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Abstract: Treatment of 1-(4′-methoxy or ethoxy phenyl)-4,4,4-trifluoro-1,3-butanedione with
europium (III) chloride in the presence of piperidine resulted in the halide ligands exchange
yielded new piperidinium tetrakis{1-(4′-methoxy or ethoxy phenyl)-4,4,4-trifluoro-1,3-butanedionato}
europate (III) complexes 2a and 2b. Complexes 2a and 2b have been characterized by elemental
analysis, 1H NMR spectroscopy, and FAB-MS, and their absolute structures were determined by
single crystal X-ray diffraction analysis. The complexes 2a and 2b have the monoclinic space groups
C2/c (No. 15, 4′-substituent = OCH3) and with P − 1 (No. 2, 4′-substituent = OC2H5), respectively.
X-ray analysis results showed that eight coordinate structures of the complexes 2a and 2b have
cone-like structures, like calix[4]arenes, but their structures were slightly different due to the crystal
packing and the existence of the solvent molecule. The complexes 2a and 2b exhibited identical,
strong photoluminescence emissions in the solution phase.
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1. Introduction

The luminescent properties of Lanthanide complexes with various organic ligands have been
investigated for decades [1], and the search for novel Lanthanide complexes continues to attract many
researchers due to their important applications as optical fiber lasers, electroluminescent displays,
and organic light emitting diodes [2–4]. Among these, europium (III) complexes with β-diketones
possessing aromatics and fluorine substituents displayed very good to excellent photo luminescent
properties. Thus, various europium (III) complexes with β-diketones were synthesized and evaluated
for their photo luminescent properties [4–9].

In this context, we report the synthesis, structural, and spectral properties of the octa-coordinate
europium (III) complexes carrying four bidentate β-diketonato ligands having four alkoxy substituted
aromatic moieties, fluorine substituents, and one piperidinium as a counter cation. Further, we have
investigated the structural properties using X-ray analyses.

The luminescent intensity of the complexes 2a and 2b was quite strong because the complex has
no water ligand in solid and in solution. This is due to the vibration relaxation of water molecule;
that is to say, the excited energy on the f orbital (5D levels) of the centered europium ion is effectively
relaxed to 7F levels.
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2. Results and Discussion

Synthesis and Spectra Analysis

The two complexes 2a and 2b were synthesized in two steps. In the first step, β-diketone
ligands were prepared by Claisen condensation of 4′-methoxy and ethoxy acetophenone with
ethyl trifluoroacetate using sodium hydride as a base in THF. Secondly, 1-(4′-methoxy or ethoxy
phenyl)-4,4,4-trifluoro-1,3-butanedione 1a and 1b reacted with europium (III) chloride in the presence
of piperidine as a base reagent in ethanol solvent according to the method reported in the literature,
yielding the corresponding complexes 2a and 2b in very good yields [10]. Complexes 2a and 2b are
stable under air and moisture conditions. Structural properties in solution are in line with expectations,
as shown by 1H NMR spectroscopy. Although the peaks of the complexes are quite shifted from
normal regions due to paramagnetic effect of the europium (III) ion, it can be easily assigned.

In the mass spectrum of 2a, the fragment peak is m/z 888 ([M + H]+ − 1 ligand − piperidinium
cation) mainly appears. However, the peak m/z 1133 ([M + H]+ − piperidinium cation) is quite small.
In addition, in the mass spectrum of 2b, the main fragment peak is m/z 930 ([M + H]+ − 1 ligand −
piperidinium cation) with the small peak m/z 1189 ([M + H]+ − piperidinium cation). This is well
explained by the fact that the neutral fragment is more stable than that of the anionic fragment ion.

The UV-vis absorptions for the ligands (1a, 1b) and their corresponding europium complexes
(2a, 2b) were measured in dichloromethane solution (1× 10−3 mol/L), and their corresponding spectra
is shown in Figures 1 and 2. The ligands showed strong absorption bands at 352 nm and 351 nm,
respectively. These strong absorption bands were assigned to the π-π* enol absorptions of the
β-diketone ligands. Relatively low intensity absorption bands at 246 nm and 244 nm were assigned
to the n-π* enol absorptions of the β-diketone ligands. Complexes 2a and 2b exhibited broad high
intensity absorption bands from 342nm to 356 nm, respectively. The absorption coefficients (log ε) of
the complexes 2a and 2b were 3.10 and 3.15, respectively. This was attributed to the chelating of four
β-diketone ligands with the europium (III) ion.
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The emission spectra of the complexes 2a and 2b was recorded in dichloromethane solution
(1 × 10−3 mol/L), and their emission spectra is shown in Figure 3. Emission spectra of the complexes
were measured by exciting the complexes at their absorption maximum wavelengths 352 nm
and 351 nm, respectively. The emission spectra of the complexes 2a and 2b showed sharp peaks
in the region 590–720 nm associated with 5D0 → 7FJ (J = 0–4) transitions of the europium (III) ion.
The very high intensity peak was observed at 613 nm due to the 5D0 → 7F2 transition, suggesting
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a highly polarizable chemical environment around the europium (III) ion [11]. This transition was
responsible for the red emission of the complexes 2a and 2b. The emission and absorption spectra of
complexes 2a and 2b are almost identical, suggesting that the changing substitution on β-diketone
ligands from methoxy to ethoxy did not affect the luminescent properties of the complexes 2a and 2b.Crystals 2017, 7, 85  3 of 9 
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Figure 3. Emission spectra of the complexes 2a and 2b.

To further confirm the absolute structures of complexes 2a and 2b, suitable single crystals for
X-ray structure analysis were easily obtained in ethanol solvent using a slow evaporation method. The
complex 2a crystallizes in the monoclinic space group C2/c (centrosymmetric, No. 15), the cell unit
includes four molecules with four piperidinium ions and with no solvate molecule (Figure 4).

The complex 2b crystallizes in the monoclinic space group P − 1 (non-centrosymmetric, No. 2),
the cell unit includes two molecules with two piperidinium ions and with two chloroform molecules
(Figure 4).
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atom(s), respectively.

The europium (III) ions of 2a and 2b are coordinated by a distorted octahedral arrangement of
eight oxygen atoms from four chelating β-diketonato ligands (Figure 5). The average Eu1-O (1–8) bond
lengths are moderately normal, and these values are ca. 2.357 Å for 2a and 2.392 Å for 2b, respectively.
The bond angles in the five membered rings consisting of Eu and 1,3-butanedionato ligands (O-Eu-O)
vary from 71.83(15)◦ to 73.60(16)◦ for 2a, 70.41(8)◦ to 71.81(8)◦ for 2b, respectively (Tables 1 and 2).
These values of bond distances and bond angles are in good agreement with those reported for other
analogous europium β-diketonato complexes [12]. The piperidinium cation involving the N1 atom is
the most stable chair form in the crystal, and located near the crystallized benzene molecules (Figure 4).
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Table 1. Selected bond lengths (Å) and angles (◦) for the complex 2a.

Eu1-O1 2.383(5) Eu1-O2 2.351(5)

Eu1-O4 2.373(4) Eu1-O5 2.331(4)
Eu1-O7 2.381(5) Eu1-O8 2.373(5)

Eu1-O10 2.350(6) Eu1-O11 2.316(4)
O1-Eu1-O2 73.60(16) O4-Eu1-O5 72.67(14)
O7-Eu1-O8 71.83(15) O10-Eu1-O11 72.26(14)

Table 2. Selected bond lengths (Å) and angles (◦) for the complex 2b.

Eu1-O1 2.404(3) Eu1-O2 2.371(3)

Eu1-O4 2.439(2) Eu1-O5 2.339(3)
Eu1-O7 2.411(2) Eu1-O8 2.424(3)

Eu1-O10 2.420(2) Eu1-O11 2.331(2)
O1-Eu1-O2 70.41(8) O4-Eu1-O5 70.63(8)
O7-Eu1-O8 71.19(8) O10-Eu1-O11 71.81(8)

Molecular shapes of these complexes are cone-like structures and the complex molecules have
cavities (Figure 4). The difference between 2a and 2b about the inclusion of solvate molecule is well
explained by the difference of the largeness of the cavity consisting of the four ligands. The cavity
size of the 2b complexes seems to be larger than those of 2a. Differences between these complexes
and calix[4]arene are the environment’s internal cavity spaces; in another words, aromatic parts on
the calixarenes are oriented-electron surfaces to the cavity center. On the contrary, the aromatic parts
on the complexes are aromatic C–H protons oriented to the cavity center (Figure 6). Therefore, the
complexes are expected as new compounds for undeveloped fields of host-guest chemistry.
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3. Experiments

3.1. Materials and Instrumentation

All reagents and solvents were obtained from commercial sources and are used without further
purification. The 1H-NMR spectra were recorded on a Bruker AVANCE400S spectrometer (Bruker,
Yokohama, Japan) in CDCl3 with tetramethylsilane (Me4Si) as an internal reference. The positive fast
atom bombardment (FAB) mass spectrum (MS) of the complex were obtained on a Nippon Densi JEOL
JMS-SX102A spectrometer (JEOL, Tokyo, Japan) using NBA (nitrobenzylalcohol) as the matrix and
DCM (dichloromethane) as the solvent. The instrument was operated in positive ion mode over an
m/z range of 100–2000. Elemental analysis data were recorded on a Yanako MT–4 analyzer (Yanako
Group, Kyoto, Japan). A JASCO V-550 spectrophotometer (JASCO Corporation, Tokyo, Japan) was
used for obtaining UV-Vis spectra in dichloromethane with 250–900 nm range. HITACHI F-2500
spectrophotometer (Hitachi High-Technologies Corporation, Tokyo, Japan) was used for fluorescence
spectra measurements in dichloromethane with 250–900 nm range. CCDC No. 1529390 and 1529592
contain the supplementary crystallographic data for the complexes 2a and 2b, respectively.

3.2. Synthesis

3.2.1. Preparation of Piperidinium Tetrakis{1-(4′-substituted phenyl)-4,4,4-trifluoro-1,3-
butanedionato}europate (III) Complexes 2a and 2b ()

Typical Procedure

In a first Schlenk vessel, a solution of europium (III) chloride (0.650 g, 0.41 mmol) and
1-(4′-methoxy or ethoxy phenyl)-4,4,4-trifluoro-1,3-butanedione 1 (1.65 mmol) in absolute ethanol
(30 mL) was prepared at room temperature. Under protection from air, a slight excess of piperidine
(0.30 mL, 3.0 mmol) was added to the solution, and the two solutions were then combined and stirred
at room temperature for 12 h. After filtration, piperidine and most volatile materials were removed
from the filtrate on a vacuum line. Under protection from air, the residue was repeatedly washed with
small portions (5 mL) of warm, dry ethanol. The residual powders were dissolved with ethanol for
crystallization. Without protection from air, the crystallized product was filtered off, washed with
two portions of cold ethanol, and dried under reduced pressure, affording 0.371 g of pale-yellow
piperidinium tetrakis(1-(4′-methoxy or ethoxy phenyl)-4,4,4-trifluoro-1,3-butanedionato)europate (III)
as a powder in 80% yield.
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Scheme 1. Synthesis of the complexes 2a and 2b.

3.2.2. Piperidinium Tetrakis{1-(4′-methoxy phenyl)-4,4,4-trifluoro-1,3-butanedionato}europate (III) 2a

M.p: 186–189 ◦C. 1H NMR (400 MHz, CDCl3) δH 1.78 (br s, 2H, piperidinium), 2.05 (br s, 4 H,
piperidinium), 3.47 (br s, 4 H, piperidinium), 3.95 (s, 12 H, OCH3), 5.04 (s, 4 H, β-diketonato), 6.95
(br s, 8 H, phenyl), 7.99 (br s, 8 H, phenyl). Pos. FAB-MS: m/z 888 ([M + H]+ − 1 ligand− piperidinium
cation), 1133 ([M + H]+ − piperidinium cation). Elemental analysis calcd. For C49H44EuF12NO12:
Eu, 12.47%; C, 48.29%; H, 3.64%; N, 1.15%. Found: Eu, 12.40%; C, 48.03%; H, 3.87%; N, 1.29%.
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3.2.3. Piperidinium Tetrakis{1-(4′-ethoxy phenyl)-4,4,4-trifluoro-1,3-butanedionato}europate (III) 2b

M.p: 148–150 ◦C. 1H NMR (400 MHz, CDCl3) δH 1.49 (d, 12 H, OC2H5, J = 6 Hz), 1.78 (br s,
2 H, piperidinium), 2.05 (br s, 4 H, piperidinium), 3.47 (br s, 4 H, piperidinium), 4.18 (t, 8 H, OC2H5,
J = 6 Hz), 5.03 (s, 4 H, β-diketonato), 6.90 (br s, 8 H, phenyl), 8.01(br s, 8 H, phenyl). Pos. FAB-MS:
m/z 930 ([M + H]+ − 1 ligand − piperidinium cation), 1189 ([M + H]+ − piperidinium cation).
Elemental analysis calcd. For C53H52EuF12NO12: Eu, 11.92%; C, 49.93%; H, 4.11%; N, 1.29%. Found:
Eu, 11.50%; C, 49.77%; H, 4.14%; N, 1.29%.

3.3. Data Collection, Refinement and Structural Determination

Single crystals of piperidinium tetrakis{1-(4′-methoxy or ethoxy phenyl)-4,4,4-trifluoro-1,
3-butanedionato}europate (III) complexes 2a and 2b were obtained from a solution of
chloroform/ethanol at room temperature using slow diffusion. The crystallographic data of these
complexes were summarized in Table 3. APEX2 software was used for preliminary determination of
the unit cell [13]. The determination of integrated intensities and unit cell refinement were performed
using the SAINT program [14]. The structures were solved with SHELIXS-2014/7 [15] and subsequent
structure refinements were performed with SHELIX-L2014/7 [15].

Table 3. Crystallographic data for the complexes 2a and 2b.

Crystal Information 2a 2b

Empirical formula C49H44EuF12NO12 C53H52EuF12NO12, CHCl3

Formula weight 1218.82 1394.30

Temperature 90 K 90 K

Wavelength 0.71073 Å 0.71073 Å

Crystal system Monoclinic Triclinic

Space group C2/c (no. 15) P − 1 (no. 2)

Unit cell dimensions

a = 49.553(5) Å
b = 11.2988(12) Å
c = 18.8552(19) Å
β = 111.599(2)◦

a = 12.9414(12) Å
b = 15.5698(13) Å
c = 17.5075(16) Å
α = 69.6130(10)◦

β = 70.0410(10)◦

γ = 76.1220(10)◦

Cell volume 9815.6(18) Å3 2880.9(5) Å3

Z 8 2

Density (calculated) 1.650 g/cm3 1.607 g/cm3

Absorption coefficient 1.387 mm−1 1.327 mm−1

F(000) 4896 1404

Crystal size(mm) 0.45 × 0.30 × 0.30 0.30 × 0.20 × 0.10

θ range for data collection 1.77◦ to 25.03◦ 1.29◦ to 25.03◦

Index ranges −58 ≤ h ≤ 46, −13 ≤ k ≤13 −15 ≤ h ≤ 10, −17 ≤ k ≤ 12

Reflections collected −22 ≤ l ≤ 21 −20 ≤ l ≤ 20

Independent reflections 8642 [R(int) = 0.0308] 9950 [R(int) = 0.0223]

Reflections 7138(25.03◦) 9356(25.03◦)

[I > 2sigma(I)] 99.4% 97.6%
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Table 3. Cont.

Crystal Information 2a 2b

Completeness to theta◦ Empirical Empirical

Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2

Absorption correction Empirical Empirical

Data/restraints/ parameters 8642/0/681 9950/0/752

Goodness-of-fit on F2 1.130 1.168

Final R1 indices [I >2sigma(I)] R1 = 0.0570 R1 = 0.0361

wR2 indices (all data) wR2 = 0.1716 wR2 = 0.1090

4. Conclusions

In conclusion, two new europium (III) complexes 2a and 2b were successfully synthesized,
characterized by 1H-NMR spectroscopies, positive FAB-Mass, elemental analysis, and their
photophysical properties were evaluated. Further, their absolute structures were determined by
X-ray analysis. These complexes 2a and 2b exhibited strong emission at 614 nm, which could find
prominent applications in light emitting devices. The luminescent intensities of the complexes 2a and
2b are quite the same. This result implies that the complexes 2a and 2b have similar structures. These
strong emissions were attributed to the 5D0→7F2 transition of europium (III) ions under UV excitation.
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