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Abstract: This review is focused on the dimerization and dissociation of aromatic C-nitroso
compounds and their dimers, the reactions that could be used as a convenient model for studying the
thermal organic solid-state reaction mechanisms. This molecular model is simple because it includes
formation or breaking of only one covalent bond between two nitrogen atoms. The crystalline
molecular solids of nitroso dimers (azodioxides) dissociate by photolysis under the cryogenic
conditions, and re-dimerize by slow warming. The thermal re-dimerization reaction is examined
under the different topotactic conditions in crystals: disordering, surface defects, and phase
transformations. Depending on the conditions, and on the molecular structure, aromatic C-nitroso
compounds can associate to form one-dimensional polymeric structures and are able to self-assemble
on gold surfaces.

Keywords: aromatic C-nitroso compounds; solid-state reaction mechanisms; azodioxides; cryogenic
photodissociation

1. Introduction

Over the last decades, solid-state chemistry has emerged as a rapidly growing area of
science. The importance of solid-state chemistry lies in its numerous applications in development
of solvent-free synthetic methods and the design of new functional materials in areas such as the
electronics and semiconductor industries, energy conversion and storage, catalysis, etc. [1,2]. In this
context, it is of crucial importance to gain deeper insights into the mechanistic basis of reactions
occurring in the solid state. The present review is focused on the recent research of the organic
solid-state reactions in the crystalline molecular solids under thermal conditions. While the studies of
photochemically-induced processes and their basic mechanistic studies initiated by Cohen, Schmidt,
Buergi, and Dunitz et al. are available from the vast literature [3–11], the mechanisms of the thermal
organic solid-state reactions are still an open issue. Although Paul and Curtin established fundamental
theoretical basis of solid-state reactions already forty years ago [12], the detailed and quantitative
descriptions of these processes, especially in organic chemistry, are still incomplete.

Chemical reactions, i.e., the breaking and/or formation of chemical bonds are, in crystalline
molecular solids, more or less accompanied by and coupled with phase changes of the crystal lattice [7].
In the experiments with aromatic C-nitroso compounds, these two processes have been measured
by two independent methods [13]. While the chemical reaction was followed by time-resolved IR
spectroscopy, the corresponding phase transformation was monitored by the time-resolved X-ray
powder diffraction (XRPD) [13]. In cases of some substituted nitrosobenzenes, the studied processes
afford the diverse kinetic behaviours: typically, the chemical reaction is characterized by the exponential
kinetic curve, and the phase transformation mostly follows the sigmoid kinetic curve (Figure 1).
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In principle, from the shapes of the kinetic curves it is then possible to estimate which of the processes
(chemical reaction or the phase change) is dominant.
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complexes [14]. In these molecular systems, the main process is the phase transformation. The most 
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representations described by the Avrami-Erofeev (AE) equations [15–18]. These were recently 
reinterpreted by Finke and Watzky [19–22], as well as by Brown [23] with the discussion about the 
meaning of the Arrhenius parameters and the meaning of the Avrami parameter for the 
dimensionality of the reaction (parameter m). 
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Figure 1. Kinetics of the solid-state dimerization of p-bromonitrosobenzene followed by
(a) time-resolved IR spectroscopy (exponential kinetic curve) and by (b) time-resolved XRPD (sigmoidal
kinetic curve). Reproduced with permission from [13]. Copyright 2004 American Chemical Society.

First models for the interpretation of solid-state processes known from the literature were focused
mostly on the phase transformations or the reactions of inorganic ionic compounds and complexes [14].
In these molecular systems, the main process is the phase transformation. The most popular models for
the solid-state kinetics of phase transformations have mathematical representations described by the
Avrami-Erofeev (AE) equations [15–18]. These were recently reinterpreted by Finke and Watzky [19–22],
as well as by Brown [23] with the discussion about the meaning of the Arrhenius parameters and the
meaning of the Avrami parameter for the dimensionality of the reaction (parameter m).

The main difficulty in the experimental solid-state kinetics of the thermally-induced reactions
is in satisfying the reproducibility of measurements [23,24]. Crystalline or polycrystalline samples
differ from one experiment to another because of “individuality” of every crystal emerged from its
own history of growth. Crystals are very far from the perfect molecular arrangements because of the
defects distributed in the crystal lattice, and especially on the surface. In order to explain the reaction
mechanisms in the crystalline phase it is of great importance to design a model, which includes a
simple solid-state chemical reaction with the rate constants that can be reproducibly measured in real
time under various conditions, and in which the reactants, intermediates, and products have defined
molecular and crystal structures.

2. Experimental and Conceptual Model

The model, which we have developed is based on the reactions of the nitrosobenzene derivatives
in the crystal phase [13,25–31]. Such a system is simple because it includes the formation and/or
breaking of only one chemical bond between two nitrogen atoms during the dimerization of C-nitroso
compounds to the Z- or E-azodioxy dimers, or their subsequent dissociation to the starting monomers
(Scheme 1) [32–39].
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Although most of the aromatic C-nitroso compounds appear as Z- or E-azodioxides in solid
state, certain nitrosobenzene derivatives, such as those with strong electron-donating substituents in
the para-position (e.g., p-nitrosoanisoles and p-nitrosoanilines), prefer a monomeric form. Aromatic
C-nitroso compounds which form dimers in the solid state can also be isolated as metastable monomers.
Monomeric molecules can be prepared within the crystalline solids by photodissociation of azodioxy
dimers. Photolysis of different azodioxides to the corresponding monomers has been observed
in crystals when they are cooled to cryogenic temperatures (10–12 K), and irradiated by UV light
(254 nm) [26,29–31,40]. The process can be followed even visually because the monomers are coloured
blue or green, while most of the azodioxides are colourless or yellow. Warming of the nitroso monomer
prepared as a crystalline solid above some critical temperature (usually above 100 K) causes its thermal
re-dimerization to azodioxide.

Since the average bond energy of the nitrogen-nitrogen double bond in azodioxides is
120 kJ·mol−1 [41] along with the fact that its rupture results in the formation of two N=O groups,
the aromatic azodioxides promptly dissociate to nitroso monomers in the gas phase. This is further
supported by the thermodynamic data for the gas-phase dimerization of nitrosobenzenes. For instance,
the dimerization reaction enthalpy (∆rH◦) of the parent nitrosobenzene is −22.15 kJ·mol−1 for the
Z-isomer (∆rG◦ = 33.39 kJ·mol−1) and −26.21 kJ·mol−1 for the E-isomer (∆rG◦ = 30.08 kJ·mol−1) [42].
After deposition of the gaseous monomer molecules on the cold surface, the monomeric form is
preserved in most cases. The nature of the mutual interactions of the deposited monomers depends
strongly on the temperature of the cold surface. For example, the temperature of the cold finger of the
laboratory sublimator of about 10 ◦C is low enough to stabilize the crystals of nitroso monomers that
are formed after sublimation. However, removal of these crystals from the cold surface and successive
warming to the room temperature causes re-formation of dimers within the crystal phase. Fortunately,
the kinetics of this process are measurable in real-time, which makes the dimerization of aromatic
C-nitroso compounds a good model for studying the thermally-induced chemical reactions in the
crystals. On the other hand, if the surface for the deposition is cooled to the cryogenic temperature
(below 20 K), the deposited molecules of nitroso monomers are randomly distributed rather than
arranged in crystals and their mutual interactions are expected to be different.

In summary, depending on the experimental conditions the molecules of the starting nitroso
monomers can form three different arrangements: (i) the stiff, perhaps metastable, crystal packing
in which the reactants appear as an “intimate monomer pair” (obtained by cryogenic photolysis);
(ii) the stable crystal phase where the reactant molecules are at the distance larger than van der Waals
(produced by classical sublimation); or (iii) the more or less disordered phase (obtained by deposition
on the cryogenic surface).

Here, we propose the technical term topochemical effect, which can be defined as an influence of
the packing “stiffness” of the neighbouring reacting molecules on their chemical reactivity (the term
topochemical effect should be distinguished from the generally accepted concept of the topochemical
principle introduced earlier by Cohen, Schmidt et al. [3]). This effect can be observed only by
measuring the reaction rates under the ceteris paribus conditions, i.e., by varying exclusively the
topotactical intermolecular arrangements for the same chemical reaction, in our case the dimerization
of nitrosobenzene molecules.

3. Dimerization Starting from the “Intimate Monomer Pair”

The UV irradiation of azodioxides in solution at room temperature causes their decomposition,
either by extrusion of NO [43–45], or by molecular rearrangements [46]. There are also some indications
based on the UV-VIS spectroscopy, that UV irradiated azodioxides in solution at −60 ◦C could
dissociate to corresponding nitroso monomers [47]. Such photodissociations were finally confirmed by
the experiments performed in the crystal phase under cryogenic conditions [40]. Nitroso monomers
produced by cryogenic photolysis of azodioxy crystals were characterized by the appearance of a new
signal in the IR spectra at about 1500 cm−1, assigned to monomer N=O stretching vibration (Figure 2).
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The monomers are stable only under cryogenic conditions. At temperatures higher than 100 K they
readily dimerize to the starting azodioxides (Scheme 1, Figure 2).Crystals 2017, 7, 376 4 of 15 
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30 min of photolysis by a low-pressure Hg lamp, and (c) after warming to 170 K. The signal of
E-ON=NO asymmetric stretching vibration is labelled with •, while the signal of monomeric N=O
stretching vibration is labelled with *.

The thermal recovery of azodioxides and re-photolysis to nitroso monomers is the efficient
repetitive process (Figure 3) and, thus, the solid-state photochromic and thermochromic behaviour of
aromatic C-nitroso compounds could be investigated as a potential simple OFF-ON molecular switch.
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Figure 3. Reversible changes in IR intensity of E-ON=NO stretching vibration of dimer of
p-bromonitrosobenzene obtained by consecutive photolysis (solid line) and thermal reactions
(dotted line). Reproduced with permission from [40]. Copyright 2002 American Chemical Society.

The rate coefficient of dimerization of p-bromonitrosobenzene monomers produced by photolysis
(measured as an increase in the intensity of the peak at 1260 cm−1, assigned to the asymmetric stretching
vibration of the E-ON=NO group) was found to be k = 2.24 × 10−4 s−1 at 170 K [30]. The dimerization
reaction is very fast because the interacting nitrogen atoms of neighbouring monomer molecules
obtained by cryogenic photolysis remain very close to each other. Formation of such an “intimate
monomer pair” has been confirmed by the X-ray analysis of the product of photodissociation of
p-bromonitrosobenzene dimer in which the azodioxide underwent the single-crystal-to-single-crystal
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transformation to the corresponding pair of nitroso molecules [26]. The thus-obtained crystal of
monomer is a sort of metastable phase with an interesting structure in which the nitrogen–nitrogen
distance between neighbouring molecules of 2.3 Å is closer by 23% than the sum of the two nitrogen van
der Waals radii. Monomers in such a metastable crystal phase have repetitive molecular arrangement
where the close 2.3 Å N···N distance forms a quasi-polymeric motif (Figure 4).
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The molecular orbital analysis of the dimerization of C-nitroso compounds published earlier by
Hoffmann, Gleiter, and Mallory has demonstrated that the reaction is symmetrically forbidden in the
gas phase if the nitroso groups approach one another in the same plane [48]. A comparison of crystal
structures of the p-bromonitrosobenzene dimer and monomer in the single-crystal-to-single-crystal
transformation showed that molecular orientations changed markedly during the photodissociation
reaction, suggesting that dimerization may occur because the reacting nitroso groups do not lie in the
same plane (Figure 5). The process of the thermal re-dimerization is not a single-crystal-to-single-crystal
conversion. Unfortunately, the photochemical single-crystal-to-single-crystal transformation failed
in the experiments performed so far with the other investigated aromatic C-nitroso compounds, but
work in this direction is in progress.
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The very fast dimerization reaction of p-bromonitrosobenzene after cryogenic photolysis could be
attributed to the strong topochemical effect where the reaction starts from the “intimate monomer pair”
of the molecules at the nitrogen-nitrogen distance of 2.3 Å (the term strong topochemical effect is used as
a terminus technicus describing the influence of the vicinity of the reactive centers on the reactivity in
formation of covalent bond). Similar kinetic behaviour was also observed in solid-state photothermal
reactions of polymeric p-dinitrosobenzene [49,50]. The kinetics of this polymerization reaction will be
discussed later in more detail.

4. Dimerization Starting from the Van Der Waals Distant Monomers

The weak topochemical effect appears in the crystals of nitroso monomers prepared by the mild
sublimation, when the temperature of the cold finger is about 10 ◦C. The reaction starts by warming
the crystals of monomers to room temperature. As in the previous case, the rate of the dimerization is
calculated from the change in intensity of the E-ON=NO asymmetric stretching signal at 1260 cm−1 [30].
The rate coefficients measured at different temperatures and the activation energy for the dimerization
of p-bromonitrosobenzene in crystals prepared by sublimation are represented in Table 1.

Table 1. The rate coefficients and the activation energy for the solid-state dimerization of the
p-bromonitrosobenzene after sublimation (T—temperature, Ea—activation energy, k—rate coefficient).

T/K 104 k/s−1 Ea/kJ mol−1

293 1.78 ± 0.37 a 59.27 ± 0.44
298 3.33 ± 0.15
303 4.41 ± 0.10
308 7.51 ± 0.63
313 8.21 ± 0.31

a Standard deviation.

The nitrogen-nitrogen distance of the reacting nitroso molecules in these sublimed monomer
crystals is longer than the sum of the van der Waals radii [13]. This interatomic separation is markedly
larger than the one measured in the crystals of monomers prepared by the cryogenic photolysis
(2.3 Å) [26]. Such a looser packing of molecules of nitroso monomers after sublimation, i.e., the weak
topochemical effect causes the decrease in the reaction rate for 108 (estimated by extrapolation of rate
constants from Table 1 to 170 K) in comparison with the rate of re-dimerization starting from the
“intimate monomer pair” obtained by photolysis.

In the sample of the randomly distributed nitroso monomers prepared by the vacuum deposition
on the surface cooled to cryogenic temperatures, the reaction of dimerization is very slow and mostly
incomplete [30]. At higher temperatures, the molecules of monomer, due to the absence of the proper
topotactical orientation, do not interact to form azodioxides, but rather sublimate in the surrounding
vacuum chamber.

5. Solid-State Z-E Interconversion

While the sublimations of p-halogenonitrosobenzenes under the mild conditions yield
nitroso monomers, the sublimations of the meta-substituted derivatives (e.g., m-chloro- and
m-bromonitrosobenzene) result in the formation of Z-azodioxides on the cold finger of sublimator.
Evidently, the gaseous monomers of m-halogenonitrosobenzenes dimerize immediately after the
contact with the cold surface. Surprisingly, at room temperature, the Z-isomer spontaneously
rearranges to the E-isomer in crystal phase [29]. The reaction is interesting because it is one of
the very rare examples of the thermally-induced Z-E interconversion in the crystal phase. Most of
the examples of Z-E isomerizations in solid state known from the literature are reactions triggered by
UV or VIS irradiation. The observed Z-E interconversion of m-halogenonitrosobenzene azodioxides
follows the first order kinetics with the activation energy of 126.2 ± 3.0 kJ·mol−1 [29].
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As it is well known from the chemistry of aromatic C-nitroso compounds, azodioxides can
spontaneously dissociate to nitroso monomers in solution and in the gas phase. Consequently,
the interconversion between Z- and E-isomers is the two-step process either in solution or in the
gas phase [51–55]. The first step is dissociation to monomers, and the second is dimerization either to
Z- or E-isomer. As revealed by ab initio calculations, the thermal unimolecular E-Z interconversion of
azodioxides is forbidden by symmetry [54]. However, the appearance of the nitroso monomer as an
intermediate during Z-E interconversion of m-halogenonitrosobenzene azodioxides in crystal phase has
not been detected, either by kinetic measurements performed by following the changes in IR spectra
or by time-resolved XRPD experiments (Figure 6). It could be that the solid-state Z-E isomerization
reaction proceeds through the pairs of monomers which have very short lifetime. The explanation
of this unusual behaviour and of underlying reaction mechanism requires additional studies. As it
will be discussed later, similar thermal solid-state Z-E rearrangement was also observed in the case of
polymeric p-dinitrosobenzene [49].
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Figure 6. Solid-state Z-E interconversion of azodioxides of m-chloronitrosobenzene monitored by
(a) FTIR spectroscopy at 299 K (the characteristic signals of Z- and E-isomers are labeled with
• and *, respectively) and by (b) XRPD at 298 K (X-ray diffraction patterns at the beginning of the
reaction are shown in blue and after 18 h in red). Reproduced with permission from [29]. Copyright
2016 Wiley-VCH.
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6. Surfaces and Formation of Crystal Defects

Thermally-induced solid-state reactions often start in the areas of crystal defects [56–59]. It is
very difficult to recognize and to determine the type and the number of crystal deformations on the
microscale. The most probable appearance of the defects is on the crystal surface. Dimerization of
aromatic C-nitroso compounds at room temperature was found to be triggered by the off-sublimation
of the starting molecules from the surface [27]. If the sublimation is suppressed either by closing the
sample into the sealed ampoule or by covering it by the inert liquid (glycerol), the solid-state reaction
is much slower or inhibited (Figure 7).
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Appearance of such surface vacancies can induce the molecular translations within the crystal
network. Such softening of the molecular arrangement is one of the necessary conditions for the
thermal solid-state reaction, exactly as Paul and Curtin suggested [12]. Since the rate of off-sublimation
of molecules from the surface can be controlled and measured, for instance by isothermal TGA, by using
this method it has been found that the kinetics of the formation of crystal defects is correlated with
the chemical reaction kinetics that occurs in the same crystal [30]. The isothermal TGA measurements
showed that the critical number of defects required for the initiation of the reaction corresponds to the
loss of 1.0 ± 0.5% of mass.

The efficiency of the solid-state dimerization of p-bromo- and p-iodonitrosobenzene is strongly
influenced by the degree of the orientational disorder. While the monomers of bromo-derivative
produced by sublimation dimerize readily, the dimerization reaction of the sublimed iodo-derivative
is very slow and with the negligible yield. This different behaviour can be explained by comparison of
crystal structures and packing of molecules of p-bromo- and p-iodonitrosobenzene after sublimation
(Figure 8) [13,60]. In the solid monomeric phase of the bromo-derivative, molecules are orientationally
disordered in such a way that half of monomer pairs have orientation with the nitroso nitrogen
atoms in the vicinity, satisfying the topochemical condition (Figure 8a) [13]. On the other hand,
in iodo-derivative the molecular arrangement is much more regular with nitroso groups lying in the
neighbourhood to the iodine atoms, and, thus, no interactions between the nitroso nitrogen atoms are
possible (Figure 8b) [60]. Clearly, the bromo-derivative dimerizes because of the orientational disorder
of molecules, which is not the case in the iodo-derivative.
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It must be pointed out that p-iodonitrosobenzene can be isolated in the form of E-dimer by
crystallization from solution and that both Z- and E-dimers are present in equilibrium with monomers
in solution at low temperatures [35]. However, after sublimation this compound forms exclusively
the stable monomers that do not dimerize spontaneously [13,30]. As it has been described in the
experimental part of the paper by Fletcher, Gowenlock et al. [35], the bright yellow crystals of
E-azodioxy dimer of p-iodonitrosobenzene revert on heating to the green crystals of the monomer.
This transformation could tentatively be explained by the higher stability of the monomer polymorph.
Evidently, solid-state chemistry of p-iodonitrosobenzene displays an interesting and somewhat complex
behaviour. For a deeper clarification of this process further detailed research has to be done.

7. Metathesis-Like Reactions

Depending on the conditions, the aromatic nitroso molecules can form mixed dimers. Namely,
by combining two different nitroso compounds in addition to formation of symmetrical dimers
or homodimers, asymmetrical dimers or heterodimers can also be formed in solution and in the
solid state. The first heterodimer in which none of the nitroso partners is sterically crowded with
large groups in o-position was obtained by reaction of p-bromo- and p-nitronitrosobenzene [61].
The selectivity in formation of heterodimers was analysed by studying cross-dimerization of several
p- and m-substituted nitrosobenzene derivatives with the parent nitrosobenzene in solution and in the
solid state (Scheme 2) [62]. It was found that cross-dimerization strongly depends on the selectivity
properties of starting monomer molecules. In addition, in solution and in the solid state the selectivity
is different. Although the selectivity is in both media influenced by the electron-donating ability of the
substituent in the m- or p-position of the benzene ring, the differences can be explained by the influence
of molecular arrangements in the crystal lattice. The effect of the solid phase on the intermolecular
selectivity is still an open question that stimulates future investigations.

Cross-dimerization has been observed also in the solid-state reactions occurring in ball-mill
reactors [28]. By labelling one of the nitrosobenzene molecule with 15N isotope, the appearance of
the O14N=15NO signal in the IR spectrum indicated the formation of the corresponding heterodimer.
In addition, the system has been exploited for measuring the kinetics of the cross-dimerization reactions
triggered by ball milling.
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8. One-Dimensional Polymerization Reactions

Aromatic dinitroso compounds, e.g., p-dinitrosobenzene, are prone to polymerization which
makes them promising candidates for the building blocks of supramolecular architectures [37–39].
Hacker reported the first isolation of p-dinitrosobenzene by gas phase deposition on the cold surface at
10 K, and its subsequent spontaneous polymerization upon heating the film of monomer to 170 K [63].

Kinetics of polymerization of p-dinitrosobenzene to azodioxides was studied recently under two
different topochemical conditions [49]. Monomers were prepared either by cryogenic photolysis of
the polyazodioxide or by cryogenic vapour deposition (Figure 9). Warming the monomers, prepared
by photolysis of the polymer, to 150 K produces E-azodioxides. Kinetics of re-polymerization of
photolytically-obtained monomers, followed at 150 K, displays sigmoidal behaviour indicating that the
dominant observable is the phase transformation. Analysis of these kinetic data by the Avrami-Erofeev
model indicated a one-dimensional (1D) growth with a rate coefficient of k = 2 × 10−4 s−1 for the
formation of E-form. 1D growth and fast process of polymerization of p-dinitrosobenzene could
probably be explained as a consequence of the conserved linear arrangements of the monomer
molecules after the cryogenic photolysis.Crystals 2017, 7, 376 11 of 15 
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In contrast, the gas phase cryogenic deposition of monomers results in randomly-distributed
molecules on the cold surface. Polymerization reaction of monomers prepared in such a way is less
pronounced and it starts with the formation of oligomeric Z-isomers, which above 150 K rearrange
to the E-form of the polymer. Kinetics of formation of Z-azodioxides below 150 K affords sigmoidal
behaviour [49].

A computational study by the FMO approach of structural characteristics of oligomers constructed
from p-dinitrosobenzene predicted that the most stable conformations have helical structure [49]
(Figure 10a). In addition, morphology of the p-dinitrosobenzene polymer as examined by scanning
electron microscopy (SEM), shows interesting features (Figure 10b) [50].
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9. Self-Assembly and Dimerization on a Gold Surface

Self-assembled monolayers (SAMs) provide opportunity to study dimerization reactions
of aromatic C-nitroso compounds that could occur in a confined two-dimensional (2D) space.
Nitrosobenzene molecules functionalized with the alkyl chains and sulphur headgroups at the
p-position can be adsorbed on an Au(111) surface by forming SAMs [64,65]. Such systems were
studied by scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). It was found
that SAMs of nitrosobenzene-terminated molecules are well ordered with molecules arranged into a
hexagonal 3

√
3× 3

√
3 structure. However, in addition to self-assembly into monolayers, the molecules

of nitrosobenzenes can also dimerize on an Au(111) surface and form ordered bilayers (Figure 11).
Self-assembled bilayers (SABs) of nitrosobenzene derivatives could be formed by interactions of nitroso
groups exposed at the interface of SAM and those present in solution. Within SABs, molecules are also
arranged into hexagonal structures, but with somewhat lower periodicity when compared to SAM
regions. Interestingly, the second layer displays better ordering with respect to the first one, which
is probably due to the softer background. As revealed from high-resolution STM images, the second
layer can be organized from already few molecules enabling direct insights into nucleation and 2D
crystallization processes. Formation of highly-ordered SABs on an Au(111) surface shows that 2D
self-organization of nitrosobenzene molecules strongly promotes dimerization reaction. Monolayer
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with regularly oriented nitroso groups at the interface represents a good topotactic condition for
formation of 2D molecular arrangement of dimers.
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nitrosobenzene molecules on an Au(111) surface. Reproduced with permission from [64]. Copyright
2011 American Chemical Society.

Sulphur-containing derivatives of aromatic C-nitroso compounds were also adsorbed on
three-dimensional (3D) surface of gold nanoparticles [65]. As revealed by IR and UV-VIS
spectroscopy, and transmission electron microscopy (TEM), dimerization of aromatic C-nitroso
compounds by interparticle interaction of exposed nitroso groups seem to induce the aggregation of
gold nanoparticles.

10. Conclusions and Outlook

Dimerization of aromatic C-nitroso compounds and the dissociation of corresponding dimers
can be used as an experimental model for studying the thermal solid-state organic reaction
mechanisms. This simple model includes formation or breaking of only one covalent bond. While
the photochemical reactivity in the solid state is studied within the frame of topochemical principles,
the thermally-induced solid-state reactions are much more complicated because they are influenced
by very different and variable topotactic conditions. By using our model, it is possible to follow the
solid-state reaction starting from various intermolecular arrangements of the reactants such as the
intimate molecular pairs, or van der Waals-like molecular pairs. The example of the optimal topotactic
conditions for the formation of the azodioxide bond is a very close “nonbonding” contact of 2.3 Å
between the reacting nitrogen atoms.

Influence of crystal disordering on the surface could play crucial role in triggering the solid-state
reaction. It is demonstrated how the enhancement of the dimerization rate is induced by the appearance
of the surface defects obtained by off-sublimation of the molecules from the crystal. It has been found
that the nitroso monomers dimerize much faster if their crystals were exposed to the open air in
comparison with the same crystals emerged in the neutral liquid which prevents the sublimation.
Evidently, the thermal solid-state reaction requires gradual softening of the lattice, which is most
probable on the surface. Crystals are very far from the “chemical cemetery”, how Leopold Ružička
once (more than 50 years ago) remarked to Jack Dunitz.

The topotactic influence on the organic reactivity is clearly demonstrated in the case of
polymerization of p-dinitrosobenzene. The re-polymerization of the monomers obtained by photolysis
of the E-oriented polymer produces only the E-form. On the other hand, the polymerization of
the gas-phase deposited p-dinitrosobenzene molecules with randomly-oriented monomers yield the
Z-isomeric oligomers in the first step, which transform to the more stable E-polymer. The thermal
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solid-state Z-E transformation found during polymerization of p-dinitrosobenzene has been also
observed for meta-substituted azodioxides. The details of this solid-state reaction mechanism are still
unclear, and represent the topic of the further investigation.

A detailed study of polymerizations of dinitroso compounds, as well as the surface organization
and formation of the self-assembled bilayers (SABs) on the gold surface opens new possibilities not
only in fundamental research, but also in the design of new intelligent materials.
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cross-dimerizations of nitrosobenzenes. Kinetics and solid-state isotope effects. J. Phys. Org. Chem. 2014, 27,
177–182. [CrossRef]
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