 77 K and 1 atm, which showed a type I adsorption isotherm performance
with a saturated adsorption amount of 106 cm3 g−1. The values of the Brunauer-Emmett-Teller (BET)
and Langmuir surface areas are 327.4 and 422.7 m2 g−1, respectively, calculated from the N2 sorption
isotherm. The pore size distribution is determined with NLDFT and calculated from N2 adsorption
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isotherms at 77 K, corresponding to the pore size of 4.3 Å for complex 1, which matches well with the
crystal data.Crystals 2017, 7, 370  6 of 9 
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We also tested the low-pressure H2, CO2, and CH4 uptakes of a desolvated sample of complex
1 by using volumetric gas adsorption measurements. Complex 1 can adsorb 89.5 cm3 g−1 of H2

molecules. Thus, the CO2 uptake of complex 1 is 26.2 cm3·g−1 (5.158 wt %) at 273 K and 17.6 cm3·g−1

(3.46 wt %) at 298 K under 1 bar, respectively (Figure 7). The adsorption heat (Qst) of CO2 of
complex 1 is 21.6 kJ·mol−1 calculated from the Clausius-Clapeyron equation, indicating a moderate
adsorbate-adsorbant interaction. Furthermore, the CH4 uptake of complex 1 is 11.6 cm3·g−1 at 273 K
and 7.5 cm3·g−1 at 298 K under 1 bar, respectively.
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Figure 7. Gas uptakes for complex 1. (a) The H2 adsorption capacity for complex 1 at 77 K; (b) The
CO2 adsorption capacity for complex 1 at 273 and 298 K; (c) The CO2 adsorption capacity for complex
1 at 273 K and 298 K; (d) The Qst of complex 1 for CO2.
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Since CO2 is a dominant component of greenhouse gas and a main contaminant of natural gas,
it is meaningful to investigate the capacity of CO2 and the selectivity of CO2/CH4. The higher CO2

uptake capacity of complex 1 prompted us to further investigate the selectivity of CO2 adsorption over
CH4. According to the calculation results over a 10:90 and 50:50 CO2/CH4 mixed gas, the CO2/CH4

selectivitie at 273 K and 298 K are 3.2 and 3.56, respectively. These values are comparable to ZIF-79
(CO2/CH4: 5.4) [30], SIFSIX-2-Cu (CO2/CH4: 5.3) [31], and PCN-88 (CO2/CH4: 5.3) [32] (Figure 8).
The results show that compound 1 may be a candidate for CO2 capture and separation from natural gas.
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Figure 8. Selective gas adsorption for complex 1. The CO2/CH4 sorption isotherms for complex 1 at
273 K (a) and 298 K (b) calculated by the IAST method for two CO2 concentration.

4. Conclusions

In conclusion, A novel Pr complex, constructed from a rigid three-connected H3TMTA and
a praseodymium(III) ion, has been constructed under solvothermal conditions. Thus, the thermal
stabilities and the fluorescent and gas adsorption and separation properties of complex 1 were
investigated systematically. Complex 1 can be used as a candidate for CO2 capture and separation
from natural gas.
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