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Abstract: To explore the kinetics and morphology of flow induced crystallization of polymers, a
nucleation-growth evolution model for spherulites and shish-kebabs is built based on Schneider rate
model and Eder model. The model considers that the spherulites are thermally induced, growing
like spheres, while the shish-kebabs are flow induced, growing like cylinders, with the first normal
stress difference of crystallizing system being the driving force for the nucleation of shish-kebabs.
A two-phase suspension model is introduced to describe the crystallizing system, which Finitely
Extensible Non-linear Elastic-Peterlin (FENE-P) model and rigid dumbbell model are used to describe
amorphous phase and semi-crystalline phase, respectively. Morphological Monte Carlo method
is presented to simulate the polymer crystallization in 3D simple shear flow. Roles of shear rate,
shear time and shear strain on the crystallization kinetics, morphology, and rheology are analyzed.
Numerical results show that crystallization kinetics, morphology and rheology in shear flow are
qualitatively in agreement with the theoretical, experimental and other numerical works which
verifies the validity and effectiveness of our model and algorithm. To our knowledge, this is the first
time that a model and an algorithm revealing the details of crystal morphology have been applied to
the flow induced crystallization of polymers.

Keywords: polymer crystallization; flow induced crystallization; Morphological Monte Carlo
simulation; shish-kebabs

1. Introduction

Polymer crystallization is an important factor affecting the microstructure and determining the
mechanical properties of the products [1,2]. Usually, polymers are processed with techniques such as
extrusion and injection molding. During the manufacturing processing, polymers experience complex
flow and thermal condition with the internal chains changing and folding to form different types of
crystalline structures. Hence, studies related to the crystalline structures forming and the kinetics of
crystallization under different flow and thermal condition are important.

Polymer crystallization in the flow field is also called flow induced crystallization (FIC) [2].
The experimental studies of FIC show that crystallization occuring in the flow field not only accelerates
the crystallization rate, but also leads to different types of crystalline structures when compared with
the quiescent crystallization [2], namely, both spherulite and shish-kebab structures, a typical oriented
crystalline structure under strain, where the extended molecular chains form the shish and remaining
molecular chains fold to form the lamellar structure which looks like kebabs, are found in FIC while
only spherulite structure is found in quiescent crystallization. Based on the experimental results,
many researchers proposed different analytical models for FIC which are mostly based on the
Nakamura equation and the Avrami–Kolmogorov equation [3]. For example, Doufas et al. [4],
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Tanner [5], and Ziabicki [6] applied a multiplying factor function of stress, shear rate, and
orientation, respectively, to modify the crystallization kinetic constant in the original Nakamura
model to take into account the effect of flow on crystallization. Eder [1], Kosher and Fulchiron [7],
and Zheng and Kennedy [8] molded the effect of flow on crystallization by considering nucleation
and modified the original Avrami–Kolmogorov model. The modified Nakamura model does predict
well in FIC, however, it has the disadvantage that it cannot reveal the details of crystal morphology.
The Avrami–Kolmogorov model, which is based on the morphology evolution, has the disadvantage
of lower accuracy at the later stage of polymer crystallization. Eder [1] proposed a mathematical
model based upon the crystal morphology to consider the effect of flow on crystallization. Through
considering spherulites as the growing spheres and shish-kebabs as the growing cylinders, they
obtained a series of differential equations using the Schneider rate equations [9]. Zuidema et al. [10]
modified the shear rate in the Eder model by recoverable strain as the driving force for flow induced
nucleation. Their work has taken a huge step in revealing the microstructures of the polymer products.
However, they did not give the method to capture the details of the nucleation-growth-impingement
of crystals. Therefore, their work requires using the crystallization kinetics equation.
Boutaous et al. [11] used the Schneider rate equation to describe the growth of thermally and flow
induced nuclei and explored the contribution of thermal and flow effects on the global crystallization
kinetics under different shear flow. They applied Avrami model to describe the kinetics and took the
crystal structure induced by flow as spherulite.

In order to avoid using crystallization kinetics model, morphological simulation is needed.
In the morphological simulation, relative crystallinity is transferred to the volume fraction of
crystals [12]. Thus far, there have been many studies on the morphological simulation of polymer
crystallization. Examples include: Raabe [12–14], Lin et al. [15], and Spina et al. [16,17] presented a
cellular automaton method to simulate the kinetics and topology of spherulite growth for polymer
crystallization; Liu et al. [18,19] used a level set method to capture the growth and impingement
of spherulites during the polymer cooling stage; Micheletti and Burge [20] and Ruan et al. [21,22]
applied a pixel coloring method to model and simulate the crystallization of polymer and short
fiber reinforced polymer; and Ketdee and Anantawaraskul [23] and Ruan et al. [24] presented the
Monte Carlo simulation in study of crystallization kinetics and morphology development in polymer
crystallization. However, we shall mention that these works were mainly concentrated on spherulite
structure. Our work [24] was an exception. In our previous work [24], we applied a Monte Carlo
method to capture the evolution of both spherulites and shish-kebabs and calculate the crystallization
kinetics in polymer crystallization. The work was carried out with parametric study where the effects
of nucleation density and growth rate of spherulites, nucleation density and length growth rate of
shish-kebabs on the crystallization were examined. The work was in an ideal case, parameters of both
spherulites and shish-kebabs were keeping constant to allow the simulation. This was not the case in
the real manufacturing process.

In this paper, we focus our attention on the more realistic shear flow which exists universally
in the manufacturing process and experiments. Based on the Schneider rate model and Eder model,
the morphology evolution model of both spherulites and shish-kebabs is deduced. By using this model
and the Monte Carlo method, polymer crystallization in 3D simple shear flow is simulated. Effects of
shear rate, shear time and shear strain on the crystallization kinetics, crystal morphology, and rheology
of the system are discussed.

2. Mathematical Model and Numerical Method

2.1. Morphology Evolution Model for Spherulites and Shish-Kebabs

In the flow field, polymers experience the complex thermal and flow condition, and different
crystalline structures like spherulites and shish-kebabs are presented. Both types of crystals contribute
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to the crystallization kinetics. Like many other work, here we assume the spherulites are thermally
induced and the shish-kebabs are flow induced.

For the spherulite structure, Schneider et al. [9] considered the spherulites as the growing spheres
and deduced a series of differential equations. These equations, also known as the Schneider rate
equations, are listed as follows [9]:

.
φ3 = 8πa (φ3 = 8πNs).

φ2 = Gsφ3 (φ2 = 4πRtot).
φ1 = Gsφ2 (φ1 = Stot).
φ0 = Gsφ1 (φ0 = Vtot)

(1)

where Ns, Rtot,Stot, Vtot are the total number, total radius, total surface area and the total volume of
spherulites, respectively; a is the nucleation rate; and Gs is the growth rate of spherulites.

For the shish-kebab structure, Eder [1] considered the shish-kebabs as the growing cylinders and
obtained a series of differential equations. These equations, known as Eder model, can be described as
follows [1]

.
ψ3 +

ψ3
τn

= 8πR1 (ψ3 = 8πNs−k).
ψ2 +

ψ2
τl

= ψ3R2 (ψ2 = 4πLtot)
.
ψ1 = Gs−k,rψ2 (ψ1 = S̃tot).
ψ0 = Gs−k,rψ1 (ψ0 = Ṽtot)

(2)

where Ns−k, Ltot,S̃tot, Ṽtot are the total number, total length, total surface area and the total volume of
shish-kebabs, respectively; τn is the temperature dependent relaxation time for the nuclei formation;
R1 =

.
γ

2gn/
.
γ

2
n is a driving force for nucleation of shish-kebabs, with

.
γ the shear rate and gn/

.
γ

2
n

the fitted parameters; τl is the temperature and shish-length-dependent relaxation time for the shish
during axial growth; R2 =

.
γ

2gl/
.
γ

2
l is a driving force of length growth of shish-kebabs, with gl/

.
γ

2
l the

fitted parameters; and Gs−k,r is the radius growth rate of shish-kebabs.
The equivalent differential equations of spherulites can be deduced from Equation (1):

Ns = Ns.
Rtot = 2NsGs.

Stot = 4πGsRtot.
Vtot = GsStot

(3)

From Equation (3), we know that two parameters can define the crystallization of spherulites, namely,
the nucleation density of spherulites Ns and the growth rate of spherulites Gs. Different kinds of
nucleation models for spherulites were proposed by researchers, which are mostly based on data fitting.

Here, we adopt the model proposed by Koscher and Fulchiron [7] and use the following equation
to describe the nucleation density of spherulites

Ns(T) = exp
(

ã∆T + b̃
)

(4)

In Equation (4), nucleation density is a function of supercooling temperature ∆T which is defined as
∆T = T0

m − T with T0
m the equilibrium melting temperature, and ã and b̃ are the empirical parameters.

Equation (4) clearly shows that the nucleation of spherulites is induced by thermal condition.
As reported by researchers [3,25], growth rate of spherulites does not seem to be strongly

influenced by flow. Here, Hoffman–Lauriten expression [26] is used to describe it, namely,

Gs(T) = G0 exp
[
− U∗

Rg(T − T∞)

]
exp

(
−

Kg

T∆T

)
(5)
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where G0 and Kg are constants, U∗ is the energy parameter similar to an apparent activation energy
of motion, Rg is the gas constant and T∞ = Tg − 30 ◦C is considered as the temperature at which no
further molecular displacement is possible.

The equivalent differential equations of shish-kebabs can be deduced from Equation (2):

.
Ns−k +

Ns−k
τn

= R1
.
Ltot +

Ltot
τl

= 2Ns−kR2
.
S̃s−ktot = 4πGs−k,rLtot.
Ṽtot = Gs−k,rS̃tot

(6)

Under the assumption that τl = ∞ [10], we obtain the following expressions

Ns−k = Ns−k.
Ltot = 2Ns−kR2 = 2Ns−kGs−k,l.
S̃s−ktot = 4πGs−k,rLtot.
Ṽtot = Gs−k,rS̃tot

(7)

From Equation (7), we know that three parameters can define the crystallization of shish-kebabs,
namely, the nucleation density of shish-kebabs Ns−k, the length growth rate of shish-kebabs Gs−k,l and
the radius growth rate of shish-kebabs Gs−k,r. According to Eder [1], length growth rate of shish-kebabs
Gs−k,l can be written as

Gs−k,l = R2 =
.
γ

2gl/
.
γ

2
l (8)

The radius growth rate of shish-kebabs Gs−k,r is often assumed to be equal to the growth rate of
spherulites Gs [10], namely

Gs−k,r = Gs (9)

Due to the fact that the driving force for the nucleation density of shish-kebabs Ns−k is not well
understood, several approaches are found in literatures. We have explained these in the Introduction
Section. Here, we adopt the model proposed by Koscher and Fulchiron [7], which is

.
Ns−k = CN1 (10)

where C is a constant, N1 is the first normal stress difference of the system. Equation (10) shows that
the nucleation of shish-kebabs is induced by flow condition.

2.2. Amorphous Phase and Semi-Crystalline Phase Model

The first normal stress difference appears in Equation (10); hence, it is necessary to give the
mathematical model of the crystallizing system. Here, we adopt the idea of Zheng and Kennedy [8]
and use a two-phase suspension model to deal with the crystallizing system. According to Zheng and
Kennedy [8], the crystallizing system can be treated as a suspension of semi-crystalline phase growing
and spreading in a matrix of amorphous material. The amorphous phase can be described as the
FENE-P dumbbell model and the semi-crystalline phase can be described as the rigid dumbbell model.

In the amorphous phase, the matrix can be treated as the elastic dumbbell model, which is
two beads connected by a spring. This dumbbell model obeys the well-known Fokker–Planck
equation. There are three kinds of numerical methods to solve the Fokker–Planck equation:
deterministic method, stochastic method and macroscopic method [27]. In the macroscopic method,
through the moment operation in Fokker–Planck equation, the relating constitutive equation is
obtained. However, this constitutive equation never closed and needs the closure approximation.
The familiar closure approximations are Finitely Extensible Non-linear Elastic-Peterlin (FENE-P),
Finitely Extensible Non-linear Elastic-Chilcott-Rallison (FENE-CR), Finitely Extensible Non-linear
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Elastic-Lielens (FENE-L), Finitely Extensible Non-linear Elastic-Lielens-Simplified (FENE-LS), etc. [27].
Here, the FENE-P model is used, which is given by [8,27]

λa(T)
∇
C + [

1
1− trC/b

C− I] = 0 (11)

where C is the conformation tensor, λa(T) is the relaxation time of the fluid, I is the unit tensor, tr(•) is

the trace of the tensor, and
∇
C = DC/Dt− (∇u)T ·C−C · (∇u) is the upper-convected derivative of C.

The relaxation time of the fluid λa(T) is a function of temperature and can be calculated by the shift
factor aT(T) as follows [8]

λa(T) = aT(T)λa,0 = exp[
Ea

Rg
(

1
T
− 1

T0
)]λa,0 (12)

where λa,0 is the relaxation time at the reference temperature T0. Ea/Rg is the constant and can be
determined by experiment. The stress contributed by amorphous phase can be written as [8,23]

τa = nkT[
1

1− trC/b
C− I] (13)

with τa the stress caused by amorphous phase, n the number of dumbbells, and k the
Boltzmann constant.

The molecular chains in semi-crystalline phase can be treated as the rigid dumbbell model, i.e.,
two beads connected by a rigid rod. This rigid dumbbell cannot be stretched but can be oriented.
Through the force analysis, the orientation equation of rigid dumbbell can be obtained. Substitution
of orientation equation into continuity equation of configurational distribution function leads to the
well-known Fokker–Planck equation [8,27]. Here, we also use macroscopic method to solve it. By
moment operation of Fokker–Planck equation, evolution equation of orientation tensor is obtained [8]:

∇
< RR >= − 1

λsc(α, T)
(< RR > − I

3
)− .

γ :< RRRR > (14)

where < RR > is the second-order orientation tensor, λsc(α, T) is the time constant of the rigid
dumbbell, and

.
γ is the shear rate tensor. Time constant of the rigid dumbbell λsc(α, T) is related with

the relaxation time of fluid λa(T) by the following empirical form [4,8]

λsc(α, T)
λa(T)

=
(α/A)β1

(1− α/A)β
α < A (15)

where A, β, β1 are the empirical parameters. Note that the fourth-order orientation tensor appears
in Equation (14). In order to find the solution of second-order orientation < RR >, the closure
approximation is needed. Different closure approximations are reported, including Linear, Quadratic,
Hybrid, Invariant Based Orthotropic Fitted closure (IBOF), Eigenvalue Based Orthotropic Fitted closure
(EBOF), etc. [28]. Here, we adopt the Quadratic closure approximation which is given by

< RRRR >ijkl = < RR >ij< RR >kl (16)

Stress caused by semi-crystalline phase τsc is written as follows [8]

τsc =
ηsc(α, T)
λsc(α, T)

(< RR > +λsc(α, T)
.
γ :< RRRR >) (17)
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where ηsc(α, T) is the viscosity of semi-crystalline phase which has the following relation with the
viscosity of amorphous phase ηa(T) [4,8]

ηsc(α, T)
ηa(T)

=
(α/A)β1

(1− α/A)β
α < A (18)

Hence, the total stress of the crystallizing system is

τ = τa + τsc (19)

which contains the contribution of both amorphous phase and semi-crystalline phase. The first normal
stress difference in Equation (10) which is considered as the driving force for nucleation of shish-kebabs,
as calculated by Equation (19).

2.3. Numerical Method

Monte Carlo method and finite difference method are used to capture the evolution of crystal
morphology and to compute the evolution equation of amorphous phase and semi-crystalline
phase, respectively.

2.3.1. Monte Carlo Method

Monte Carlo method is introduced here to capture the nucleation-growth-impingement of
spherulites and shish-kebabs. We consider the polymer in a small spatial region, [0, 1]mm× [0, 1]mm×
[0, 1]mm. The investigation is carried out under a certain temperature, shear rate and shear time.
The nucleation density Ns and growth rate of spherulites Gs are given in Equations (4) and (5),
respectively. The nucleation density of shish-kebabs Ns-k is listed in Equation (10). Length growth rate
Gs-k,l and radius growth rate of shish-kebabs Gs-k,r are presented in Equations (8) and (9), respectively.

Figure 1 shows the Monte Carlo method we used in the simulation. To better implement this
method, we refer to our work [24] for more details. Here, we briefly present the important techniques
and parameters. Firstly, spatial region is divided into a large array of equally sized cubic cells and in
our simulation this number is set as 107. Secondly, different crystals are distinguished by different
colors. Different colors are assigned to the different nuclei and the spatial cells covered by growth are
assigned to the same color with the corresponding crystal. Thirdly, relative crystallinity α is transferred
to the volume fraction of crystals, which is calculated by the cells that have been transformed to the
crystals with the total spatial number.

The main advantages of Monte Carlo method are that it can avoid the use of crystallization
kinetics model and it can also capture the detailed morphology evolution.



Crystals 2017, 7, 51 7 of 16

2017, 7, 51  7 of 16 

 

Figure 1 shows the Monte Carlo method we used in the simulation. To better implement this 
method, we refer to our work [24] for more details. Here, we briefly present the important techniques 
and parameters. Firstly, spatial region is divided into a large array of equally sized cubic cells and in 
our simulation this number is set as 107. Secondly, different crystals are distinguished by different 
colors. Different colors are assigned to the different nuclei and the spatial cells covered by growth are 
assigned to the same color with the corresponding crystal. Thirdly, relative crystallinity α  is 
transferred to the volume fraction of crystals, which is calculated by the cells that have been 
transformed to the crystals with the total spatial number. 

The main advantages of Monte Carlo method are that it can avoid the use of crystallization 
kinetics model and it can also capture the detailed morphology evolution. 

 

Figure 1. Flow chart for the Monte Carlo method in the simulation. 

2.3.2. Finite Difference Method 

Finite difference method is introduced to compute the equations in amorphous phase and semi-
crystalline phase. Evolution of conformation tensor Equation (11) and orientation tensor Equation 
(14) are discretized by the first-order forward in time: 

Growth

Process

Radius of spherulites Rs = Gs t j+1

Radius of shish-kebabs Rs-k = Gs-k,r t j+1

Length of shish-kebabs Ls-k = 2 Gs-k,l t j+1

tj+1= tj+ Δt

Nucleation

Process

Calculate Ns，Gs，Ns-k，Gs-k,r，Gs-k,l

Produce the random new nuclei center with Ns(tj+1) − Ns(tj) of spherulites
Produce the random new nuclei center with Ns-k(tj+1) − Ns-k(tj) of shish-kebabs

Assume each nucleation occupies one unit cell

If the random point falls within the range of radius or 
length of several crystals, it is changed to a crystalline cell 
and assumed to be occupied by the crystal which having 
the minimal time to reach it.

Calculate the relative crystallinity α

α=1？

End

N

Y

Calculate T,  and N1

Produce a large number of random points restricted to the center of cells.
If it falls within the range of radius of one spherulite, it is changed to a crystalline 
cell and considered to be occupied by that spherulite;
If it falls with the range of radius and length of one shish-kebab, it is changed to a 
crystalline cell and considered to be occupied by that shish-kebab.

Figure 1. Flow chart for the Monte Carlo method in the simulation.

2.3.2. Finite Difference Method

Finite difference method is introduced to compute the equations in amorphous phase and
semi-crystalline phase. Evolution of conformation tensor Equation (11) and orientation tensor
Equation (14) are discretized by the first-order forward in time:

Cn+1 − Cn

∆t
= − 1

λa(T)
[

1
1− trCn/b

Cn − I] + (∇u)T · Cn + Cn · (∇u) (20)

<RR>n+1−<RR>n

∆t = − 1
λsc(α,T) (< RR >n − I

3 )−
.
γ :< RRRR >

+(∇u)T · < RR >n + < RR >n ·(∇u)
(21)

with the initial condition C0 = I
3 , < RR >0= I

3 .
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3. Results and Discussion

3.1. Parameters

The polymer we used here is the polyethylene. Material data and the parameters are listed in
Table 1. Parameters for crystal morphology can be found in [7,10], and the parameters in amorphous
phase and the semi-crystalline phase can be found in [8,29].

Table 1. Material data and input parameters.

Variables Definition Values Variables Definition Values

ã Equation (4) 1.56× 10−1 λa,0 Equation (12) 4.00× 10−2s
b̃ Equation (4) 1.51× 101 T0 Equation (12) 476.15K

G0 Equation (5) 2.83× 102m/s Ea/Rg Equation (12) 5.602× 103K
U∗/Rg Equation (5) 755 K b Equations (11) and (13) 5

Kg Equation (5) 5.5× 105K2 n Equation (13) 1.26× 1026/m3

T0
m Equation (5) 483 K k Equation (13) 1.38× 10−23

Tg Equation (5) 269 K β Equations (15) and (18) 9.2
gl/

.
γl

2 Equation (8) 2.69× 10−8 β1 Equations (15) and (18) 0.05

C Equation (10) 106Pa−1 · s−1 ·
m−1 A Equations (15) and (18) 0.44

3.2. Validity of the Simulation

To show the validity of our algorithm, results of relative crystallinity simulated by Monte Carlo
method are compared with the data predicted by the Avrami model which are descripted in Figure 2.
Here, we assume the nucleation of spherulites and shish-kebabs occur instantaneously with the density
Ns = 1012/m3 and Ns−k = 1012/m3, respectively, spherulites growing with the rate Gs = 10−6m/s
and shish-kebabs growing with the length rate Gs−k,l = 10−5m/s and radius rate Gs−k,r = 10−6m/s,
respectively. As can be seen in Figure 2, the simulation data show agreement with the Avrami model.
Hence, the Monte Carlo method used is efficient and reliable.2017, 7, 51  9 of 16 
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Figure 2. Comparison of simulation result with Avrami model.

We now show the reliability of our model. Simulations are carried out in 3D simple shear
flow. Figure 3 displays the shear rate with the half crystallization time when the polymer suffers a
constant shear time of 10 s. Results are compared with the experimental data obtained by Koscher
and Fulchiron [7]. Our model predictions are in qualitative agreement with the experimental results.
Therefore, the model we built is valid.
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In this section, we show the effects of shear rate on the crystallization and rheology. Here, we set
the shear time as ts = 10 s and the temperature as Tc = 140 ◦C.

3.3.1. Effects of Shear Rate on Crystallization

Figure 4 gives the number of shish-kebabs with the shear rate
.
γ = 0/s, 1/s, 2/s, 5/s, 10/s. The

case
.
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Figure 4. Number of shish-kebabs with different shear rates.

Figure 5 shows the relative crystallinity with the different shear rates. It is evident that
crystallization rate is quicker in the case of considering the shearing effect. This accelerating effect is
mainly contributed by the shear induced shish-kebabs. Due to the shear effect in the flow field, the
nucleation and the length growth rate of shish-kebabs are provided. These promise the growth of
shish-kebabs and contribute to the acceleration of crystallization process. As can be seen in Figure 5,
increase of shear rate significantly increases the crystallization rate. This trend is consistent with the
simulation results of Zheng et al. [8], Boutaous et al. [11] and Rong et al. [30].
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3.3.2. Effects of Shear Rate on Rheology

Figure 7 shows the evolution of viscosity in the system with different shear rates. It is
obvious that the viscosity increases slowly with time before it reaches the critical value; however,
when it reaches the critical value, the viscosity increases dramatically. This is caused by the
crystallization. As is shown in Equation (18), the viscosity of semi-crystalline phase is calculated
as ηsc(α, T) = (α/A)β1 ηa(T)/(1− α/A)β; As α→ A , ηsc → ∞ . Thus, the viscosity of system changes
dramatically as α→ A . Besides, the higher shear rate leads to an earlier sudden increase in viscosity.
This is also in agreement with the work by Zheng et al. [8].2017, 7, 51  12 of 16 
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3.4. Effects of Shear Time

In this section, we discuss the effects of shear time on the crystallization and rheology. The shear
rate is set as

.
γ = 10/s and the temperature is set as Tc = 140 ◦C.

3.4.1. Effects of Shear Time on Crystallization

Relative crystallinity with shear time ts = 0 s, 1 s, 2 s, 5 s, 10 s is shown in Figure 8. Crystallization
rate in the shear flow increases more noticeably than in the quiescent condition (shear time ts = 0 s).
Additionally, crystallization rate increases rapidly with the increase of shear time. This acceleration
effect is also caused by the flow induced shish-kebabs. As can be seen in Figure 8, the contribution
of relative crystallinity induced by flow increases as the shear time increases. Results here are also in
consist with the work by Zheng et al. [8], Boutaous et al. [11] and Rong et al. [30].

Crystal morphology when α ≈ 0.5 with the shear time ts = 5 s, 10 s, 15 s is plotted in Figure 9.
As expected, shish-kebab structure is more apparent in the case with longer shear time.
The morphology obtained here is similar to the experimental results by Koscher and Fulchiron [7].
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higher shear rate and shorter shear time ( 110 s−γ = , 5 sst = ) obtains the quickest crystallization rate. 
This is mainly due to the following two reasons: (1) as seen in Figure 11, the number of shish-kebabs 
in this case is the largest; and (2) the length of shish-kebabs ksL −  is the product of the length growth 

rate lksG ,−  and the growing time t~  (begin with the nucleation of the shish-kebab and end with 

Figure 9. Morphology comparison with different shear time (α ≈ 0.5): (a) ts = 5 s; (b) ts = 10 s;
and (c) ts = 15 s.

3.4.2. Effects of Shear Time on Rheology

In Figure 10, the evolution of viscosity with different shear time is given. The viscosity of the
system changes slowly at first, but becomes suddenly very large when time reaches a certain critical
value. Besides, the longer the shear time, the earlier occurring of the sudden increase in viscosity.
This is also caused by the crystallization process, which we explained in Section 3.3.2.

3.5. Effects of Shear Strain

In this section, we discuss the effects of shear strain. We set the temperature as Tc = 140 ◦C.
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3.5.1. Effects of Shear Strain on Crystallization

Figure 11 plots the evolution of relative crystallinity with time at the total shear strain equal to
50 in three cases: shear rate

.
γ = 2 s−1 and shear time ts = 25 s, shear rate

.
γ = 5 s−1 and shear time

ts = 10 s, and shear rate
.
γ = 10 s−1 and shear time ts = 5 s. As shown in Figure 11, the case with

higher shear rate and shorter shear time (
.
γ = 10 s−1, ts = 5 s) obtains the quickest crystallization rate.

This is mainly due to the following two reasons: (1) as seen in Figure 11, the number of shish-kebabs in
this case is the largest; and (2) the length of shish-kebabs Ls−k is the product of the length growth rate
Gs−k,l and the growing time t̃ (begin with the nucleation of the shish-kebab and end with the shear
time), which can be approximated with Gs−k,lts. With the help of Equation (8), we know that Ls−k is a
function of

.
γ

2ts; when we keep the shear stain γ =
.
γts as constant, the length of shish-kebabs Ls−k is

larger in the case with higher shear rate
.
γ. Thus, in the higher shear rate and short shear time case

(
.
γ = 10 s−1, ts = 5 s), the contribution of shish-kebabs is larger. This also agrees with the numerical

work by Zheng et al. [8].
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3.5.2. Effects of Shear Strain on Rheology

Figure 12 shows the evolution of viscosity at three different conditions. As expected, the case with
higher shear rate and short shear time (

.
γ = 10 s−1, ts = 5 s) has the earliest occurring sudden increase.
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4. Conclusions

A morphological Monte Carlo simulation is carried out to calculate the crystallization kinetics
and capture the crystal morphology in 3D simple shear flow. Effects of shear rate, shear time and the
shear strain on crystallization kinetics, crystal morphology and rheology of the system are discussed.
The conclusions are drawn as follows.

(1) The evolution model and Monte Carlo method established are effective and reliable. With the
evolution model and Monte Carlo algorithm, we obtain reliable crystallization kinetics and
detailed crystal morphology.

(2) Effects of shear rate, shear time and shear strain on crystallization and rheology obtained here is
in agreement with other numerical work and experimental results. We show the great influence of
shear rate and shear time on the crystallization kinetics, crystal morphology and rheology of the
system. In a higher shear rate or longer shear time case, the contribution of shish-kebabs to both
crystallization kinetics and morphology becomes more significant and the sudden increase of
viscosity occurs earlier. Under the same shear strain, the case with higher shear rate and shorter
shear time can lead to a quicker crystallization rate and an earlier occurrence of sudden increase
of viscosity.
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