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Abstract:



Single crystals of two hybrid organic-inorganic molecular solids, benzyl pyridinium tetra(isothiocyanate)cobalt ([BzPy]2[Co(NCS)4]) (1) and benzyl quinolinium tetra(isothiocyanate)cobalt ([BzQl]2[Co(NCS)4]) (2), were grown using a slow evaporation growth technique at room temperature and their IR, UV-Vis, X-ray crystal structures, luminescence, and magnetism were reported. The crystal structural analysis revealed that two molecular solids crystallize in the monoclinic space group P21/c of 1 and P21/n of 2. The cations form a dimer through weak C–H···π/π···π interactions in 1 and 2, and the adjacent cation (containing N(6) atom) in 2 forms a columnar structure through π···π weak interactions between the quinoline and benzene rings, while the anions in 1 form a layer structure via short S···Co interactions. The anions (A) and cations (C) are arranged alternatively into a column in the sequence of ···A–CC–A–CC–A··· for 1, while the two anions and cationic dimer in 2 form an alliance by the C–H···π, C–H···S and C–H···N hydrogen bonds. A weak S···π interaction was found in 1 and 2. The two molecular solids show a broad fluorescence emission around 400 nm in the solid state at room temperature, and weak antiferromagnetic coupling behavior when the temperature is lowered.
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1. Introduction


During the last two decades, hybrid organic-inorganic molecular materials based on organic cations and inorganic complex anions have played a major role in the development of advanced functional materials. They have attracted the interest of scientists due to their special structural features and physical properties, which include novel catalytic, non-linear optical, conductive, fluorescent and magnetic properties [1,2,3,4,5,6,7]. Among these compounds, the transition metal complexes anion (based on the thiocyanate or isothiocyanate ligand) attracts much interest as these ions may coordinate either through the N or S atom as a monodentate ligand, or though N and S atoms as a bridging ligand, forming some complexes with one-, two- or three-dimensional networks [4,8,9,10]. In particular, the inherent coordination angle of the isothiocyanate species leads to a wide range of various molecular solids containing [M(NCS)4]2− (M = Mn2+, Co2+, Zn2+), which may exhibit interesting magnetic behaviors, electronic, and optical properties [11,12,13,14,15]. The selection of the counter organic cation is of key importance as it controls the stacking of the whole molecule, and the non-covalent interactions (such as weak p···π/π···π stacking interactions and hydrogen bonds) also play an important role in the arrangement of the structural units of molecular solids [16,17,18]. Our previously published studies have been devoted to the syntheses, X-ray single crystal structures, spectroscopic studies, magnetic or fluorescent properties of hybrid materials based on the tetra(isothiocyanate)cobalt/zinc anion and substituted benzyl triphenylphosphonium cations. The examples of [4RBzTPP]2[Co(NCS)4] (R = H, F, Br, NO2) [19,20], [3BrBzTPP]2[Co(NCS)4] (R = Br, CN) [21], [2ClBzTPP]2[Co(NCS)4] and [4ClBzTPP]2[Co(NCS)4] [22] and [4RBzTPP]2[Zn(NCS)4] (R = H, NO2) [23] illustrate the importance of the size of the counterion. In our recent report on [4NO2BzPy]2[Co(NCS)4] [24], the [Co(NCS)4]2− anions formed an unusual layer structure through S···N and S···Co interactions, and the [4NO2BzPy]+ cations were stacked into a 1D column by the weak p···π interactions. These observations have sparked our continuing research interest, and therefore, in this work, we introduced benzyl pyridinium ([BzPy]+) and benzyl quinolinium ([BzQl]+) into the system containing [Co(NCS)4]2− anions and obtained two new hybrid materials, [BzPy]2[Co(NCS)4] 1 and [BzQl]2[Co(NCS)4] 2, whose crystal structures, spectroscopic, optical and magnetic properties have been investigated. It is of much interest that two solids exhibit dual functionalities such as antiferromagnetic behavior and luminescent activity.




2. Results and Discussion


2.1. Single Crystal XRD and Powder XRD


The structural analysis of 1 and 2 were carried out on grown crystals using a Bruker SMART APEX (Göttingen, Germany) X-ray diffractometer at 291 K. [BzPy]2[Co(NCS)4] (1) crystallizes in monoclinic system with P21/c space group, whose asymmetric cell unit consisted of one [Co(NCS)4]2− anion and two [BzPy]+ cations (Figure 1a). The [Co(NCS)4]2− anion exhibits a distorted tetrahedral coordination geometry with an average Co-N bond distance of 1.952(3) Å and an average N–Co–N bond angle of 107.20(12)°. Some important bond lengths and bond angles are listed in Table 1, and these values agree with reported molecular solids comprised of [Co(NCS)4]2− anions [18,24]. Two [BzPy]+ cations adopt a formation in which one pyridine ring and one phenyl ring are twisted with respect to a C–C–N reference plane. In the [BzPy]+ cation moiety containing the N(5) atom, the dihedral angles subtended by the phenyl ring and pyridine ring make with the reference plane (defined by C(10)−C(11)−N(5)) are 31.4(2)° (θ1) and 68.5°(2) (θ2), respectively, while the phenyl and pyridine rings make a dihedral angle of 83.3(2)° (θ3). For the [BzPy]+ cation moiety containing the N(6) atom, the θ1, θ2 and θ3 are 52.7(2)°, 66.9(2)° and 84.2(2)°, respectively.


Figure 1. (a) Oak Ridge Thermal Ellipsoid Plot (ORTEP) plot (30% probability ellipsoids) showing the molecule structure of 1. (b) The 2D layered structure of [Co(NCS)4]2− through S···Co interaction between anions for 1.
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Table 1. Selected bond lengths and bond angles for 1 and 2.







	
Compound

	
1

	
2






	
Bond length (Å)

	

	




	
Co(1)–N(1)

	
1.937(3)

	
1.958(3)




	
Co(1)–N(2)

	
1.945(3)

	
1.941(4)




	
Co(1)–N(3)

	
1.968(3)

	
1.966(3)




	
Co(1)–N(4)

	
1.957(3)

	
1.987(4)




	
N(1)–C(1)

	
1.138(5)

	
1.141(5)




	
N(2)–C(2)

	
1.146(5)

	
1.144(5)




	
N(3)–C(3)

	
1.162(4)

	
1.111(5)




	
N(4)–C(4)

	
1.159(5)

	
1.137(5)




	
S(1)–C(1)

	
1.609(4)

	
1.610(3)




	
S(2)–C(2)

	
1.611(4)

	
1.614(4)




	
S(3)–C(3)

	
1.599(4)

	
1.628(4)




	
S(4)–C(4)

	
1.610(4)

	
1.620(4)




	
Bond angles (°)

	

	




	
N(1)–Co(1)–N(2)

	
115.60(12)

	
109.48(14)




	
N(1)–Co(1)–N(3)

	
106.98(12)

	
110.66(15)




	
N(1)–Co(1)–N(4)

	
110.11(12)

	
105.50(15)




	
N(2)–Co(1)–N(3)

	
110.20(12)

	
109.80(14)




	
N(2)–Co(1)–N(4)

	
105.08(12)

	
117.37(16)




	
N(3)–Co(1)–N(4)

	
108.75(12)

	
103.81(14)




	
Co(1)–N(1)–C(1)

	
173.2(3)

	
177.0(3)




	
Co(1)–N(2)–C(2)

	
171.5(3)

	
172.6(4)




	
Co(1)–N(3)–C(3)

	
172.2(3)

	
168.8(3)




	
Co(1)–N(4)–C(4)

	
173.2(3)

	
161.0(3)




	
N(5)–C(11)–C(10)

	
112.4(3)

	
114.6(3)










As seen in Figure 1b, the [Co(NCS)4]2− anions formed a layer structure through S···Co short interactions (the S(4)···Co(1A) and S(3B)···Co(1) distances of 4.205(2) and 4.032(2) Å) along the ac-direction [25,26]. The nearest Co···Co distance was 8.749 Å. It was found that the neighboring cations containing the N(5) atom formed a dimer through C−H···π weak interactions (Figure 2a), and the H(16) to the centroid of the C(5)–C(10) ring distance (d1) was 2.923(2) Å. As seen in Figure 2b, π···π interactions were present between the phenyl (molecule with N6) and the pyridyl (molecule with N5) rings in the crystals, with a distance 3.550(2) Å. Figure 2c shows the [Co(NCS)4]2− anions with the cationic dimers (containing a N(5) atom, denoted as C1C1) in alternate stacks forming an alternating columnar structure in a ···A–C1C1–A–C1C1··· sequence through C(7)–H(7)···N(4) (d2 = 2.810(2) Å) and C(11)–H(11A)···N(2) (d3 = 2.953(2) Å) hydrogen bonds. Amid the anions and cations (C2) containing the N(6) atom (Figure 2d), there existed a S···π interaction(d4) (S(1) to the centroid of the C(17B)–C(22B) ring distance of 3.714(2) Å) and C(20)–H(20)···N(4) hydrogen bond (Table 2). The regular stacks between anions and cations resulted in the formation of the 3D network of 1 (Figure S1).


Figure 2. (a) A dimer formed through C–H···π interactions between the cations (C1) of 1. (b) The π···π interactions between the cations (C1 and C2) of 1. (c) The 1D chain in ···A–C1C1–A–C1C1···sequence through C–H···N hydrogen bonds between the anions and cations (C1) of 1. (d) The S···π and C–H···N interactions between the anions and cations (C2) of 1.
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Table 2. The parameters (Å, °) of hydrogen bonds in 1 and 2.







	
D−H···A

	
d (D−H)

	
d (H···A)

	
d (D···A)

	
<(DHA)






	
Compound 1

	

	

	

	




	
C(7)–H(7)···N(4)#1

	
0.970

	
2.953

	
3.568(4)

	
124.0




	
C(20)–H(20)···N(4)#2

	
0.930

	
2.871

	
3.668(3)

	
144.0




	
Compound 2

	

	

	

	




	
C(9)–H(9)···N(5)

	
0.930

	
2.588

	
2.920(5)

	
101.0




	
C(11)–H(11B)···S(3)#3

	
0.970

	
2.753

	
3.700(4)

	
166.0




	
C(13)–H(13)···N(2)#4

	
0.930

	
2.926

	
3.648(4)

	
130.0




	
C(14)–H(14)···N(3)#4

	
0.930

	
2.995

	
3.660(4)

	
136.0








Symmetry transformations used to generate equivalent atoms: #1 = −x + 1, −y + 1, −z + 1; #2 = x − 1, −y + 1/2, z − 1/2; #3 = x, y − 1, z; #4 = −x, −y + 1, −z.








Every unit cell of 2 contains one [Co(NCS)4]2− anion and two [BzQl]+ cations. In the [Co(NCS)4]2− anion, the average distance of Co–N bonds was 1.963(3), and the average N–Co–N bit angle was 108.86(15)°. These values are slightly bigger than those in 1. The dihedral angles θ1, θ2, and θ3 of the [BzQl]+ cation are 166.7(1)°, 82.7(1)°, 85.3(1)° for the cations containing the N(5) atom, and 132.2(1)°, 78.9(1)°, 78.2(1)° for the cations containing the N(6) atom. These values are obviously different from those in 1. In the [Co(NCS)4]2− anions of 2, the nearest Co···Co distance was 8.503(2) Å. The [BzQl]+ cations show an orderly stacking structure, for example, the cations containing the N(5) atom (C1) formed a dimer (Figure 3a) through π···π weak interactions between the quinoline rings in which the centroid of two quinoline rings distance was 3.787(2) Å (d1); while the cations containing the N(6) atom (C2) formed a chain (Figure 3b) through π···π weak interactions between the quinoline and benzene rings with a distance of 3.518(2) Å (d2). These ordered arrangements between the cations in 2 may be attributed to the bigger delocalized π conjugated system of the quinoline ring which can easily form π···π weak interactions when the pyridine ring of 1 changed to the quinoline ring of 2 in the cation. An interesting structure was found where a cationic dimer was surrounded by two [Co(NCS)4]2− anions, and formed an alliance via the C–H···N and C–H···S hydrogen bond (Figure 4a and Table 2). In addition, the S···π interactions [21], (the S(1) to centroid of C(5)–C(10) ring distance of 3.708(2) Å (d3)) and C(33)–H(33)···S(1) hydrogen bonds with a C(33)℘?℘S(1) distance of 3.701(2) Å were found between the anions and the cations (Figure 4b). These weak interactions (the bond parameters of hydrogen bonds listed in Table 2) improved the stabilization of the unit cell of 2 (Figure S2).


Figure 3. (a) The cations (C1) form a dimer through π···π weak interactions between the quinoline rings of 2. (b) The cations (C2) form a chain structure via π···π weak interactions between the quinoline and benzyl rings of 2.
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Figure 4. (a) The cationic dimers with two [Co(NCS)4]2− anions formed an alliance through C–H···N and C–H···S hydrogen bonds of 2. (b) The S···π and C–H···S interactions between the anions and cations of 2.
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By comparing the packing structures of (1), (2) and [4NO2BzPy]2[Co(SCN)4] [24], it was found that when the anion was identical, the aromatic rings of the cation changed from pyridine to a quinoline ring, or a para-substituted group in the benzyl ring changed from H to NO2 groups, the anion stacking mode, the dihedral angles (θ1, θ2, and θ3), the cations stacking mode and the weak interactions of the cations and anions were significantly different.



The grown crystals of 1 and 2 were finely powered and subjected to powder XRD analysis by employing a Bruker D8 advance power X-ray diffractometer. The powdered samples were scanned over a range of 2θ values 10°–50° in steps of 0.02° at room temperature. As seen in Figure 5, the sharp nature of the peaks in the XRD patterns and the consistency of most of the peak positions in powder XRD and simulated XRD patterns from single crystal XRD using Mercury software from the Cambridge Structural Database System indicates the purity and excellent crystallinity of the grown crystals of 1 and 2.


Figure 5. Simulated and experimental powder XRD patterns of 1 (a) and 2 (b): (i) calculated from single crystal structural analysis (blue line) and (ii) experimental (red line).
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2.2. UV-Vis Spectra


The UV-Vis absorption spectra (Figure 6) of 1 and 2 in MeCN (1.0 × 10−6 mol L−1) in the region of 220–800 nm are attributed to the anionic portions of these solids. The characteristic bands at 626, 319, 254 nm for 1 (Figure 6a) and 625, 318, 237 nm for 2 (Figure 6b), are assigned as d→d, L→L* and L(π)→M, respectively, and are basically similar to those observations in [4NO2BzPy]2[Co(NCS)4] [24].


Figure 6. UV-Vis spectra of 1 (a) and 2 (b) in MeCN.
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2.3. Luminescent Properties


The luminescent properties of the two solids and the intermediate were all investigated in a solid state at room temperature (the intermediates [BzPy]Br (Benzyl pyridinium bromide) of 1 do not obtain solid fluorescence as it is semi-solid state at room temperature). As seen in Figure 7a, upon excitation at 241 nm, compound 1 showed two main luminescent emission peaks at 395 nm and 290 nm, while the main emission bands of both 2 and intermediate [BzQl]Br were found at 289 nm and 394 nm (Figure 7b), which may be attributed to the π*→π or n→π transition [27]. In addition, compounds 1 and 2 exhibited a strong emission band at 408 nm and a relatively weak emission band at 448 nm, which may be tentatively assigned to the metal-to-ligand charge transfer band between the Co(II) and the unoccupied π* orbitals of the isothiocyanate groups [28]. It is noteworthy that the luminescence intensity of λmax in 2 (186.9 a.u) is much stronger than the intermediate [BzQl]Br (benzyl quinolinium bromide) (28.23 a.u), which may be primarily attributed to the C–H···S, and C–H···N hydrogen bond interactions between the [Co(NCS)4]2− anions and [BzQl]+ cations [29].


Figure 7. (a) Emission spectrum of 1 in a solid state at room temperature. (b) Emission spectra of 2 (black) and [BzQl]Br (red) in a solid state at room temperature.
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2.4. Magnetic Properties


The crushed crystals of 1 and 2 were used to collect the variable-temperature (2–300 K) magnetic susceptibility data under a field of 2000 Oe. Plots of χm and χm − 1 versus T are shown in Figure 8a for 1 and Figure 8b for 2, while the plots of χmT versus T are shown in Figure S3a for 1 and Figure S3b for 2. The χMT value of 1 at 300 K was 2.457 emu K mol−1, which was slightly larger than the spin-only value of high-spin Co(II) (S = 3/2) at 1.875 emu K mol−1, indicating a contribution of the orbital momentum typical for the 4T1g ground state [30,31]. As the temperature was lowered, first, the χMT product smoothly decreased to 2.255 emu K mol−1 around 34 K, then sharply decreased to a low value (1.132 emu K mol−1) at 2.0 K (Figure S3a), indicative of an antiferromagnetic exchange. The data in χM−1 versus T plot is well fitted by the Curie–Weiss law (the solid line in Figure 8a) with the fitting parameters of C = 2.459 emu K mol−1 and θ = −3.641 K. The magnetic behavior of 2 also exhibited a very weak antiferromagnetic exchange interaction, and the best fit (the red solid line in Figure 8b) for the data in χM−1 versus T plot in the temperature range 2–300 K using the Curie–Weiss law was C = 2.410 emu K mol−1, and θ = −1.295 K. The magnetic behaviors of 1 and 2 are in accordance with their crystal structures, and similar to that in [4NO2BzPy][Co(NCS)4] [24]. Due to the large Co–Co distances between the neighboring centers, the magnetic behavior was due to single ion anisotropy with some contribution of antiferromagnetic exchange between the Co(II) centers. The magnetic coupling can be mediated through super-exchange interaction across the isothiocyanate orbitals, as well as the C–H···S, and C–H···N hydrogen bonds between the anion and the cation [31,32].


Figure 8. (a) Plots of χm and χm−1 versus T for 1. (b) Plots of χm and χm−1 versus T for 2. The solid lines are reproduced from the theoretical calculations and detailed fitting procedure described in the text.
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3. Materials and Methods


3.1. Materials


Benzyl bromide, pyridine, quinoline, CoCl2·6H2O, KSCN and other reagents were purchased from commercial sources and used without further purification. Benzyl pyridinium bromide ([BzPy]Br) and benzyl quinolinium bromide ([BzQl]Br) were prepared using the published methods in Reference [33].




3.2. Syntheses and Crystal Growth Method


Compound 1: [BzPy]2[Co(NCS)4] (the synthetic route is shown in Figure 9). A methanol solution (10 mL) of KSCN (0.20 g, 2 mmol) was added to a methanol solution (10 mL) of CoCl2·6H2O (0.12 g, 0.5 mmol), stirred and the mixture was stirred again for 45 min at room temperature. Next, then 20 mL methanol solution of [BzPy]Br (0.25 g, 1 mmol) was dropped into the mixture, cooled down for a further 1.5 h when all of the [BzPy]Br was added. The product was collected via filtration, wasted with cool methanol and diethyl ether, and air-dried. Yield: 82%. Anal. Calc. for C28H24N6CoS4: C, 53.24; H, 3.83; N, 13.30%; Found: C, 53.29; H, 3.95; N, 13.22%. IR spectrum (cm−1): 3057m (νa-H), 2920m (νasCH2), 2855m (νsCH2), 2069s (νC≡N), 1631m (νC=C), 1581s (νC=C), 1486m (νC=C), 1454m (νC=C), 1164s (ρCH2), 739m (δC–H), and 678m (δC–H). UV-Vis spectrum (nm): 254, 319, 626.


Figure 9. Synthetic route of the two complexes.
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A similar procedure used to make Compound 1 was used to prepare Compound 2. Yield: 79%. Anal. Calc. for C36H28N6CoS4: C, 59.09; H, 3.86; N, 11.48%; Found: C, 59.15; H, 4.01; N, 11.56%. IR spectrum (cm−1): 3087m (νasC–H), 2923m (νas(CH2)), 2848m (νsCH2), 2065s (νC≡N), 1626m (νC=C), 1589s (νC=C), 1521m (νC=C), 1452m (νC=C), 1157s, 768m (δC–H), 719m (δC–H). UV-Vis spectrum (nm): 237, 318, 625.



The blue crystals suitable for X-ray structural analysis were obtained by evaporating the MeOH solution of 1 and 2 for around two weeks at room temperature.




3.3. Characterization Technique


Elemental analyses (carbon, hydrogen, and nitrogen) were performed using a Perkin-Elmer (Massachusetts, MA, USA) Model 240C elemental analyzer. IR spectra were recorded on a Nicolet (Wisconsin, WI, USA) FT-IR spectrophotometer in 4000–400 cm−1 regions with a KBr pellet. UV-Vis spectra were recorded (in acetonitrile) on a Shimadzu (Tokyo, Japan) UV-2500 spectrophotometer in the region of 250–800 nm. The power XRD pattern was analyzed by a Bruker D8 Advance X-ray diffractometer (λ = 1.5406 Å). Single crystal XRD data were collected at room temperature using a Bruker SMART APEX instrument (Mo Kα radiation, λ = 0.71073 Å) for 1 and 2. Cell parameters were retrieved using SMART software [34] and refined using SAINTPlus (Göttingen, Germany) software [35] on all observed reflections. Data reductions were also performed using the SAINTPlus software. The structure was solved by direct method and refined by the least-squares methods on F2 using the SHELXTL (Göttingen, Germany) program package [36]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were located in the Fourier map and their positions refined with fixed isotropic thermal parameters. Details of the data collection, refinement and crystallographic data are summarized in Table 3.



Table 3. Crystal data and structure refinement for 1 and 2.







	
Compounds

	
1

	
2






	
Empirical formula

	
C28H24N6CoS4

	
C36H28N6CoS4




	
Formula weight

	
631.70

	
731.81




	
Crystal system

	
Monoclinic

	
Monoclinic




	
Space group

	
P21/c

	
P21/n




	
a/Å

	
8.749(1)

	
16.029(3)




	
b/Å

	
20.062(3)

	
12.731(2)




	
c/Å

	
17.527(2)

	
19.010(3)




	
β/°

	
96.28(1)

	
111.29(1)




	
Volume, Å3

	
3058.0(7)

	
3614.7(10)




	
Z

	
4

	
4




	
Density (calculated), g/cm3

	
1.372

	
1.345




	
Absorption coefficient, mm−1

	
0.862

	
0.740




	
F(000)

	
1300

	
1508




	
Crystal size/mm3

	
0.13 × 0.17 × 0.21

	
0.11 × 0.15 × 0.19




	
Reflections collected

	
26,736

	
25,478




	
Independent reflections

	
5676 (Rint = 0.069)

	
6353 (Rint = 0.037)




	
Data/restraints/parameters

	
5676/0/352

	
6353/0/424




	
Goodness of fit on F2

	
1.000

	
1.067




	
Final R indices [I > 2σ (I)]

	
R1 = 0.0480, wR2 = 0.0921

	
R1 = 0.0462, wR2 = 0.1199




	
Final R indices (all data)

	
R1 = 0.1034, wR2 = 0.1023

	
R1 = 0.0726, wR2 = 0.1370




	
Largest Diff Peak and hole (e Å−3)

	
0.232 and −0.357

	
0.630 and −0.510











3.4. Fluorescence Emission Spectra Measurements


Solid-state emission spectra upon excitation at 241 nm were recorded for the solid samples loaded into a sample cell (1 cm diameter) which was then fixed on a bracket at room temperature with a Hitachi F-7000 (Tokyo, Japan) fluorescence spectrophotometer. The excitation and emission slits used for the measurement of the solid state of the crystals were 2.5 and 5.0 nm wide, the scan speed was 240 nm/min−1, and the scan voltage was 400 V.




3.5. Magnetic Properties Measurements


Variable-temperature magnetic susceptibility measurements were carried out for 1 and 2 in the 2–300 K temperature range at a magnetic field of 0.2 T on ground polycrystalline samples with a Quantum Design MPMS-XL-7 (San Diego, CA, USA) super-conducting quantum interference device (SQUID) magnetometer. Samples were prepared by finely grinding single crystals into a powder and packing the powder into a gelatin capsule with weights of 34.36 mg and 60.40 mg for 1 and 2, respectively. The susceptibility data were corrected for the diamagnetic contributions deduced by the use of Pascal’s constant tables.





4. Conclusions


In summary, two new hybrid organic-inorganic molecular solids: (1) [BzPy]2[Co(NCS)4] and (2) [BzQl]2[Co(NCS)4] ([BzPy]+ = Benzyl pyridinium, [BzQl]+ = Benzyl quinolinium) were obtained and characterized. The crystal structural analysis revealed that two molecular metals crystallized in the monoclinic space group P21/c of 1 and P21/n of 2. The cations formed a dimer through weak C–H···π/π···π interactions in 1 and 2, and the adjacent cation (containing the N(6) atom) in 2 formed a columnar structure through π···π weak interactions between the quinoline and benzene rings. The anions of 1 formed a layer structure via short S···Co interactions. The anion (A) and cation (C1) were arranged alternatively into a column in the sequence of ···A−C1C1−A−C1C1−A··· for 1, while in 2, the two anions with a cationic dimer formed an alliance through the C–H···π, C–H···S and C–H···N hydrogen bonds. The S···π weak interaction was found in 1 and 2. So weak p···π/π···π stacking interactions and hydrogen bonds play an important role in the arrangement of the structural units of molecular solids. Two molecular solids showed a broad fluorescence emission around 400 nm and weak antiferromagnetic coupling behavior.








Supplementary Materials


The following are available online at www.mdpi.com/2073-4352/7/3/92/s1, Figure S1: The packing diagram of 1 as viewed along a-axis, Figure S2: The packing diagram of 2 as viewed along a-axis, Figure S3: Plots of χmT versus T for 1 (a) and 2 (b).
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