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Abstract: Cu2SnSe3 material is regarded as a potential thermoelectric material due to its relatively
high carrier mobility and low thermal conductivity. In this study, graphene was introduced into the
Cu2SnSe3 powder by ball milling, and the bulk graphene/Cu2SnSe3 thermoelectric composites were
prepared by spark plasma sintering. The graphene nanosheets distributed uniformly in the Cu2SnSe3

matrix. Meanwhile, some graphene nanosheets tended to form thick aggregations, and the average
length of these aggregations was about 3 µm. With the fraction of graphene increasing, the electrical
conductivity of graphene/Cu2SnSe3 samples increased greatly while the Seebeck coefficient was
decreased. The introduction of graphene nanosheets can reduce the thermal conductivity effectively
resulting from the phonon scattering by the graphene interface. When the content of graphene
exceeds a certain value, the thermal conductivity of graphene/Cu2SnSe3 composites starts to increase.
The achieved highest figure of merit (ZT) for 0.25 vol % graphene/Cu2SnSe3 composite was 0.44 at 700 K.

Keywords: thermoelectric; composites; ternary diamond-like semiconductor; graphene

1. Introduction

Due to the dilemma between energy crisis and environmental stewardship, developing renewable
energy technologies has attracted considerable research interest in the past decade. Thermoelectric
materials, which can directly convert heat energy into electrical energy and vice versa, show
great promise in the application of solid-state cooling, waste heat recovery, and power generation.
The conversion efficiency of thermoelectric material is governed by the dimensionless figure of merit,
ZT = σα2T/κ, where σ, α, T, and κ are the electrical conductivity, Seebeck coefficient, absolute
temperature and thermal conductivity, respectively. The total thermal conductivity is composed
of carrier thermal conductivity (κc) and lattice thermal conductivity (κl). Therefore, thermoelectric
materials with good performance should have a large α and σ and low κ. As the fundamental material
parameters (α, σ, and κc) are interrelated and conflicting via carrier concentration in bulk thermoelectric
materials, it is a longstanding challenge to largely improve the overall ZT [1–4]. Therefore, concepts or
strategies that can decouple these parameters to simultaneously optimize the electron and phonon
transport are highly encouraging and imperative for the thermoelectric community. Specifically,
band engineering and nanostructuring have been demonstrated as effective extrinsic approaches to
separately enhance the power factor (PF = α2σ) and reduce the κl, respectively.

Several classes of thermoelectric materials, such as skutterudite [5,6], tellurides [7–10],
half-Heuslers [11,12], and silicides [13,14], have been modified to reach high ZT value. Recently,
ternary diamond-like semiconductor of Cu2SnSe3 has emerged as a new potential thermoelectric
material due to its relatively high carrier mobility and quite low thermal conductivity. Since the Cu–Se
bond network in the Cu2SnSe3 structure forms an electrically conductive framework and Sn orbitals
contribute little to the carrier transport, the electrical conductivity of Cu2SnSe3 is allowed to be tuned
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to optimize the thermoelectric property by partial substitution of the Sn site. Some valuable work has
been done on Cu2SnSe3 compound by doping, substitution, or solid solution [15,16]. The In-doped
Cu2InxSn1-xSe3 was studied by Chen et al. and a maximum ZT of around 1.2 was obtained at 850 K for
x = 0.1 [17]. Similarly, gallium doping was found to be an effective way to increase the ZT in Ga-doped
Cu2SnSe3 compounds by Shi et al., and the maximum ZT increased to 0.43 at 700 K [18]. Moreover,
isoelectronic alloying with Ge at the Sn site was confirmed to be effective in enhancing the ZT value by
Morelli et al. [19]. Besides substitution, the introduction of a nanostructure phase into the matrix is
also an attractive approach to enhance the dimensionless figure of merit of thermoelectric materials.
So far, there are few studies about nanostructured Cu2SnSe3 matrix composites due to the unapparent
enhancement of ZT resulting from the second nanostructured phase. Although a remarkable decrease
in the lattice conductivity can be achieved by phonon scattering at nanophase/matrix interfaces,
the electrical properties of thermoelectric composites also decrease, leading to a marginal change of
the overall ZT value. Moreover, the selection of nanophase and the control of the microstructure of
thermoelectric composites are also important for the enhancement of ZT value [20–22].

Graphene has high electrical and thermal properties due to its unique 2D structure. The carrier
mobility, electrical conductivity, and thermal conductivity of graphene is 2 × 105 cm2·V−1·s−1,
1 × 106 S/m, and 5 × 103 Wm−1·K−1 at room temperature, respectively. Meanwhile, the carrier
of graphene with zero bandgap can continuously vary from electron to hole, which can benefit the
electrical transport in the p–n interfacial region. Wang et al. even confirmed that the introduction of
0.2 vol % graphene enhanced the ZT value of Bi2Te3 material [23]. Kim et al. confirmed that the peak
ZT value for the 0.05 wt % graphene/Bi2Te2.7Se0.3 composite increased to 0.8 at 400 K, which is 23%
larger than that of the pristine sample [24]. Chen et al. also showed that an improved ZT value of 0.4
in graphene/CuInTe2 composites was obtained due to a lower κl [25]. In this contribution, it is highly
possible that incorporating graphene nanosheets into Cu2SnSe3 material will also lead to reduced κl,
which perhaps will further improve the thermoelectric properties of graphene/Cu2SnSe3 composites.

In the present work, graphene nanosheets were incorporated into the Cu2SnSe3 matrix by
ball-milling method, and the graphene/Cu2SnSe3 thermoelectric composites were fabricated by spark
plasma sintering (SPS). The transport properties of graphene/Cu2SnSe3 composites were studied with
the aim of enhancing thermoelectric performance of Cu2SnSe3.

2. Experimental Procedures

Cu2SnSe3 was synthesized by the reacting stoichiometric copper (powder, 99.96%), tin (powder,
99.999%), and selenium (shot, 99.999%) in evacuated fused-silica ampoules at 1173 K for 12 h, then
slowly cooling the melt down to 873 K for 24 h, followed by annealing at this temperature for 2 days.
Finally, the obtained ingots were reground into fine powder. Commercially available graphene powder
(single layer, average diameter: 2 µm, thickness: 0.8 nm; XFNANO, Nanjing, China) was chosen
as the second nanophase, just as shown in Figure 1. The graphene powder was incorporated into
the Cu2SnSe3 powder at volume fractions of 0.25, 0.50, 0.75, and 1.0 vol %, respectively. Then, the
graphene-added Cu2SnSe3 powders were mechanically milled with a planetary ball-milling machine.
The ball-to-powder ratio was 5:1, and the ball-milling process was carried out in Ar atmosphere for
240 min at 150 rpm. The SPS process was used to consolidate the as-milled powders at 860 K for 8 min
in a vacuum of 0.1 Pa under a pressure of 50 MPa.
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Figure 1. SEM image of single-layer graphene with an average diameter of 2 μm. 

The constituent phases of the samples were characterized by X-ray diffractometry on a Rigaku 
Rint2000 powder diffractometer equipped with Cu Kα radiation. The microstructure of all 
graphene/Cu2SnSe3 samples was observed using field-emission scanning electron microscopy 
(FESEM) and high-resolution transmission electron microscopy (HRTEM, JEM2100F, JEOL, Tokyo, 
Japan). The thermal diffusivity (λ) of all samples was measured on the disk-shaped specimen by 
laser flash technique using a Netzsch LFA427 (Netzsch, Berlin, German) setup in a flowing Ar 
atmosphere with temperature ranging from 300 to 700 K. The thermal conductivity was then 
calculated as κ = dλCp, where d is the density measured by Archimedes method, and Cp is the 
Dulong–Petit approximation for the specific heat capacity. A bar-shaped specimen of 2 × 2 × 10 mm3 
was cut with a diamond saw from the sample for the measurement of electrical transport properties. 
Both electrical conductivity and Seebeck coefficient were determined simultaneously using ZEM-3 
equipment (ULVAC-RIKO, Tokyo, Japan) with temperature ranging from 300 to 700 K in Ar 
atmosphere. The Hall coefficients (RH) were measured by van der Pauw’s method in a vacuum of 0.1 
Pa under a magnetic field of 2 T. The carrier mobility (μH) and carrier concentration (p) were 
calculated through the formulae of μH = RHσ and pH = 1/(RHe) based on the assumption of single-band 
model, where e is the electron charge. The experimental uncertainty on the electrical conductivity, 
Seebeck coefficient, thermal conductivity, and Hall coefficient are estimated to be 5%, 5%, 8%, and 
4%, respectively. 

3. Results and Discussion 

3.1. Phase Analysis and Microstructure 

Figure 2 displays the SEM image of the 1.0 vol % graphene-added Cu2SnSe3 powder after ball 
milling for 240 min at 150 rpm. It can be observed that the average diameter of graphene nanosheets 
in the mixed Cu2SnSe3 powder was about 1 μm. Figure 3 is the X-ray diffraction patterns of sintered 
graphene/Cu2SnSe3 composites. The diffraction peaks in Figure 3 are identified as JCPDS card 
65-4145 (cubic Cu2SnSe3). No diffraction peak of graphene is found in the XRD results as the fraction 
of graphene in the composites is very low. All graphene/Cu2SnSe3 composites show the same XRD 
patterns as the pristine Cu2SnSe3. 

Figure 1. SEM image of single-layer graphene with an average diameter of 2 µm.

The constituent phases of the samples were characterized by X-ray diffractometry on a
Rigaku Rint2000 powder diffractometer equipped with Cu Kα radiation. The microstructure of
all graphene/Cu2SnSe3 samples was observed using field-emission scanning electron microscopy
(FESEM) and high-resolution transmission electron microscopy (HRTEM, JEM2100F, JEOL, Tokyo,
Japan). The thermal diffusivity (λ) of all samples was measured on the disk-shaped specimen by laser
flash technique using a Netzsch LFA427 (Netzsch, Berlin, German) setup in a flowing Ar atmosphere
with temperature ranging from 300 to 700 K. The thermal conductivity was then calculated as κ = dλCp,
where d is the density measured by Archimedes method, and Cp is the Dulong–Petit approximation
for the specific heat capacity. A bar-shaped specimen of 2 × 2 × 10 mm3 was cut with a diamond saw
from the sample for the measurement of electrical transport properties. Both electrical conductivity
and Seebeck coefficient were determined simultaneously using ZEM-3 equipment (ULVAC-RIKO,
Tokyo, Japan) with temperature ranging from 300 to 700 K in Ar atmosphere. The Hall coefficients
(RH) were measured by van der Pauw’s method in a vacuum of 0.1 Pa under a magnetic field of
2 T. The carrier mobility (µH) and carrier concentration (p) were calculated through the formulae of
µH = RHσ and pH = 1/(RHe) based on the assumption of single-band model, where e is the electron
charge. The experimental uncertainty on the electrical conductivity, Seebeck coefficient, thermal
conductivity, and Hall coefficient are estimated to be 5%, 5%, 8%, and 4%, respectively.

3. Results and Discussion

3.1. Phase Analysis and Microstructure

Figure 2 displays the SEM image of the 1.0 vol % graphene-added Cu2SnSe3 powder after ball
milling for 240 min at 150 rpm. It can be observed that the average diameter of graphene nanosheets
in the mixed Cu2SnSe3 powder was about 1 µm. Figure 3 is the X-ray diffraction patterns of sintered
graphene/Cu2SnSe3 composites. The diffraction peaks in Figure 3 are identified as JCPDS card 65-4145
(cubic Cu2SnSe3). No diffraction peak of graphene is found in the XRD results as the fraction of
graphene in the composites is very low. All graphene/Cu2SnSe3 composites show the same XRD
patterns as the pristine Cu2SnSe3.
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Figure 2. SEM image of the 1.0 vol % graphene/Cu2SnSe3 powder after ball milling. 

 
Figure 3. XRD patterns of sintered graphene/Cu2SnSe3 samples. 

The microstructure of the sintered pristine Cu2SnSe3 and 0.75 vol % graphene/Cu2SnSe3 sample 
is illustrated in Figure 4a,b, respectively. It is evident that the graphene nanosheets distributed 
uniformly in the Cu2SnSe3 matrix. Meanwhile, some graphene nanosheets tended to form thick 
aggregations and the average length of aggregations was about 3 μm. A similar phenomenon was 
also observed by Zhao et al. in the graphene/CoSb3 nanocomposite [26]. The results of energy 
dispersive X-ray spectroscopy (EDS) for graphene/Cu2SnSe3 sample identify that the matrix 
consisted of 33.17 atom % copper, 16.79 atom % tin, and 50.04 atom % selenium, indicating the 
Cu2SnSe3 phase, just as shown in Figure 5. The black phase in Figure 5a only contains the C element, 
corresponding to the graphene phase. It can be observed from HRTEM in Figure 6 that most of the 
graphene nanosheets is of the multilayered form (<10 layers), which is consistent with SEM results. 
The fringe spacing of 0.81 nm in the lattice image corresponds to the interplanar distance of the (111) 
plane of Cu2SnSe3. Figure 7 shows the FESEM image of the fractured surface of the sintered 
graphene/Cu2SnSe3 sample. The graphene nanosheets are homogeneously embedded in the 
Cu2SnSe3 matrix. According to the classic band theory [27,28], nanostructures distributed in the 
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Figure 3. XRD patterns of sintered graphene/Cu2SnSe3 samples.

The microstructure of the sintered pristine Cu2SnSe3 and 0.75 vol % graphene/Cu2SnSe3 sample is
illustrated in Figure 4a,b, respectively. It is evident that the graphene nanosheets distributed uniformly
in the Cu2SnSe3 matrix. Meanwhile, some graphene nanosheets tended to form thick aggregations
and the average length of aggregations was about 3 µm. A similar phenomenon was also observed
by Zhao et al. in the graphene/CoSb3 nanocomposite [26]. The results of energy dispersive X-ray
spectroscopy (EDS) for graphene/Cu2SnSe3 sample identify that the matrix consisted of 33.17 atom %
copper, 16.79 atom % tin, and 50.04 atom % selenium, indicating the Cu2SnSe3 phase, just as shown in
Figure 5. The black phase in Figure 5a only contains the C element, corresponding to the graphene
phase. It can be observed from HRTEM in Figure 6 that most of the graphene nanosheets is of the
multilayered form (<10 layers), which is consistent with SEM results. The fringe spacing of 0.81 nm in
the lattice image corresponds to the interplanar distance of the (111) plane of Cu2SnSe3. Figure 7 shows
the FESEM image of the fractured surface of the sintered graphene/Cu2SnSe3 sample. The graphene
nanosheets are homogeneously embedded in the Cu2SnSe3 matrix. According to the classic band
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theory [27,28], nanostructures distributed in the material can result in strain fields, then lead to a
change in the energy-band structure of thermoelectric material. At the same time, nanophases can
greatly influence the phonon and electronic transport of thermoelectric materials.
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Figure 6. High-resolution TEM (HRTEM) image of graphene nanosheets in the graphene/Cu2SnSe3 
sample. 

 
Figure 7. Field-emission SEM (FESEM) image of fractured surface of the sintered graphene/Cu2SnSe3 
sample. 

3.2. Electrical Properties 

Figure 8 presents the σ of graphene/Cu2SnSe3 composites as a function of temperature. It can be 
observed that the σ of the pristine Cu2SnSe3 sample declines steeply with the temperature increasing 
across the overall temperature range, showing a typical heavily doped degenerate semiconducting 
behavior. It is noteworthy that graphene/Cu2SnSe3 samples show an obvious increased σ compared 
with pristine Cu2SnSe3 due to the introduction of conductivity graphene nanosheets. In addition, the 
σ of graphene/Cu2SnSe3 samples increases with the increasing fraction of graphene. The σ of 1.0 vol % 
graphene/Cu2SnSe3 sample at room temperature is about 350 Ω−1·cm−1, which is about 3 times the 
value of the pristine Cu2SnSe3. Even at the high-temperature region, the σ of graphene/Cu2SnSe3 
sample still retains a high value. The σ of 0.25 vol % graphene/Cu2SnSe3 sample is around 124 
Ω−1·cm−1 at 700 K. The enhancement in σ for graphene/Cu2SnSe3 samples may be ascribed to either an 
increase of carrier concentration (p), or the increment in carrier mobility (μH), or both. Table 1 lists 
some physical and structural parameters of the graphene/Cu2SnSe3 composites at room temperature. 
As shown in Table 1, the carrier concentration of graphene/Cu2SnSe3 composites is higher than that 
of pristine Cu2SnSe3. The carrier mobility increases from 21.2 cm2/V·s for Cu2SnSe3 to 34.3 cm2/V·s for 
the 1.0 vol % graphene/Cu2SnSe3 sample. Therefore, it can be concluded that incorporating graphene 
nanosheets into a Cu2SnSe3 matrix can improve the electrical conductivity, which is attributed to the 
increment in both carrier concentration and mobility. This is reasonable because the multilayered 
graphene is p-type thermoelectric material, and the graphene itself can afford the charged carrier 
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Figure 7. Field-emission SEM (FESEM) image of fractured surface of the sintered graphene/Cu2SnSe3 sample.

3.2. Electrical Properties

Figure 8 presents the σ of graphene/Cu2SnSe3 composites as a function of temperature. It can be
observed that the σ of the pristine Cu2SnSe3 sample declines steeply with the temperature increasing
across the overall temperature range, showing a typical heavily doped degenerate semiconducting
behavior. It is noteworthy that graphene/Cu2SnSe3 samples show an obvious increased σ compared
with pristine Cu2SnSe3 due to the introduction of conductivity graphene nanosheets. In addition,
the σ of graphene/Cu2SnSe3 samples increases with the increasing fraction of graphene. The σ

of 1.0 vol % graphene/Cu2SnSe3 sample at room temperature is about 350 Ω−1·cm−1, which is
about 3 times the value of the pristine Cu2SnSe3. Even at the high-temperature region, the σ of
graphene/Cu2SnSe3 sample still retains a high value. The σ of 0.25 vol % graphene/Cu2SnSe3 sample
is around 124 Ω−1·cm−1 at 700 K. The enhancement in σ for graphene/Cu2SnSe3 samples may be
ascribed to either an increase of carrier concentration (p), or the increment in carrier mobility (µH), or
both. Table 1 lists some physical and structural parameters of the graphene/Cu2SnSe3 composites at
room temperature. As shown in Table 1, the carrier concentration of graphene/Cu2SnSe3 composites is
higher than that of pristine Cu2SnSe3. The carrier mobility increases from 21.2 cm2/V·s for Cu2SnSe3

to 34.3 cm2/V·s for the 1.0 vol % graphene/Cu2SnSe3 sample. Therefore, it can be concluded that
incorporating graphene nanosheets into a Cu2SnSe3 matrix can improve the electrical conductivity,
which is attributed to the increment in both carrier concentration and mobility. This is reasonable
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because the multilayered graphene is p-type thermoelectric material, and the graphene itself can afford
the charged carrier [29]. In addition, the graphene has a relatively high mobility, which is beneficial to
increase the carrier mobility of graphene/Cu2SnSe3 composites.
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Table 1. Chemical composition and some physical and structural parameters of graphene/Cu2SnSe3

composites at room temperature.

x
(vol %)

Relative
Density

σ

(Ω−1·cm−1)
p

(1019 cm−3)
µH

(cm2/V·s)
α

(µV/K)
κl

(W·m−1·K−1)
m*

(m0)

0 98.7% 127 3.74 21.2 131 2.65 2.6
0.25 98.1% 255 5.43 29.3 99.8 2.36 2.8
0.50 98.0% 285 5.86 30.4 92.0 2.59 2.9
0.75 97.8% 313 6.13 31.9 78.7 2.92 2.7
1.00 97.5% 448 8.16 34.3 69.9 3.24 3.1

x: volume fraction; σ: electrical conductivity; p: charge carrier concentration; µH: carrier mobility; α: Seebeck
coefficient; κl: thermal conductivity; m*: density of states effective mass

Figure 9 demonstrates the α of graphene/Cu2SnSe3 samples as a function of temperature.
It can be seen that the α of all graphene/Cu2SnSe3 samples across the whole temperature range
was positive, indicating the major charge carriers in the samples are holes. Moreover, the α of all
graphene/Cu2SnSe3 composites and pristine Cu2SnSe3 samples increases approximately linearly with
increasing temperature. For example, the α of pristine Cu2SnSe3 increases from 130 µV/K to 255 µV/K
in the temperature range of 300–700 K. At the same time, the introduction of graphene nanosheets
decreased the Seebeck coefficients of Cu2SnSe3 samples evidently. Compared with the α of pristine
Cu2SnSe3 sample, the α of graphene/Cu2SnSe3 samples decreases with the increasing fraction of
graphene. At room temperature, the α decreases from 130 µV/K for Cu2SnSe3 matrix to 70 µV/K for
the 1.0% graphene/Cu2SnSe3 composite. The decrease of α for graphene/Cu2SnSe3 composites can be
explained by the equation

α = ±kB
e

[
2 + ln

2(2πm∗kBT)
3
2

h3 p

]
(1)

where kB, m*, h, and p are Boltzmann constant, density of states effective mass, Planck’s constant,
and charge carrier concentration, respectively. The introduction of graphene nanosheets leads to the
improved carrier density. Herein, according to the equation, the α is reduced.
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Table 1 lists the evaluated equivalent m* of graphene/Cu2SnSe3 samples at room temperature.
Meanwhile, it can also be observed in Figure 10 that the µH of pristine Cu2SnSe3 shows a temperature
dependence of T−3/2 above 520 K, suggesting that the dominant scattering mechanism is phonon
scattering in the temperature range from 520 K to 700 K. Below 520 K, the µH of pristine Cu2SnSe3

proportional to T−3/2 is weak, and the relationship of µH as function of temperature dependence
of T−0.5 can be seen, showing that alloy scattering is the dominate mechanism in this temperature
range. However, the µH of graphene/Cu2SnSe3 samples deviates from the T−1.5 or T−0.5 dependence
across the entire temperature range, indicating the dominative mechanism is mixed scattering in
these composites.



Crystals 2017, 7, 71 9 of 12

3.3. Thermal Conductivity

The κ and κl for graphene/Cu2SnSe3 samples as function of temperature is shown in Figure 11.
The κl is obtained by directly subtracting the carrier thermal conductivity κc from the total thermal
conductivity; κc can be calculated according to the Wiedemann–Franz law, κc = L0σT, where the Lorenz
constant L0 is taken as 2.45 × 10−8 V2/K2. The κ for all composites decreases with the increasing
temperature. With the fraction of graphene increasing, the κ of graphene/Cu2SnSe3 composites
firstly declines then starts to increase. The achieved κ of 0.25% graphene/Cu2SnSe3 sample at room
temperature is 2.5 W/m·K, which is a 12% reduction from that of pristine Cu2SnSe3. On the contrary,
the κ of the 1.0% graphene/Cu2SnSe3 sample at room temperature increases to 3.45 W/m·K. The κl
of graphene/Cu2SnSe3 samples demonstrates similar changes compared to that of pure Cu2SnSe3.
The lowest κl of 0.25% graphene/Cu2SnSe3 samples is 0.78 W/m·K, which is 22% lower than that of
the pristine Cu2SnSe3 sample. As is known to all, nanostructuring will reduce the κl of material as
the long-wavelength phonon scattering at grain boundaries was suppressed. Because graphene itself
has high lattice thermal conductivity and large specific surface area, an opposite effect of graphene
nanosheets on the κ of Cu2SnSe3 can be allowed. On one side, the addition of second phase with
high κ may increase the total thermal conductivity of composite. On the other side, large specific
surface area suggests more newly formed interfaces between the matrix and second phase, which are
expected to scatter phonons to depress the κl. For 0.25% graphene/Cu2SnSe3, graphene nanosheets
are homogeneously dispersed in the Cu2SnSe3 matrix, which means the dominative factor should be
the influence of interface scattering. By comparison, when the content of graphene exceeds a certain
value, the graphene in the composites tends to aggregate into thick flakes in the Cu2SnSe3 matrix, as
mentioned above. Therefore, the interfacial increment due to the incorporation of graphene should
not be significant. This can explain the change in κl of graphene/Cu2SnSe3 composites. The results
also confirm that the κl of Cu2SnSe3 can be effectively reduced by introducing graphene nanosheets.
The obtained minimum κl in the present work is 0.78 W/m·K at 700 K for the 1.0% graphene/Cu2SnSe3

sample. According to the basic kinetic theory, when the phonon mean free path is equal to the
shortest interatomic distance, the lattice thermal conductivity can achieve the minimal value κlmin [32].
The κlmin can be calculated according to the formula κl = 1/3νmCv·l, where νm, Cv, and l are the mean
sound velocity, the isochoric specific heat of the system using Dulong and Petit value, and the mean
free path of phonon, respectively. The νm is taken as the constant 2.3 × 103 m/s [33]. It is assumed
that the minimum mean free path of phonon l is the interatomic distance (0.238 nm) of the Cu2SnSe3

structure, and the achieved κlmin is 0.52 W·m−1·K−1, just as illustrated by the brown dashed line in
Figure 11b. By controlling the content of graphene nanosheets and microstructure of composites, the
κl of graphene/Cu2SnSe3 composites may approach the κlmin of Cu2SnSe3 in the high-temperature
region. Further optimization will be studied in further work.
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3.4. Figure of Merit

Figure 12 shows the ZT value of graphene/Cu2SnSe3 samples as a function of temperature. Like
other related Cu-based ternary chalcogenide compounds with diamond-like structure [17,18], the ZT
value of graphene/Cu2SnSe3 samples increases with increasing temperature. Compared with the
figure of merit of pristine Cu2SnSe3, the ZT of graphene/Cu2SnSe3 samples is obviously improved.
The 0.25% graphene/Cu2SnSe3 composite has the maximal ZT value of 0.44 at 700 K, 45% higher than
that of pristine Cu2SnSe3. If the graphene/Cu2SnSe3 samples were coated by a coating film and the
measured temperature increased to 850 K, the ZT value is capable of reaching 1.0–1.2. The enhancement
of ZT for graphene/Cu2SnSe3 composites is basically ascribed to the depressed κl and the increased
σ. The incorporation of graphene nanosheets into the Cu2SnSe3 could enhance the thermoelectric
properties. Therefore, if we choose the material with optimized carrier concentration and mobility as
the thermoelectric matrix, the thermoelectric composite with a higher ZT value could be achieved.
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4. Conclusions

The graphene nanosheets were introduced into the Cu2SnSe3 matrix by ball milling and the
graphene/Cu2SnSe3 composite was fabricated by spark plasma sintering. The graphene nanosheets
distributed uniformly in the Cu2SnSe3 matrix. Meanwhile, some graphene nanosheets tended to
form thick aggregations and the average length of aggregations was about 3 µm. With the increasing
content of graphene, the electrical conductivity of graphene/Cu2SnSe3 samples greatly increased,
while the Seebeck coefficient was decreased. The introduction of graphene nanosheets reduced the
thermal conductivity, effectively resulting from the phonon scattering by the graphene interface. When
the fraction of graphene exceeds a certain value, the thermal conductivity of graphene/Cu2SnSe3

composites starts to increase. The maximum figure of merit ZT for 0.25 vol % graphene/Cu2SnSe3

was 0.44 at 700 K.
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