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Abstract: 3-(2-Bromo-4-(1-methylethyl)phenyl)-1,1-dimethylurea was synthesized and structurally
characterized at 296 K, 200 K and 140 K. A reversible thermal phase transformation was observed
at ~170–180 K. On cooling, the structure transforms from a monoclinic to a triclinic crystal system.
The isopropyl group is disordered above the phase transition temperature but is ordered below the
transition temperature.
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1. Introduction

Urea-containing compounds are established as precursors for several biologically active
agents [1–4]. Various efficient procedures have been used for the synthesis of ureas [5–14]. The most
recent examples involve reactions of primary amines with S,S-dimethyl dithiocarbonate in water
followed by reactions with secondary amines [15]; reactions of aromatic amines with secondary amines
in the presence of carbon monoxide, sulfur and oxygen in dimethylformamide [16]; and reactions
of benzylamine with secondary amines in the presence of a ruthenium catalyst [17]. Other synthetic
methods involve the catalytic reaction of carboxylic acids with hydroxylamine hydrochloride followed
by reaction with primary amines [18]; conversion of aryl chlorides to the corresponding isocyanates
using a palladium catalyst followed by reaction with secondary amines [19]; and conversion of
isonitriles to the corresponding isocyanates using dimethyl sulfoxide followed by reaction with
tert-butylamine [20]. The reaction of aromatic ureas with a lithium reagent followed by electrophiles is
one of the most common methods used to produce substituted derivatives [21–25].

Polymorphic phase transformation is an area of continued research interest [26–35].
The transformation process is an indication of the fine balance in the interactions within the crystal that
can be tipped by a relatively small change in conditions [36,37]. In most cases, such transformations
proceed with loss of single-crystal integrity, such that a single crystal of the starting solid phase
transforms into a polycrystalline sample of the product. Where the structural reorganization involved
is small, transformation of a single crystal of the starting material may produce a single crystal of the
product phase. Additionally, the process may be reversible but this is rare in organic crystals [30–35].
Enantiotropic behavior has been observed unsurprisingly between forms with very similar unit cell
parameters [31,32], but transformation more commonly involves larger shifts in the parameters [33–35].
Polymorphism and polymorphic phase transformations are difficult to predict and are often discovered
fortuitously [26].
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In the current paper, we investigated the synthesis, characterization and reversible single-crystal to
single-crystal thermal phase transformation of 3-(2-bromo-4-(1-methylethyl)phenyl)-1,1-dimethylurea.

2. Results and Discussion

Phase transformation: In the process of characterization of 3-(2-bromo-4-(1-methylethyl)phenyl)
-1,1-dimethylurea following synthesis, the crystal structure was determined initially at 296 K.
The structure, 1HT (Table 1), is monoclinic, P21/c (with unit cell parameters a = 12.117(2) Å,
b = 10.0335(10) Å, c = 12.816(2) Å, β = 117.82(2)◦, volume = 1377.9(5) Å3). Data collection performed at
140 K in an attempt to improve the quality of the refined structure revealed a different structure (2),
indicating that a phase transition had occurred on cooling. Structure 2 is triclinic, P1, with unit cell
parameters a = 11.8916(7) Å, b = 9.9293(6) Å, c = 12.4631(7) Å, α = 92.720(5)◦, β = 116.190(5)◦,
γ = 81.000(5)◦, volume = 1303.86(14) Å3. (This unit cell has been used for ease of comparison with
the monoclinic structure 1. The reduced cell is 9.9290(6) Å, 11.8920(7) Å, 12.4630(7) Å, 63.810(5)◦,
87.280(5)◦, 81.000(5)◦). The matrix for the transformation from 2 to 1 is (1.0072, −0.189, −0.0073,
0, 1.0088, 0, −0.0149, 0.063, 1.0164).

Table 1. Experimental and structure refinement data.

Identification Code 1HT 1LT 2

Empirical formula C12H17BrN2O C12H17BrN2O C12H17BrN2O
Formula weight 285.18 285.18 285.18
Temperature (K) 296(2) 200(2) 140(2)
Wavelength (Å) 0.71073 0.71073 0.71073
Crystal system Monoclinic Monoclinic Triclinic

Space group P21/c P21/c P1
a (Å) 12.117(2) 11.8696(12) 11.8916
b (Å) 10.0335(10) 10.0171(7) 9.9293(6)
c (Å) 12.816(2) 12.7306(12) 12.4631(7)
α (◦) 90 90 92.720(5)
β (◦) 117.82(2) 117.199(13) 116.190(5)
γ (◦) 90 90 81.000(5)

Volume (Å3) 1377.9(5) 1346.3(3) 1303.86(14)
Z 4 4 4

σcal (Mg/m3) 1.375 1.407 1.453
µ (mm−1) 2.967 3.037 3.135

F(000) 584 584 584
Crystal size (mm3) 0.272 × 0.177 × 0.122 0.309 × 0.170 × 0.106 0.301 × 0.209 × 0.099

Reflections collected 4752 7310 11649
Independent reflections 2718 3229 11030

R(int) 0.0622 0.0284 0.0751
Data/restraints/parameters 2718/109/166 3229/110/170 11,649/0/297

Goodness-of-fit on F2 0.813 1.036 0.913
R1[I > 2σ(I)] 0.0614 0.0673 0.0446

wR2 0.1619 0.1644 0.1029
R1 (all data) 0.1744 0.1117 0.0850

wR2 0.1827 0.1961 0.1081

The transformation occurs in a single-crystal to single-crystal manner, so it was possible to
determine the unit cell parameters as a function of temperature. A plot of the cell parameters recorded
for a single crystal shows a discontinuity in the 170–180 K temperature range (Figure 1). Notably,
the transformation occurs reversibly. Thus, the monoclinic structure (1LT) discussed below was
determined after cooling a crystal past the transition temperature to 150 K, before warming it again
to 200 K.
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Figure 1. A plot of the unit cell parameters as a function of temperature. The dotted vertical line
indicates the phase transition point.

Monoclinic structure: The asymmetric unit of 1LT consists of one molecule of 3-(2-bromo-4-
(1-methylethyl)phenyl)-1,1-dimethylurea (Figure 2a). In the molecule, the angle between the planes
through the bromophenyl and dimethylurea groups is 59.24(16)◦. The isopropyl group is disordered
with refined occupancies of 0.725(16) and 0.275(16) for the two components. The most acute torsion
angles for the isopropyl group are C5–C4–C7–C9 = −46.3(11)◦ and C3–C4–C7A–C8A = −61.6(11)◦ for
the major and minor components, respectively. In the structure (Figure 2b), chains of molecules are
formed along [010] by N–H. . . O hydrogen bonds (with the geometry N1–H1. . . O1 = 143.8◦, N1. . . O1 =
2.869(4) Å).
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Figure 2. (a) An ortep representation of the asymmetric unit of 1LT showing the disordered isopropyl
group; (b) Crystal packing viewed down the a axis with hydrogen atoms and one disorder component
omitted for clarity. Hydrogen bonds are shown as dashed lines.

Triclinic structure: Structure 2 has two independent molecules in the asymmetric unit (Figure 3a).
The angles between the planes through the bromobenzene and dimethylurea groups are 69.25(9)◦ and
49.51(11)◦ for the two molecules. It is notable that the average of these values for the interplanar angles
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is the same as that for the single independent molecule in 1LT. Unlike in 1LT, the isopropyl groups are
ordered in 2, and the most acute torsion angles are C3–C4–C7–C8 = 51.9(5)◦ and C17–C16–C19–C20 =
−28.6(5)◦. In the structure (Figure 3b), chains of N–H. . . O hydrogen-bonded molecules are formed
along [010].

The two molecules alternate along the chain leading to the formation of two hydrogen bonding
interactions (with the geometries N1–H1. . . O2 = 149.8◦, N1. . . O2 = 2.872(4) Å and N3–H3A. . . O1 =
134.5◦, N3. . . O1 = 2.799(4) Å). Although not identical, the chains of the hydrogen-bonded molecules
are similar in both 1 and 2 as indicated by the overlay plot in Figure 4.
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On cooling the crystal from 296 K, the structure transforms from a monoclinic to a triclinic
crystal system, retaining a similar unit cell volume. The single molecule in the asymmetric unit
of the monoclinic structure above the phase transition temperature has a disordered isopropyl
group. The refined ratios of the disordered components of the isopropyl group at 296 K and
200 K are 0.645(15)/0.355(15) and 0.725(16)/0.275(16), respectively. The values are significantly
different from the 1:1 ratio of the two conformations of the independent molecules observed in
the ordered structure of 2. This suggests that the isopropyl group has some rotational freedom
about the C-C(CH3)2 bond. Disorder in isopropyl groups is common, but significant isopropyl
rotation is expected to occur only in exceptional circumstances as, for example, observed in
1-(benzoyl)-3-((5’-isopropyl-2’-methylphenoxy)acetamino) thiourea [30].

3. Experimental Section

3.1. General

Melting point determination was performed on a Gallenkamp melting point apparatus.
1H (400 MHz) and 13C NMR (100 MHz) spectra were recorded on a Bruker AV400 spectrometer.
The chemical ionization (ammonia) mass spectrum was recorded on a Quattro II spectrometer at 50 eV.
Accurate mass data were recorded on a MAT900 instrument.

3.2. Synthesis of 3-(2-Bromo-4-(1-methylethyl)phenyl)-1,1-dimethylurea

The title compound was produced from reaction of 2-bromo-4-(1-methylethyl)aniline (10 mmol)
and dimethylcarbamoyl chloride (11 mmol) in dichloromethane (40 mL) under reflux for 1 h in the
presence of excess triethylamine (15 mmol). On cooling, the solvent was removed under reduced
pressure and the residue obtained was purified by crystallization from diethyl ether to give the title
compound as colourless crystals. Mp 93–94 ◦C. 1H NMR (CDCl3, 400 MHz) δ 8.08 (d, J = 7.3 Hz, 1 H,
H-6), 7.33 (s, 1 H, H-3), 7.15 (d, J = 7.3 Hz, 1 H, H-5), 6.91 (br s, exch., 1 H, NH), 3.06 (s, 6 H, N(CH3)2),
2.83 (septet, J = 7.2 Hz, 1 H, CH), 1.20 (d, J = 7.2 Hz, 6 H, CH(CH3)2). 13C NMR (CDCl3, 100 MHz) δ
156.1 (s, C=O), 135.2 (s, C-4), 133.3 (s, C-1), 131.3 (d, C-3), 125.0 (d, C-5), 123.9 (s, C-6), 121.4 (d, C-2),
35.1 (q, N(CH3)2), 31.8 (d, CH); 24.0 (q, CH(CH3)2). EI-MS: m/z (%) 284 (M+, 5), 177 (11), 72 (100);
CI-MS: m/z (%) 302 ([M + NH4]+, 2), 285 (MH+, 100), 177 (22), 72 (100). HRMS (CI): calculated for
C12H17BrN2O (MH+): 285.0603; found: 285.0603. IR (KBr) νmax 3292, 2990, 2496, 1690, 1580, 1520,
1480 cm−1. Anal. Calcd for C12H17BrN2O: C, 50.54; H, 5.96; N, 9.82. Found: C, 50.34; H, 5.83; N, 9.97%.

3.3. Structure Determination

Single-crystal XRD data were collected on an Agilent SuperNova Dual Atlas diffractometer
with a mirror monochromator [Mo (λ = 0.7107 Å)] equipped with a Cryosystems cooling apparatus.
The crystal structures were solved and refined using SHELX [38]. Non-hydrogen atoms were refined
with anisotropic displacement parameters. All hydrogen atoms were placed in calculated positions and
refined using a riding model. Methyl C–H bonds were fixed at 0.98 A, with displacement parameters
1.5 times Ueq(C), and were allowed to spin about the C–C bond. Aromatic C-H distances were set to
0.95 A and their U(iso) set to 1.2 times the Ueq for the atoms to which they are bonded. The disordered
isopropyl group in 1 was refined with two components and restrained geometry. Crystal data,
data collection and structure refinement details are summarized in Table 1. CCDC 1532132-1532134
contain the supplementary crystallographic data for this paper. These data can be obtained free of
charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road,
Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk.

4. Conclusions

3-(2-Bromo-4-(1-methylethyl)phenyl)-1,1-dimethylurea was synthesized and its structure was
established at 296 K, 200 K and 140 K. A phase transformation was observed at ~170–180 K on cooling

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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the crystal. The structure transforms from a monoclinic to a triclinic crystal system in a single-crystal
to single-crystal manner, retaining a similar unit cell volume. The transformation is reversible on
warming. The isopropyl group is disordered above the phase transition temperature but is ordered
below the transition temperature.
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