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Abstract: The crystal and molecular structures of five succinimidyl halobenzoates are reported.
Corresponding derivatives with the respective halo-radionuclide (18F, 76Br, 123I/124I/125I/131I) were
prepared and used for the radiolabeling of biologically active (macro-)molecules (peptides, proteins,
antibodies) under mild labeling conditions. All compounds were crystalized from petroleum
ether/ethyl acetate mixtures.
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1. Introduction

The radiolabeling of large biologically active molecules such as peptides, proteins or antibodies is an
ongoing issue in radiopharmacy [1–5]. Harsh reaction conditions (high temperature, organic solvents,
oxidizing conditions) for the introduction of the radionuclide and the selective radiolabeling,
together with the sensitivity of the applied biomolecules are often the main problems. Thus,
novel radiolabeling building blocks were elaborated for a selective and mild insertion of the radionuclide
under physiological friendly conditions. Succinimidyl esters which belong to activated esters [6] play
a major role for this purpose.

mSIB, oSIB, and pSIB with radioiodine were first developed [7–10] and are the basis of all other
(radio)halogenated succinimidyl esters described in this paper. They are important for labeling
purposes with radioiodine (123I/124I/125I/131I) [11–20]. [18F]SFB is the most applied building block
in fluorine-18 chemistry. Additionally, a carbon-11-containing SFB derivative was synthesized in the
past [21]. In the meantime, several commercial suppliers deliver the non-radioactive SFB compound.
[76Br]SBrB is rarely applied [22,23].

In this paper, we synthesized the non-radioactive esters SFB 3a, SClB 3b, SBrB 3c, o-SIB 3d,
and p-SIB 3e which are commonly in use as non-radioactive standards to analyze radiolabeling via
TLC and HPLC analyses and determined the molecular structure of these compounds via single
crystal XRD.

2. Results and Discussion

2.1. Synthesis and Chemistry

In general, the radiolabeling of biomacromolecules (peptides, proteins, and antibodies) follows a
two-step procedure. Normally, these compounds were not directly radiolabeled. For this purpose,
the radionuclide-containing building block was prepared first. In the case of radiofluorine 18F,
electron-demanding ethyl benzoates were applied [24,25] and the fluorine was introduced via a nucleophilic
substitution SNAr of the trimethylammonium group in most of the cases [2]. Newer developments are
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based on the use of iodonium salts [26,27] or nickel complexes [28] as precursors. Afterwards, the ethyl
group was cleaved followed by the introduction of the succinimidyl group.

In the case of radiobromine and radioiodine, both radionuclides were classically inserted by an
electrophilic substitution SEAr (radiohalodestannylation) using stannyl precursors.

The second step involves the actual labeling of the (sensitive) biomacromolecule. Mostly, free amine
groups were used for this labeling reaction under mild conditions (room temperature, aqueous solvents,
non-oxidizing conditions, short reaction times). The overview is outlined in Scheme 1.
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2.2. X-ray Structure Determination 

Single crystals of 3a to 3e were obtained by the slow evaporation method. The crystal and 
experimental as well as the structure refinement parameters for the single crystal X-ray structure 
determinations are summarized in Table 1. The crystals of all five compounds consist of neutral 
succinimidyl halobenzoate molecules. The chloro-, bromo- and iodo-derivatives 3b, 3c and 3d, 
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Scheme 1. General labeling procedure using radiolabeling building blocks based on radiohalogenated
(18F, 76Br, 123/124/125/131I) succinimidyl benzoates.

Various ways to prepare the halogenated succinimidyl esters are known from the literature.
Several are based on the Steglich esterification of N-hydroxy succinimide with the halobenzoic acid
and DCC, EDC or TSTU as coupling reagent [11,29–33]. Others used halobenzyl alcohols under
radical conditions [34,35] or halobenzoic acid and N,N′-succinimidyl carbonate [36]. Transition metal
catalyzed reactions are also applied such as palladium catalyzed coupling reactions with CO [37] or
with formyl derivatives [38] as well as Ru-catalyzed reactions using the respective benzaldehyde [39].

Application of halobenzoyl chlorides or the use of the Steglich esterification are the most
convenient synthesis methods with the highest yields and the shortest reaction times. In our case,
the synthesis of all succinimidyl esters was accomplished using N-hydroxy succinimide (2) which was
treated with the respective halobenzoyl chlorides (1a–e) in anhydrous THF and triethylamine as
base [16]. All succinimidyl esters 3a–e were obtained in high yields of 77% to 92%. The purification of
3a–e was accomplished via a short column chromatography. The reaction path is outlined in Scheme 2.
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2.2. X-ray Structure Determination

Single crystals of 3a to 3e were obtained by the slow evaporation method. The crystal and
experimental as well as the structure refinement parameters for the single crystal X-ray structure
determinations are summarized in Table 1. The crystals of all five compounds consist of neutral
succinimidyl halobenzoate molecules. The chloro-, bromo- and iodo-derivatives 3b, 3c and 3d,
which rhave the halogen atom attached on the para-position of the benzoate ring, are isotypic.
Figures 1–3 show the molecular structures of the five compounds.
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Table 1. Crystal data and structure refinement for compounds 3a–e.

Parameter 3a 3b 3c 3d 3e

Formula C11H8FNO4 C11H8ClNO4 C11H8BrNO4 C11H8INO4 C11H8INO4
Formula weight (g·mol−1) 237.18 253.63 298.09 345.08 345.08

Temperature (K) 123
Wavelength (Å) 0.71073
Crystal system monoclinic monoclinic monoclinic monoclinic orthorhombic

Space group P21/c P21/n P21/n P21/n Pbca
Unit cell dimensions

a (Å) 11.6331(6) 8.7157(7) 8.554(2) 8.566(3) 12.1900(3)
b (Å) 5.4971(3) 5.7238(5) 5.800(1) 5.817(2) 8.5246(2)
c (Å) 17.041(1) 22.598(2) 22.844(6) 23.374(8) 22.0618(6)
β (◦) 103.992(2) 90.470(4) 92.20(1) 93.27(2) 90.00

Volume (Å3) 1057.4(1) 1127.3(2) 1132.5(5) 1162.8(7) 2292.6(1)
Z 4 4 4 4 8

Density (calcd.) (g·cm−3) 1.490 1.494 1.748 1.971 2.000
Absorpt. coeff. (mm−1) 0.12 0.34 3.64 2.76 2.76

F(000) 488 520 592 664 1328
Crystal size (mm3) 0.05 × 0.05 × 0.01 0.22 × 0.11 × 0.06 0.62 × 0.40 × 0.21 0.15 × 0.15 × 0.10
Refinement method Full matrix—least-squares

Data/restraints/param. 2373/0/155 5553/0/154 9377/0/155 10986/0/155 4166/0/155
Measured reflections 19468 25796 67515 100672 38241

2 θmax (◦) 27.3 36.6 45.4 47.9 33.1
Rint 0.124 0.042 0.106 0.034 0.063

GoF on F2 1.11 1.05 1.05 1.13 1.16
R1 [I > 2σ(I)] 0.054 0.044 0.050 0.030 0.025
wR2 (all data) 0.133 0.128 0.144 0.067 0.064

Larg. diff. peak/hole (e·Å3) 0.28/−0.22 0.64/−0.66 1.88/−1.65 2.82/−2.34 0.76/−1.49
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The interatomic distances for all five compounds are found within the expected ranges. Selected
atom distances and mean plane angles are listed in Table 2. A different packing of the molecules
is observed only in crystals of the fluoro compound 3a and the ortho-iodobenzoate 3e, resulting in
different space groups. The two carbon–oxygen bonds of C5 in all five structures differ significantly in
length. Generally, the much shorter C5–O4 lengths compared to C5–O3 indicate a strong double bond
character and a single bond character for C5–O3. The mean planes through the halo benzoate moieties
are tilted towards the mean planes through the succinimidyl moieties by angles ranging from 70.7◦ (3c)
to 80.5◦ (3d), such that the two ring systems are arranged almost perpendicular to each other. Because
of the lack of acidic protons, no classical hydrogen bonds are observed in the structures (see below).

Table 2. Selected atom distances [Å] and mean plane angles [◦].

Distance or Angle 3a 3b 3c 3d 3e

C=O carbonyl [Å] 1.189(3) 1.187(1) 1.191(1) 1.196(2) 1.195(1)
C–O carbonyl [Å] 1.389(2) 1.392(1) 1.398(1) 1.395(2) 1.400(1)

C=O succin. (av.) [Å] 1.200 1.206 1.209 1.202 1.208
C–Hal [Å] 1.356(3) 1.737(1) 1.893(1) 2.094(1) 2.095(1)

^ mean plane [◦] (halobenzoyl/succinimidyl residues) 76.2 72.9 70.7 80.5 71.6

Furthermore, the surrounding of the nitrogen atoms of the succinimidyl residue in compounds
3a–e can be described as follows. These atoms show nearly planar bonding geometry, with a maximum
deviation of 0.08 Å out of the C1–C4–O3 plane. The presence of an adjacent single bound oxygen
atom can act to pyramidalize the N bonding geometries, but in these cases it is minimal due to the
strong conjugation between the N atom and two carbonyl groups. This nearly planar behavior can be
explained by the partial double bond character of the N1–C1–O1 and the N1–C4–O2 amide function.

Figure 4 demonstrates exemplarily the packing of the molecules of 3b in a view along the b axis
of the unit cell. The dotted lines included in the figure show the shortest center distances of the
phenyl rings (brown dotted lines) and the shortest intermolecular O....H distances (green dotted lines).
Weak π–π interactions with distances between the planes of the aromatic phenyl rings of 4.181 Å and
4.586 Å as well as weak “non-classical” hydrogen bonds with the shortest acceptor–donor distance of
3.264(1) Å (in 3b) are responsible for the final arrangement of molecules.
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3. Conclusions

In this paper, we have synthesized four succinimidyl halobenzoate derivatives which are used
in radiopharmacy as prostetic groups with the respective halo radionuclides. The structures of all
derivatives were elucidated.

4. Experimental Section

4.1. General

NMR spectra were recorded on an Agilent DD2 (400 or 600 MHz) with ProbeOne probe. Chemical
shifts of the 1H, 13C and 19F spectra were reported in parts per million (ppm) using TMS for 1H
and 13C spectra and CFCl3 for 19F spectra as internal standard. Chromatographic separations
and TLC detections were carried out with Merck Silica Gel 60 (63–200 µm) and Merck Silica Gel
60 F254 sheets, respectively. TLCs were developed by visualization under UV light (λ = 254 nm).
Anhydrous THF was purchased from Acros (Geel, Belgium) or SigmaAldrich (Schnelldorf, Germany).
N-Hydroxysuccinimide (2), all benzoyl chlorides 1a–e and Et3N were used as received without further
purification. Crystallographic data were collected with a Bruker–Nonius Apex-X8 CCD-diffractometer
(Bruker, Madison, WI, USA) with Mo-Kα radiation (λ = 0.71073 Å) at 123 K. The structures were solved
by direct methods using SHELXS-97 and refined against F2 on all data by full matrix least-squares
refinements using the program suites from G. M. Sheldrick [40–42]. Data corrections including
multi-scan absorption corrections were applied to the data sets using the Bruker AXS software [43].
All non-hydrogen atoms were refined anisotropically; all hydrogen atoms bonded to C atoms were
placed on geometrically calculated positions and refined using riding models. CCDC 1524925 (3a),
CCDC 1504220 (3b), CCDC 1505323 (3c), CCDC 1505325 (3d), and CCDC 1505324 (3e) contain the
supplementary crystallographic data of the compounds. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/conts/retrieving.html.

4.2. General Synthesis Procedure

N-Hydroxysuccinimide (2, 150 mg, 1.33 mmol) was dissolved in anhydrous THF (10 mL),
Et3N (197 mg, 1.95 mmol) was added and the mixture was cooled to 0 ◦C. Next, the respective
halobenzoyl chloride 1a–e (1.56 mmol) was added dropwise, the solution was stirred at 0 ◦C for 60 min
and at rt for 2 h. Afterwards, the reaction was quenched with water (15 mL) and extracted with ethyl
acetate (3 × 15 mL). The combined organic layers were separated and dried over Na2SO4. The solvent
was removed and the crude product was purified via flash chromatography (petroleum ether/ethyl
acetate 2:1) to yield compounds 3a–e (77%–92%) as colorless solids.

4.2.1. Succinimidyl 4-Fluorobenzoate (SFB, 3a)

Yield: 283 mg, 92%. M.p. 112 ◦C. 1H NMR (400 MHz, CDCl3): δ = 2.90 (s, 4H, CH2),
7.19 (t, 3J = Hz, Ar–H), 8.16 (dd, 3J = Hz, 3JH,F = Hz, 2H, Ar–H); 13C NMR (101 MHz, CDCl3):
δ = 25.8 (CH2), 116.4 (d, 2JC,F = 22.3 Hz, C–Hmeta), 121.5 (d, 4JC,F = 3.2 Hz, Cipso) 133.5 (d, 3JC,F = 9.9 Hz,
C–Hortho), 161.0 (C=O), 167.0 (d, 1JC,F = 257.6 Hz, Cpara), 169.3 (C=O); 19F NMR (376 MHz, CDCl3):
δ = −101.3 ppm.

4.2.2. Succinimidyl 4-Chlorobenzoate (SClB, 3b)

Yield: 290 mg, 88%. M.p. 206 ◦C. 1H NMR (600 MHz, CDCl3): δ = 2.91 (s, 4H, CH2),
7.50 (d, 3J = 8.6 Hz, Hmeta), 8.07 (d, 3J = 8.6 Hz, Hortho); 13C NMR (151 MHz, CDCl3): δ = 25.8 (CH2),
123.7 (Cipso), 129.5 (Cmeta), 132.0 (Cortho), 141.8 (Cpara), 161.3 (C=O), 169.2 (C=Osucc).

http://www.ccdc.cam.ac.uk/conts/retrieving.html


Crystals 2017, 7, 90 6 of 8

4.2.3. Succinimidyl 4-Bromobenzoate (SBrB, 3c)

Yield: 300 mg, 77%. M.p. 224 ◦C. 1H NMR (600 MHz, CDCl3): δ = 2.91 (s, 4H, CH2),
7.67 (d, 3J = 8.6 Hz, Hmeta), 8.56 (d, 3J = 8.6 Hz, Hortho); 13C NMR (151 MHz, CDCl3): δ = 25.8 (CH2),
124.2 (Cpara), 130.6 (Cipso), 132.1, 132.5 (Cmeta + Cortho), 161.4 (C=O), 169.2 (C=Osucc).

4.2.4. Succinimidyl 2-Iodobenzoate (o-SIB, 3d)

Yield: 410 mg, 91%. M.p. 134 ◦C. 1H NMR (600 MHz, CDCl3): δ = 2.91 (s, 4H, CH2),
7.28 (dt, 4J = 1.4 Hz, 3J = 7.7 Hz, 1H, HAr), 7.48 (t, 3J = 7.7 Hz, 1H, HAr), 8.08 (d, 3J = 8.0 Hz, HAr),
8.11 (dd, 4J = 1.5 Hz, 3J = 7.7 Hz, 1H, HAr); 13C NMR (151 MHz, CDCl3): δ = 25.9 (CH2), 95.9 (CAr),
128.3 (CHAr), 129.5 (CAr), 132.4 (CHAr), 134.7 (CHAr), 142.3 (CHAr), 161.4 (C=O), 169.1 (C=Osucc).

4.2.5. Succinimidyl 4-Iodobenzoate (p-SIB, 3e)

Yield: 402 mg, 90%. M.p. 162 ◦C. 1H NMR (600 MHz, CDCl3): δ = 2.91 (s, 4H, CH2),
7.83 (d, 3J = 8.5 Hz, Hortho), 7.89 (d, 3J = 8.5 Hz, Hmeta); 13C NMR (151 MHz, CDCl3): δ = 25.8 (CH2),
103.5 (Cpara), 124.7 (Cipso), 131.8 (Cortho), 138.5 (Cmeta), 161.7 (C=O), 169.2 (C=Osucc).
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