
crystals

Article

Application of the Improved Inclusion Core Model of
the Indentation Process for the Determination of
Mechanical Properties of Materials

Boris A. Galanov, Yuly V. Milman *, Svetlana I. Chugunova, Irina V. Goncharova and
Igor V. Voskoboinik

Institute for Problems of Materials Science of NASU, 3 Krzhizhanovky Str., 03680 Kiev, Ukraine;
gbaprofil@bk.ru (B.A.G.); yuly.milman@gmail.com (S.I.C.); irina@ipms.kiev.ua (I.V.G.);
igor-d23@ipms.kiev.ua (I.V.V.)
* Correspondence: milman@ipms.kiev.ua; Tel.: +38-044-424-3184

Academic Editors: Ronald W. Armstrong, Stephen M. Walley, Wayne L. Elban and Helmut Cölfen
Received: 9 February 2017; Accepted: 14 March 2017; Published: 16 March 2017

Abstract: The improved Johnson inclusion core model of indentation by conical and pyramidal
indenters in which indenter is elastically deformed and a specimen is elastoplastically deformed
under von Mises yield condition, was used for determination of mechanical properties of materials
with different types of interatomic bond and different crystalline structures. This model enables us to
determine approximately the Tabor parameter C = HM/YS (where HM is the Meyer hardness and
YS is the yield stress of the specimen), size of the elastoplastic zone in the specimen, effective apex
angle of the indenter under load, and effective angle of the indent after unloading. It was shown that
the Tabor parameter and the size of elastoplastic deformation zone increase monotonically with the
increase of the plasticity characteristic δH, which is determined in indentation experiments using
the early elaborated by the several authors of this article method. The corresponding analytical
dependencies were obtained and their physical nature is discussed. For the materials studied in this
work, the Tabor parameter ranges from 1 to 4. At the same time, for structural metallic alloys its value
is between 2.8 and 3.1 in agreement with the results obtained by Tabor. A very simple technique
developed in this article allows one to determine from the standard indentation test not only the
hardness of a material but also its yield stress and plasticity. This makes the indentation test results
significantly more informative.
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1. Introduction

The study of mechanical properties of materials by the method of local loading with a rigid
indenter is extensively used in practice. In indentation the Meyer hardness HM = P/S (where P is
the load on the indenter and S is the projection area of the hardness indent on the initial surface
of the specimen) has a precise physical meaning of the average pressure under indenter and is
usually determined.

Indentation models which describe theoretically the indentation process with the aim to determine
other mechanical properties, particularly the yield stress of material YS, were proposed long ago and
many times [1,2]. Among the developed models, the Johnson inclusion core model is the most
successful [3,4].

The details of these investigations and historical information on this problem up to 1969 are
presented in [3]. Thereafter, the concept of the inclusion core model was checked and investigated in
many works (see, e.g., [5–9]). In [10], executed with the participation of several authors of this article,
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Johnson’s model has been improved to describe the process of continuous indentation, in which not
only the sample, but also the indenter undergoes elastic-plastic deformation. In this improved model
the elastic compression of the inclusion core under the indenter is taken into account for the first time,
as well as the change in the apex angle of the indenter in the deformation process. In [10] for the
description of such indentation process the system of five equations was derived, which has been
used to study the deformation of diamond during indentation by the diamond indenter. In this paper,
the model [10] is simplified for the case where only the sample is deformed elastically-plastically,
and the indenter is deformed elastically. The advantages of the model [10] are preserved in this paper by
taking into account the compression of the core under indenter and the change of the indenter shape as
a result of elastic deformation. Simplification of the model [10] reduced the number of equations from
five to three (see the system of Equations (26) in [10] and the system (1) in this article). The system (1)
is used in this study to analyze the deformation process during indentation of materials with different
types of interatomic bonds and various crystalline structures, to establish the functional relationship
between the Tabor parameter C [11] and the plasticity of the material (C = HM/YS, where HM is the
Meyer hardness and Ys is the yield stress of the specimen), as well as for development of the simple
method for determination of the yield stress as a result of standard determination of hardness.

2. Theoretical Background. Scheme and Equations of the Improved Model

Figure 1 shows a scheme in a spherical coordinate system 0rθψ of a model of contact interaction
of a conical indenter and specimen, in which a hydrostatic core of radius c forms. The non-deformed
indenter is shown by a dashed line, and the following notations are used: ψ is the angle between the
surface of the indenter and the indenter axis xi under load; 0≤ r≤ c is the region of the core; c ≤ r ≤ bS
is the spherical layer of the specimen where elastoplastic deformations occurred; r ≥ bS is the region of
elastic deformation of the specimen. Strains are assumed to be sufficiently small.
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Figure 1. Scheme of interaction of an indenter and a specimen under a load Р in a spherical 
coordinate system 0rθϕ, HM = P/(πc2). 

Dislocation approach to the mechanism of deformation during indentation is being developed 
intensively ([12–18], etc.). In the framework of the dislocation theory, the zone of elastoplastic 
deformation with the radius bS is the zone with a sharp increase in the dislocation density around the 
indentation imprint with a symmetry center at the very point 0 in Figure 1. Dislocations are 
nucleated near the indenter and move in the radial directions to the boundaries of the elastoplastic 
zone under the action of shear stress, caused by the load on indenter [19]. The comparison of 
calculated values of bS with the experimental data is given in the Section 3.6. 

During continuous penetration of the elastic indenter, the core increases at the expense of the 
elastoplastic zone of the specimen. This proceeds on its boundary, where the material of this zone is 
compressed by the pressure of the core, which exceeds the pressure in the elastoplastic zone (in 
passing the boundary of the core, the jump of pressure and volume strain is observed; shear stresses, 
which are absent in the hydrostatic core, also change abruptly). During such penetration, the 

Figure 1. Scheme of interaction of an indenter and a specimen under a load P in a spherical coordinate
system 0rθψ, HM = P/(πc2).

Dislocation approach to the mechanism of deformation during indentation is being developed
intensively ([12–18], etc.). In the framework of the dislocation theory, the zone of elastoplastic
deformation with the radius bS is the zone with a sharp increase in the dislocation density around the
indentation imprint with a symmetry center at the very point 0 in Figure 1. Dislocations are nucleated
near the indenter and move in the radial directions to the boundaries of the elastoplastic zone under
the action of shear stress, caused by the load on indenter [19]. The comparison of calculated values of
bS with the experimental data is given in the Section 3.6.

During continuous penetration of the elastic indenter, the core increases at the expense of the
elastoplastic zone of the specimen. This proceeds on its boundary, where the material of this zone is
compressed by the pressure of the core, which exceeds the pressure in the elastoplastic zone (in passing
the boundary of the core, the jump of pressure and volume strain is observed; shear stresses, which
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are absent in the hydrostatic core, also change abruptly). During such penetration, the material of the
elastoplastic zone is additionally densified on the boundary of the core by a pressure ∆pS = 2YS/3
(caused by the jump of pressure ∆pS on this boundary) and joined to the material of the core.

As mentioned above, this model has three transcendental equations for three unknown quantities:
yield stress YS, the relative size of the elastoplastic zone x = bS/c and z = cot ψ:

z = cot ψ = cot γi − 2HM/E∗i , (1a)

(1− θSYS) ·
(

x3 − αS

)
= zβS/YS, (1b)

(2/3 + 2 ln x)− HM/YS = 0, (1c)

where the notation αS = 2(1−2νS)
3(1−νS)

, βS = ES
6(1−νS)

, θS = 2(1−2νS)
ES

and E∗i = Ei
1−ν2

i
is used, E is the Young’s

modulus, ν is the Poisson’s ratio, γi is the angle between the surface and the axis xi of the conical
non-deformed indenter. Subscripts i and s correspond to the indenter and specimen, respectively.
The solution of this system for unknowns (z, x, YS) determines approximately the stress-strain state of
the specimen in accord with the proposed model. As it is seen from Equation (1c) the Tabor constant

C = HM/YS = 2/3 + 2ln x, (2)

The system of Equations (1) takes into account the elastic compressibility during formation of the
core, and, thus, the proposed model develops the model considered in [3,4]. Equation (1a) corresponds
to Equation (17) of the work [10] at γiR = γi, Equation (1b) corresponds to the first equation of the
system (26) of the work [10], and Equation (1c) corresponds to the fourth equation of the system (26) of
the work [10].

The influence of compressibility during formation of the core, as it follows from [10] is determined
by the value of θSYS. This value increases with increase in the ratio YS/ES and with decrease in the
Poisson’s ratio ν. The evaluation of θSYS shows that the ratio YS/ES can attain 0.1 for covalent crystals,
and θSYS becomes substantial as compared to 1. For the same crystals, ν has a minimum value, which
is particularly small for diamond (ν = 0.07). Diamond was not investigated in the present work because
its deformation is purely elastic at room temperature. Features of the diamond deformation during
indentation by diamond indenter are considered in [10]. However, we can evaluate the quantity YS /ES
on the basis of the Meyer hardness of diamond at room temperature HM = 150 GPa [20] assuming that,
as for high-hardness ceramics, for diamond, YS ≈ HM. For diamond and for the value E = 1200 GPa,
we obtain θSYS ≈ 0.23, i.e., the compressibility of the deformation core is particularly substantial for
diamond and high-hardness ceramic materials. For metals, at YS/ES ≈ 0.002, and if ν = 0.35, the value
of θSYS = 0.001, is much smaller than 1, and taking into account the compressibility of the material
during formation of the core hardly influences on the obtained results.

For the residual conical indent in the specimen, the effective angle γSR after its elastic unloading
has the value ([10], Equation (16))

cot γSR = cot ψ− 2HM(1− ν2
S)/ES, (3)

where the term 2HM(1− ν2
S)/ES takes account of the elastic recovery of angle ψ and elastic deflection

component of the specimen surface.
The considered model was elaborated for the case of penetration of a cone with an apex angle 2γi.

The following relations between the apex angles of equivalent conical and pyramidal (trihedral and
tetrahedral) indenters were proposed in [10],

cot γi =
√

π cot γV/2 =
4
√

π2/27 cot γB, (4)

where γi, γV, γB are the apex angles of conical, tetrahedral (e.g., Vickers indenters, γV = 68◦), and
trihedral (e.g., Berkovich indenters, γB = 65◦) indenters, respectively.
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3. Results and Discussion

3.1. Comparative Analysis of the Deformation Process during Indentation of Materials with Different Types of
Interatomic Bond and Different Crystalline Structures

In this work, results of measurement of the Vickers microhardness obtained by the authors,
a substantial part of which was published [18,21–25], were used. For most presented results,
the load on the indenter was close to 2 N. For the analysis of features of deformation in indentation,
we chose unalloyed polycrystalline and single-crystalline metals with FCC, BCC, and HCP lattices;
a number of intermetallics (Al3Ti, Al61Cr12Ti27, and Al66Mn11Ti23); single-crystals of refractory
carbides (WC, NbC, TiC, ZrC, and SiC), covalent crystals of Si and Ge, and partially covalent Al2O3

and LaB6; amorphous alloys (Fe83B17, Fe40Ni38Mo4B18, and Co50Ni10Fe5Si12B17) and quasicrystals
(Al63Cu25Fe12 and Al70Pd20Mn10). An investigation was also performed for steel with 0.45% C and
5083 aluminum alloy.

The characteristics of the studied materials are presented in Table 1. The microhardness HM
was calculated from the value of HV (HM = 1.08 HV). In calculations for the diamond indenter,
Ei = 1200 GPa and νi = 0.07 were taken.

Table 1. Mechanical characteristics of materials (Meyer hardness HM, Young modulus ES, and Poisson’s
ratio νS) and characteristics calculated according to the core indentation model (Tabor parameter C,
yield stress YS, plasticity characteristic δH, relative size of elastoplastic zone x, apex angle of indenter
under load ψ, and relaxed effective apex angle of a hardness indent γSR).

Materials HM, GPa ES, GPa νS C = HM/Ys Ys, GPa δH x = bS/c ψ, deg. γSR, deg.

FCC metals

Al 0.173 71 0.35 4.02 0.043 0.99 5.33 68.01 68.12
Au 0.270 78 0.42 3.86 0.07 0.99 4.84 68.02 68.27
Cu 0.486 130 0.343 3.74 0.13 0.98 4.47 68.04 68.32
Ni 0.648 210 0.29 3.81 0.17 0.98 4.68 68.05 68.29

BCC metals

Cr 1.404 298 0.31 3.42 0.41 0.97 3.98 68.10 68.47
Ta 0.972 185 0.342 3.35 0.29 0.97 3.88 68.07 68.48
V 0.864 127 0.365 3.20 0.27 0.97 3.54 68.06 68.58

Mo (111) 1.998 324 0.293 3.17 0.63 0.96 3.52 68.14 68.64
Nb 0.972 104 0.397 2.94 0.33 0.96 3.16 68.07 68.76
Fe 1.512 211 0.28 3.02 0.50 0.95 3.29 68.11 68.69

W (001) 4.320 420 0.28 2.73 1.58 0.92 2.80 68.31 69.15

HCP metals

Ti 1.112 120 0.36 2.93 0.38 0.95 3.09 68.08 68.79
Zr 1.156 98 0.38 2.75 0.42 0.95 2.83 68.08 68.97
Re 3.024 466 0.26 3.09 0.63 0.95 3.38 68.22 68.75
Mg 0.324 44.7 0.291 2.94 0.11 0.95 3.3 68.02 68.60
Be 1.620 318 0.024 3.05 0.53 0.94 3.35 68.12 68.56
Co 1.836 211 0.32 2.91 0.63 0.94 3.10 68.13 68.82

Intermetallics
(IM)

Al66Mn11Ti23 (IM3) 2.203 168 0.19 2.42 0.91 0.87 2.42 68.16 69.27
Al61Cr12Ti27 (IM2) 3.456 178 0.19 2.08 1.66 0.81 2.03 68.25 69.90

Al3Ti (IM1) 5.335 156 0.30 1.67 3.19 0.76 1.65 68.38 71.16

Metallic glasses
(MG)

Fe40Ni38Mo4B18 (MG2) 7.992 152 0.30 1.25 6.39 0.62 1.34 68.58 72.90
Co50Ni10Fe5Si12B17 (MG3) 9.288 167 0.30 1.19 7.80 0.60 1.30 68.67 73.25

Fe83B17 (MG1) 10.044 171 0.30 1.14 8.84 0.58 1.26 68.73 73.58

Quasicrystalls
(QC)

Al70Pd20Mn10 (QC2) 7.560 200 0.28 1.55 4.88 0.71 1.55 68.54 71.67
Al63Cu25Fe12 (QC1) 8.024 113 0.28 0.97 8.30 0.48 1.16 68.58 74.54

Refractory
compounds

WC (0001) 18.036 700 0.31 1.89 9.56 0.81 1.84 69.31 71.40
NbC (100) 25.920 550 0.21 1.22 21.26 0.54 1.32 69.89 74.02
LaB6 (001) 23.220 439 0.20 1.13 20.51 0.50 1.26 69.69 74.34
TiC (100) 25.920 465 0.191 1.08 24.07 0.46 1.23 69.89 74.83
ZrC (100) 23.760 410 0.196 1.06 22.48 0.46 1.22 69.73 74.85

Al2O3 (0001) 22.032 323 0.23 0.94 23.40 0.41 1.15 69.60 75.56
α-SiC (0001) 32.400 457 0.22 0.87 37.24 0.36 1.11 70.38 76.77

Covalent
crystals

Ge (111) 7.776 130 0.21 1.10 7.06 0.49 1.24 68.56 73.75
Si (111) 11.340 160 0.22 0.96 11.84 0.42 1.16 68.82 74.99

Industrial alloys Steel 0.45%C 1.890 204 0.285 2.74 0.69 0.93 2.79 68.14 68.88
Al alloy #5083 1.030 70.1 0.33 2.51 0.41 0.91 2.49 68.07 69.23

The analysis of the deformation process in microindentation was performed on the basis of
the developed inclusion core model of indentation with the use of the system of Equations (1).
The parameter z was calculated from Equation (1a), and then the system of Equations (1b) and
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(1c) was solved to determine the yield strength YS and the relative size of the elastoplastic zone in the
specimen x = bS/c.

The apex angle of the equivalent conical indenter under load ψ was calculated by the relation
z = cot ψ. The apex angle of the conical hardness indent in the specimen after unloading of the indenter
γSR was calculated by Equation (3).

In accordance with [10,21], the mean plastic strain on the contact area of the indenter and specimen
εp in the direction of the force P applied to the indenter was calculated by Equation (5), the elastic
strain εE, corresponding to the elastic deflection component of the specimen surface, was computed
by (6), and the total strain εt was calculated by (7)

εp = lnsinγSR = − ln
√

1 + cot2 γSR < 0, (5)

εe = −(1 + νS)(1− 2νS)HM/ES, (6)

εt = εe + εp. (7)

The plasticity characteristic δH (introduced in [18]) was evaluated by formula (8) in Section 3.2.1.
The obtained results are presented in Table 1, in which groups of materials are located in the order of
decreasing plasticity characteristic δH. It is seen, that the Tabor parameter C decreases simultaneously
with a decrease δH within each group of materials of Table 1, and at the comparison of values C and δH
of the different groups.

For the most plastic materials with a FCC lattice, C = 3.8–4. For metals with BCC and HCP
structures, C ≈ 3, which corresponds to the Tabor concept [11].

Among the other studied materials, intermetallic compounds have values of C ≈ 2, that are close
to those for metals.

Among the studied refractory compounds, the lowest value of C, even smaller than 1, is observed
for SiC and Al2O3. These crystals also have the smallest plasticity.

Among refractory compounds, carbide WC, as is known [24,25], is distinguished by increased
plasticity δH = 0.81, and, for it, C = 1.89, that is higher than for other refractory compounds. For covalent
crystals Si and Ge, C ≈ 1. At the same time Ge has a somewhat higher plasticity and higher
value of C. However, it should be taken into account that, in these crystals, indentation leads to
the semiconductor–metal phase transition [26,27], which complicates the discussion of results obtained
for them.

In view of the established correlation of the Tabor parameter C with the plasticity characteristic
δH, it seems reasonable to consider the relation of these characteristics more thoroughly to elucidate
the physical nature of the Tabor parameter C. The relation between C and δH seems to be particularly
interesting because both these characteristics relate the hardness to the mechanical properties of
the material, namely, to the yield strength (Tabor parameter C) and to the plasticity of the material
(plasticity characteristic δH).

3.2. Relation between the Tabor Parameter C = HM/YS and Plasticity Characteristic δH

3.2.1. Plasticity Characteristic δH Determined by Indentation

In modern physics plasticity is determined by the tendency of a material to undergo residual
deformation under load [28,29].

The frequently used plasticity characteristics (elongation of a specimen to fracture δ and its
reduction of the area to fracture Ψ) do not correspond to the physical definition of plasticity and must
be considered only as convenient technological tests [18,21,30], which can be used for only metals
having some elongation to fracture. For a large number of modern materials, the value δ = 0 and
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cannot characterize their mechanical behavior. The plasticity characteristic satisfying the physical
definition of plasticity was proposed in [18] in the form of the dimensionless parameter

δ* = εp/εt = 1 − εe/εt, (8)

where εp, εe, and εt are, respectively, the plastic, elastic, and total strain, and εt = εp + εe.
The considered plasticity characteristic δ* can be determined in any methods of mechanical tests

(tension, compression, and bending) and, as shown in [18,21], in indentation.
It is seen from expression (8) that δ* depends on the total strain εt, which follows directly from the

definition of plasticity δ* presented above.
Since the plasticity δ* depends on the strain εt, a comparison of the plasticity of different materials

should be performed at a representative strain εt ≈ const. In tensile test, in the first stages of loading,
εt = εe, and plastic strain is absent, i.e., the material does not retain a part of strain after unloading.
For this reason representative strain εt must be sufficiently large (7%–10%). It is natural that, in the
case of standard tensile and compression test methods, this characteristic can be determined only
for sufficiently plastic metals. At the same time, the condition εt ≈ const is automatically fulfilled in
indentation of materials using a pyramidal indenter, e.g., a tetrahedral Vickers pyramid or trihedral
Berkovich pyramid, and the degree of total strain under these indenters lies in the interval indicated
above (εt ≈ 7.6% for a tetrahedral Vickers indenter, and εt ≈ 9.8% for a trihedral Berkovich indenter).

During indentation, the small volume of the deformed material and a specific character of strain
fields decrease the susceptibility to macroscopic fracture. This enables one to determine the hardness
and plasticity characteristic for most materials even at cryogenic temperatures.

In [18,21] it was shown that, for a pyramidal indenter, the plasticity characteristic can be
determined in indentation in the form

δH = 1− HM
ES · εt

(
1− νS − 2ν2

S

)
. (9)

In particular, for a Vickers indenter, taking into account that HV = HM sin γi, γi = 68◦,
and εt = 7.6%, we have

δH = 1− 14, 3 ·
(

1− νS − 2ν2
S

)
HV/ES, (10)

The introduction of the plasticity characteristic δH made it possible to classify practically all
(plastic and brittle materials in standard mechanical tests) on the basis of their plasticity [18,21,22].
A dependence of δH on the temperature, strain rate, and structural factors has been
established [18,21,30]. It was possible to introduce the notion of theoretical plasticity for perfect
crystals in which theoretical strength is attained [30]. It was experimentally shown that there exists
a critical value of the plasticity characteristic δH cr ∼= 0.9. At smaller values of δH, the plasticity in tensile
tests is δ = 0 or has a very low value. The plasticity characteristic δH is fairly extensively used in works
of different authors (e.g., [31–33]).

The values of the plasticity characteristic δH for the materials studied in the present work are
presented in Table 1, which enables us to compare them with the Tabor parameter C.

Consider the theoretical relation between C and δH. It follows from Equation (2) that the parameter
C is completely determined by the relative size of the elastoplastic zone x = bS/c. This is why we first
calculate the relation between x and the plasticity characteristic δH.
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3.2.2. Relation between the Relative Size of the Elastoplastic Zone x = bS/c and the Plasticity
Characteristic δH

As noted in Section 2, for metals, the quantity θSYS can be neglected as compared to 1 in
Equation (1b). Substituting YS from (1c) into (1b), we find the following equation for the determination
of x for metals:

x3 − αS =
ESz
( 2

3 + 2 ln x
)

6(1− νS)HM
, (11)

where αS = 2(1−2νS)
3(1−νS)

.
Determining HM/ES from (10) and substituting its value into (11), for the Vickers indenter we get

the following explicit dependence of δH on the relative size of the elastoplastic deformation zone x:

δH = 1−
2, 21z

( 2
3 + 2 ln x

)
x3 − αS

λS, (12)

where λS =
1−νS−2ν2

S
1−νS

= 1− 2 ν2
S

1−νS
.

It follows from Equation (12) and Figure 2 that δH is predominantly determined by the quantity x,
but the parameters z and λS exert some influence on the relation between δH and x. For metals, the
parameter z is practically equal to z ≈ cot γi because the angle ψ for them differs very slightly from
an angle γi = 68◦ (see Table 1). Therefore, it can be assumed that z ≈ const. However, the parameter λS
varies somewhat for metals having different values of Poisson’s ratio νS, which leads to an insignificant
scatter of experimental results relative to the averaged curve in Figure 2.

Crystals 2017, 7, 87  7 of 13 

 

( ) ,
16

ln2
3
2

3
HM

xzE
x

S

S
S ν

α
−







 +

=−  (11)

where ( )
( )S

S
S ν

να
−

−=
13

212 . 

Determining HM/ES from (10) and substituting its value into (11), for the Vickers indenter we 
get the following explicit dependence of δН on the relative size of the elastoplastic deformation zone х: 

,
ln2

3
221,2

1 3 S
S

H x

xz
λ

α
δ

−







 +

−=  (12)

where 
S

S

S

SS
S ν

ν
ν

ννλ
−

−=
−

−−=
1

21
1

21 22
. 

It follows from Equation (12) and Figure 2 that δН is predominantly determined by the quantity 
х, but the parameters z and λS exert some influence on the relation between δН and х. For metals, the 
parameter z is practically equal to z ≈ cot γi because the angle ψ for them differs very slightly from an 
angle γі = 68° (see Table 1). Therefore, it can be assumed that z ≈ const. However, the parameter λS 
varies somewhat for metals having different values of Poisson’s ratio νS, which leads to an 
insignificant scatter of experimental results relative to the averaged curve in Figure 2. 

0,4 0,6 0,8 1,0
0

1

2

3

4

5

Nb
Be

Fe,Mg

x 
= 
b S
/c

δH

Ge LaB
6

QC
1

ZrC,TiC

Al
2
O

3
 Si

SiC
NbC

MG

QC
2 IM

1

WC

IM
2

IM
3

W Zr
Ti,Co

Re
Mo V

Ta
Cr

Ni
Cu
Au

Al

 

Figure 2. Relation between the plasticity characteristic δH and the relative size of the elastoplastic 
deformation zone х. Curve was constructed on the basis of Equation (12) for z = 0.38 and νS = 0.27. 

For metals the results of calculation of δН by (10) and (12) practically coincide. 
Formula (12) was used for the calculation of the dependence x(δH) shown in Figure 2. In this 

case, the values of the parameters z and νS were varied. The smallest mean square error equal to 
0.06% was obtained for z = 0.38 and νS = 0.27. Thus, it was shown that Equation (12) with the values 
of the parameters z = 0.38 and νS = 0.27 can be used with an accuracy sufficient for practice not only 
for metals, but also for other materials studied in the work. 

Figure 2. Relation between the plasticity characteristic δH and the relative size of the elastoplastic
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For metals the results of calculation of δH by (10) and (12) practically coincide.
Formula (12) was used for the calculation of the dependence x(δH) shown in Figure 2. In this case,

the values of the parameters z and νS were varied. The smallest mean square error equal to 0.06%
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was obtained for z = 0.38 and νS = 0.27. Thus, it was shown that Equation (12) with the values of the
parameters z = 0.38 and νS = 0.27 can be used with an accuracy sufficient for practice not only for
metals, but also for other materials studied in the work.

The experimental data and theoretical curve shown in Figure 2 indicate that the relative size of
the elastoplastic deformation zone during indentation x = bS/c is mainly determined by the plasticity
characteristic δH. The value of x increases monotonically with increasing δH. In this case, x changes
from values close to 1 for ceramic materials to x = 5.33 for aluminum.

3.2.3. Yield Strength YS and Tabor Parameter HM/YS in the Considered Model

Figure 3 shows the relation between the Tabor parameter C = HM/YS and plasticity characteristic
δH. It is seen that the experimental dots for all studied materials lie on practically one curve.
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To calculate the theoretical dependence C(δH) for the studied materials shown in Figure 3,
formulas (1c) and (12) were used. We obtained the next Equation:

δH = 1− 2, 21zCλS
exp(1, 5C− 1)− αS

, (13)

It is seen from Figure 3 that this equation satisfactorily describes the experimental results.
It should also be noted that, by analogy with δH cr, the notion of the critical value of the Tabor

parameter Ccr = HM/YS ≈ 2.6 can be introduced. As is seen in Figure 3, this value corresponds to
δH cr = 0.9. Therefore, only for C > 2.6, the materials have a substantial macroscopic plasticity in
tensile tests.

3.3. Physical Nature of Increase of the Tabor Parameter C = HM/YS with Increase in the Plasticity δH

During indentation of low-plasticity materials, the elastoplastic deformation zone is small and
its radius bS exceeds slightly the radius of the penetrated indent c. In this case, C ≈ 1 and HM ≈ YS.
However, as shown in the present work, with increase in the plasticity δH, the size of the elastoplastic



Crystals 2017, 7, 87 9 of 13

deformation zone increases substantially, and, in most plastic materials, the value of bS/c increases to
more than 5. Therefore, during penetration of an indenter into plastic materials, deformation occurs
not only under the indenter, but also in a hemisphere with a radius bS, exceeding substantially the
radius of the hardness indent c. In order for the plastic deformation to occur on a large hemisphere,
the pressure P = HM on the contact area of the indenter and specimen must exceed substantially the
yield strength YS. The higher ductility of the material, the greater the size of elastic-plastic deformation
zone and, hence, the pressure P and the Tabor parameter C should be higher. The mathematical relation
between C = HM/YS and the plasticity characteristic δH is described by Equation (13) and is shown in
Figure 3.

3.4. Relaxed Effective Apex Angle of a Hardness Indent γSR and Apex Angle of an Indenter under Load ψ

It is seen from Table 1 and Figure 4 that the relaxed apex angle of the hardness indent γSR can be
much larger than the corresponding angle of the indenter γi = 68◦. As is seen in Figure 4, the value
of γSR correlates with the plasticity characteristic δH and can be described by the linear equation
γSR = 80.64 − 12.55 δH. The correlation between γSR and δH shows once again the fundamental
character of the plasticity characteristics δH.

It is obvious from Table 1 that, for metals, the value of the apex angle of indenter under load ψ

differs very slightly from the value of γi. However, for high-hardness materials ψ can exceed 70◦.
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3.5. Simple Method of Determination of the Tabor Parameter C = HM/YS and Yield Strength YS from the
Hardness HM Determined with a Pyramidal Indenter

The results presented above enable us to propose a very simple method of determination of the
Tabor parameter C and yield strength YS from the hardness HM determined with a Vickers indenter.
In this method, the plasticity characteristic δH is calculated by the simple formula (12), the Tabor
parameter C is determined from the curve shown in Figure 3 or calculated by Equation (13), and the
yield strength is calculated by the formula YS = HM/C. The simplicity of the described technique
makes it possible to use it extensively in indentation by the Vickers method. The authors think that
the determination of the plasticity characteristic δH and yield strength YS raises significantly the
informativeness and efficiency of the indentation technique. It should be noted that the simplified
calculation of the Tabor parameter C and yield strength YS can also be carried out in the case of
measuring the hardness HM by a trihedral Berkovich indenter. In this case, for the determination of
the plasticity characteristic δH, it is necessary to use relation (9) at εt ≈ 9.8%.
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3.6. Experimental Check of the Values of the Tabor Parameter C = HM/YS and the Radius of Elastoplastic
Zone bS.

As is seen from Figure 3 and Table 1, the value of the Tabor parameter C changes quite strongly
for different materials. Why did the parameter C range from 2.8 to 3.1 in the Tabor tests? This can be
explained by the fact that Tabor tested structural metallic alloys. These alloys are usually hardened by
alloying and heat treatment, but hardening is limited by the necessity to have good plasticity, which
is measured as elongation to fracture δ, and usually δ ≈ 10%–20% for these alloys. According to the
data of the authors of the present paper, such values of δ corresponds to the plasticity characteristic
δH = 0.93 − 0.95. According to Figure 3, at this value of δH, the Tabor parameter C is actually equal to
2.8–3.1 for different materials.

In a number of earlier performed works (e.g., [3–6]), it was shown that for ceramic materials the
Tabor parameter C approaches 1 as in the present work.

It follows from Figure 3 and Table 1 that materials with a plasticity characteristic lower than that
for metals (δH < 0.9: intermetallics, refractory compounds, quasicrystals, metallic glasses etc.) must
also be characterized by a lower value of C = HM/YS. An experimental check of the values of C for
these materials is complicated (or practically impossible) because of their insufficiently high plasticity
in compression tests for the determination of YS at a total strain εt ≈ 7.6%. However, the values of
C for these materials obtained in the present paper are fairly predictable because the values of the
plasticity characteristic δH and the relative size of the elastoplastic deformation zone bS/c for them are
intermediate between those for metals and ceramics.

It seemed reasonable to check the high value C ≈ 4 for pure aluminum, as a representative of the
most plastic metals with a FCC lattice.

For this purpose, we prepared specimens of aluminum of 99.98% purity for uniaxial compression
tests. The specimens had a diameter d = 5 mm and a height h = 6 mm. They were prepared from
a commercial ingot and annealed in vacuum at a temperature of 400 ◦C for 1 h. The mean grain size
was equal to 93 µm. The yield stress σ = YS in compression to εt ≈ 7.6% was equal to 41 MPa. As is
seen from Table 1, the hardness is HM = 173 MPa. Therefore, Cexp = HM/σ7.6% = 4.2, which confirms the
high value of the parameter C for aluminum, which even somewhat exceeds the value calculated using
the developed model C ≈ 4.02. In this case, for the studied aluminum, δH = 0.99, which, according to
Figure 3 and Equation (13), corresponds to C ≈ 4–4.2.

The experimental check of the values of the Tabor parameter C by the uniaxial compression
test method was also performed for 5083 aluminum alloy and carbon steel containing 0.45% C.
These materials were tested in the as-delivered state. The obtained results are presented in Table 2.
It is seen that the values of the yield strength YS and Tabor parameter C obtained by the indentation
method (with calculation by Equations (1) and (2)) agree well with those obtained in mechanical tests.
The values of C and δH for these materials are also shown in Figure 3 and coincide satisfactorily with
the calculated curve C = f (δH).

Table 2. Results of compression mechanical tests (yield stress at tension (εt = 7.6%) Y7.6%, the value of
Cexp in tension test).

Material Y7.6%, GPa Cexp

Al 0.041 4.21
Al alloy #5083 0.373 2.76
Steel 0.45%C 0.64 2.95

For comparison of the actual size of the elastoplastic deformation zone with the calculated value
of bS, results of the work [34], in which dislocation rosettes around indentation were investigated for
Mo (001) single crystal by etch pits method, were used. Additionally, in the present work, dislocation
rosettes around indentation made at 300 ◦C were investigated. In Figure 5 the circles with radius bS
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are plotted on dislocation rosettes around the indentations. At the room temperature (Figure 5a) the
anisotropy of the dislocation velocity in different crystallographic directions is observed, but at 300 ◦C
such anisotropy is absent (Figure 5b). It is seen, that in both cases, the calculated values of bS are in
satisfactory agreement with the average values of the areas in which plastic deformation has occurred
and dislocation density has increased.Crystals 2017, 7, 87  11 of 13 
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4. Conclusions

1. The developed inclusion core model of indentation by conical and pyramidal indenters makes
it possible to carry out an analysis of the mechanical behavior of materials in indentation with the
determination of the Tabor parameter C = HM/YS, yield strength YS, relative size of the elastoplastic
deformation zone under an indenter bS/c (see Figure 1), effective angle of a relaxed hardness indent γSR,
and effective angle of an indenter under load ψ. In this case, for the first time, the elastic compressibility
of the deformation core is taken into account. An analysis of the mechanical behavior in the indentation
of materials with different types of interatomic bond and different crystalline structures has been
carried out using the developed model.

2. It has been shown that the main quantities of the developed indentation model (the Tabor
relation C = HM/YS and relative size of the elastoplastic deformation zone bS/c) correlate precisely
with the determined in indentation plasticity characteristic δH = plastic strain/total strain, which was
introduced in [18]. The Tabor parameter C and the size of the elastoplastic deformation zone bS/c
increase monotonically with increasing plasticity characteristics δH. The Tabor parameter ranges from 1
for ceramic materials to 3.8–4.0 for the most plastic FCC metals. In structural metallic alloys, combining
a high strength with an elongation at fracture δ = 10%–20% (which corresponds to δH = 0.93–0.95),
C = 2.8–3.1, which agrees with the results obtained by Tabor. The relative size of the elastoplastic
deformation zone bS/c changes from 1 for ceramic materials to 5.3 for aluminum. The calculated size of
bS is in the satisfactory agreement with the average values of the area in which plastic deformation
under indenter is occurred and dislocation density is increased.

3. On the basis of the developed inclusion core model of indentation, analytical expressions
relating C and bS/c to the plasticity characteristic δH have been obtained. These expressions agree
sufficiently well with the obtained experimental results and make it possible to calculate C and bS/c
from the value of the plasticity characteristic δH. To determine more exactly all parameters, it is
necessary to solve the system (1) of three equations with three unknowns.
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4. The physical nature of increase of the Tabor parameter C = HM/YS with increasing plasticity
is explained by the fact that with increase in the plasticity, the elastoplastic deformation zone bS/c
increases and bS can substantially exceed the radius of the hardness indent c. This is why the pressure
P = HM on an area of radius c must provide plastic deformation not only under the indenter, but also
in a hemisphere of radius bS. Naturally, in this case, the pressure P must be substantially higher than
the yield strength YS.

5. It has been shown that it is reasonable to introduce the notion of the critical value of the Tabor
parameter Ccr = 2.6. Only at C > 2.6, materials have substantial macroscopic plasticity in tensile tests.

6. A very simple technique of determination of the Tabor parameter C = HM/YS and yield
strength YS from results of standard indentation has been proposed. In this technique, the plasticity
characteristic δH is determined by the simple formula (10), and the Tabor parameter is determined
from the calibration plot C = f(δH) shown in Figure 3. The yield strength YS is calculated by the formula
YS = HM/C.

7. Thus, the inclusion core model of indentation developed in the present work and the earlier
proposed technique of determination of the plasticity δH enable us to calculate both the yield strength
and plasticity characteristic from the value of the hardness HM and elastic characteristics of the
material. The authors think that the determination of the plasticity characteristic δH and yield strength
YS make the indentation technique substantially more informative and efficient.
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