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Abstract: The interface formation mechanisms of AlN films on sapphire substrates grown by the
elementary source vapor phase epitaxy (EVPE) method, which is a new AlN bulk fabrication method
using Al and N2 as precursors, are investigated. Supplying N2 after the substrate temperature reaches
the growth temperature [Process N2(GT)] causes the interface to become rough due to the thermal
decomposition of sapphire. Self-separation occasionally occurs with the Process N2(GT), suggesting
that the rough interface generates self-separating films with little strain. On the other hand, supplying
N2 beginning at room temperature forms a relatively smooth interface with voids, which can be
realized by the reaction between a nitrided sapphire surface and an Al source.
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1. Introduction

AlN bulk crystals are promising as substrates of AlGaN-based deep ultraviolet light emitters
and high-frequency electronic devices with high-breakdown voltages. Currently, AlN substrates
are fabricated mainly by the physical vapor transport method [1–5] and hydride vapor phase
epitaxy method [6–10]. To lower costs, increase the diameter, and improve the crystalline qualities,
these methods must be refined. To this end, we have proposed a new growth method of AlN substrates:
elementary source vapor phase epitaxy (EVPE) [11,12]. EVPE uses low cost and ecological precursors
(Al metal and N2), and a (0001) sapphire substrate as a seed crystal for large-area growth. EVPE can
fabricate AlN with a maximum growth rate of 18 µm/h and a minimum dislocation density of
5 × 108 cm−2 [11,12].

Thick AlN growth on sapphire substrates usually causes epilayer cracking due to the thermal
expansion mismatch between AlN and sapphire, especially for high temperature growth [10,13].
Therefore, a method to relax the thermal stress is required. EVPE has enabled the growth of
crack-free films even with a thickness of 18 µm because the voids generated at the AlN/sapphire
interface during the EVPE growth may reduce the strain [11,12]. In addition, EVPE can induce
spontaneous separation of AlN films from the sapphire substrates. A study on the void formation
and self-separation mechanisms should realize growth of freestanding AlN substrates with less strain.
In this study, the strain in AlN films on sapphire and self-separated AlN from sapphire are evaluated.
In addition, the interface formation mechanisms are investigated with an emphasis on the Al and N2

gas flow sequences.

2. Experiments

Details of the growth apparatus are described in the literature [11,12]. A laboratory-built,
horizontal, hot-wall reactor with induction heating systems was used in AlN EVPE and the annealing
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treatment of sapphire. The reactor has two heating zones: a source zone upstream of the reactor and
a growth zone downstream. The temperature of each heating zone can independently be controlled.
Al and N2 were used as source gases for AlN growth. Al gas was generated in the source zone by
heating Al metal and was transferred to the growth zone by Ar gas. Al gas in the Ar carrier gas and
N2 gas were separately introduced into the growth zone where AlN was generated through a simple
reaction of Al(g) + 1/2N2 = AlN. The typical growth conditions of EVPE were as follows: growth
temperature of 1550 ◦C, source temperature of 1400 ◦C, Ar flow rate of 0.6 standard L/min (SLM),
N2 flow rate of 3 SLM, N2/Al ratio of 2210, and growth pressure of 10 kPa. The N2/Al ratio was
calculated using the Al vapor pressure between 1200 K and 2800 K [14].

The surface and interface morphologies, crystal qualities, and surface elemental analyses of
the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD)
measurements, and energy dispersive X-ray spectroscopy (EDS), respectively.

AlN in this study has nitrogen polarity [11]. It has been reported that in metal organic vapor phase
epitaxy (MOVPE) of AlN on nitrided sapphire, Al-polar AlN layers are built on AlON interfacial layers
formed during the nitridation step, while removing the AlON layer causes N-polar AlN layers [15].
Because the AlON layer dissolves at high temperatures, in EVPE, of which the growth temperature is
higher than that of MOVPE, the AlON layer may be absent, resulting in the nitrogen polarity.

3. Results and Discussion

3.1. Strain Evaluation

The c lattice parameters in the grown AlN films with various thicknesses were estimated by
the XRD 2θ/ω scans. The samples were fabricated under the typical growth conditions described in
the previous section, except that the Ar flow rate was varied. The Ar flow rate was changed from
0.25 SLM to 1 SLM, and the respective N2/Al ratios were from 5300 to 1300, leading to variations in
the thicknesses (growth rates) [11]. Both Ar and N2 were supplied beginning at room temperature
(RT). The XRD φ scans of all the samples confirm six-fold symmetry peaks, demonstrating that the
samples are single phase.

Figure 1 shows the results, where the open circles and the closed square express the results for
AlN on sapphire and self-separated AlN, respectively.
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Figure 1. Dependence of the c lattice parameter on thickness.

As described in the next section, self-separation often occurs when N2 is supplied after the
substrate temperature reaches the growth temperature, but this self-separated film is created by chance
when the N2 supply is initiated at RT. The reason for this peeling is unclear. The c lattice parameter of
unstrained AlN is 0.4982 nm, while that for strained AlN due to thermal stress is 0.4989 nm. The latter
was calculated using the thermal stress model (TSM) [16–18], assuming that the epilayer is fully relaxed
at the growth temperature, but then the epilayer is elastically strained during the cooling process due
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As described in the next section, self-separation often occurs when N2 is supplied after the
substrate temperature reaches the growth temperature, but this self-separated film is created by chance
when the N2 supply is initiated at RT. The reason for this peeling is unclear. The c lattice parameter of
unstrained AlN is 0.4982 nm, while that for strained AlN due to thermal stress is 0.4989 nm. The latter
was calculated using the thermal stress model (TSM) [16–18], assuming that the epilayer is fully relaxed
at the growth temperature, but then the epilayer is elastically strained during the cooling process due
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to the thermal expansion mismatch between the epilayer and substrate. The c lattice parameter of
AlN on sapphire approaches the TSM values as the film thickness increases, which indicates that the
strain originating from the thermal stress remains in the crack-free films on the sapphire substrate
(Figure 1). On the other hand, self-separated AlN has a c lattice parameter close to the unstrained value
without following the trend of the former; the stress is considered to be almost completely relaxed in
self-separated AlN.

3.2. Mechanisms of Interface Formation

Figure 2 illustrates the temperature profiles and flow sequences. Although Ar gas was always
supplied beginning at RT, Al metal was placed in the Ar stream in the source zone only when exploring
the effect of Al. For N2, we examined two supply sequences. The N2 supply is initiated (1) when the
substrate temperature reaches the typical growth temperature of 1550 ◦C [Process N2(GT)]; or (2) at RT
[Process N2(RT)]. (Therefore, the Al + Process N2(RT) is equivalent to the AlN pretreatment detailed in
ref. [12].)

Figure 3 shows the cross-sectional images near the AlN/sapphire interfaces grown with Al + (a)
Process N2(GT) and (b) Process N2(RT). Both AlN films are about 1-µm thick (growth rate: 1 µm/h).
The former has a rough interface, particularly on the AlN side, while the latter has a relatively smooth
one on the AlN side with some voids on the sapphire side. Self-separation is frequently observed in
the case of Al + Process N2(GT), but is rare in the case of Al + Process N2(RT). Thus, the rough interface
on the AlN side causes a self-separation.
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To investigate the interface formation mechanisms, the effect of N2 on the sapphire annealing
characteristics was examined without supplying Al. (That is, AlN was not grown intentionally.)
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To investigate the interface formation mechanisms, the effect of N2 on the sapphire annealing
characteristics was examined without supplying Al. (That is, AlN was not grown intentionally).
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Figure 4 shows the SEM bird’s-eye views, EDS profiles, and XRD profiles of sapphire annealed in
atmospheres without N2 (only Ar), with Process N2(GT), and Process N2(RT) at 1550 ◦C.
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The gas flow rates and pressure were the same as those of the standard growth conditions
described in Section 2. Annealing without N2 considerably roughens the sapphire surface (Figure 4a).
The EDS profiles of the sample (Figure 4d) indicate that the roughened area includes more Al than
the flat area, which suggests that the thermal decomposition of sapphire leaves Al-related materials
on it. With Process N2(GT), N2 is supplied to such a roughened sapphire surface, and the degree of
the roughness is preserved (Figure 4b). Furthermore, N2 may react with the Al-related materials to
form AlN polycrystalline grains, as evidenced by the EDS and XRD profiles shown in Figure 4e,g.
It is noteworthy that the morphology in Figure 4b is similar to that in Figure 3a, implying that the
rough AlN poly-like crystals at the interface play a key role in the self-separation phenomenon.
On the other hand, with Process N2(RT), nitridation of sapphire at a relatively low temperature may
prevent the decomposition of sapphire. Instead, a considerably thin AlN (or AlON) is generated,
as demonstrated by EDS and XRD. The EDS measurement detected a signal attributed to the N element
(Figure 4f), but the XRD 2θ-ω profile does not exhibit diffraction peaks due to AlN. It should be noted
that the voids observed in Figure 3b are not formed in any of the conditions for this sapphire annealing,
suggesting that Al plays an important role in void formation.

To explore the reaction between the Al source and the sapphire substrate, sapphire annealing
without N2 was performed. Figure 5 shows SEM bird’s-eye views of the sapphire surfaces annealed
in an atmosphere (a) without Al and (b) with Al at 1350 ◦C for 1 h. (Similar to above, Ar was
supplied in both cases.) To reduce the effect of thermal decomposition of sapphire, the annealing
temperature was set to 1350 ◦C. Without an Al supply (Figure 5a), residues are generated on the
sapphire surface, similar to Figure 4a, but their size is smaller than that at 1550 ◦C due to the lower
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dispersive X-ray spectroscopy (EDS) profiles are displayed in (d–f); (g) XRD 2θ-ω scan profile for
sapphire annealed with Process N2(GT) in (b).

The gas flow rates and pressure were the same as those of the standard growth conditions
described in Section 2. Annealing without N2 considerably roughens the sapphire surface (Figure 4a).
The EDS profiles of the sample (Figure 4d) indicate that the roughened area includes more Al than
the flat area, which suggests that the thermal decomposition of sapphire leaves Al-related materials
on it. With Process N2(GT), N2 is supplied to such a roughened sapphire surface, and the degree of
the roughness is preserved (Figure 4b). Furthermore, N2 may react with the Al-related materials to
form AlN polycrystalline grains, as evidenced by the EDS and XRD profiles shown in Figure 4e,g. It is
noteworthy that the morphology in Figure 4b is similar to that in Figure 3a, implying that the rough
AlN poly-like crystals at the interface play a key role in the self-separation phenomenon. On the other
hand, with Process N2(RT), nitridation of sapphire at a relatively low temperature may prevent the
decomposition of sapphire. Instead, a considerably thin AlN (or AlON) is generated, as demonstrated
by EDS and XRD. The EDS measurement detected a signal attributed to the N element (Figure 4f),
but the XRD 2θ-ω profile does not exhibit diffraction peaks due to AlN. It should be noted that the
voids observed in Figure 3b are not formed in any of the conditions for this sapphire annealing,
suggesting that Al plays an important role in void formation.

To explore the reaction between the Al source and the sapphire substrate, sapphire annealing
without N2 was performed. Figure 5 shows SEM bird’s-eye views of the sapphire surfaces annealed
in an atmosphere (a) without Al and (b) with Al at 1350 ◦C for 1 h. (Similar to above, Ar was
supplied in both cases.) To reduce the effect of thermal decomposition of sapphire, the annealing
temperature was set to 1350 ◦C. Without an Al supply (Figure 5a), residues are generated on the
sapphire surface, similar to Figure 4a, but their size is smaller than that at 1550 ◦C due to the lower
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temperature. Annealing with Al creates larger residues than that without Al, suggesting that the
Al source contributes to the formation of such a structure. The whisker-like morphology formed by
annealing with Al may lead to subsequent AlN whisker growth as reported in ref. [12]. Similar to above,
voids are not observed. Thus, the voids are formed only when AlN is grown with Al + Process N2(RT).
That is, Al, nitrided sapphire, and suppression of sapphire thermal decomposition are prerequisites.
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4. Conclusions

The dependence of the c lattice parameter on thickness indicates that the strain derived from the
thermal stress remains in crack-free films on sapphire substrates, but is almost completely relaxed in
self-separated films. The SEM cross sectional observations suggest that the self-separated films are
generated by the rough interface due to the thermal decomposition of sapphire, but can be controlled
by the N2 supply timing. The voids are observed at the interface only when the Al source is supplied
on the nitrided sapphire surface, indicating that the reaction between a nitrided sapphire surface and
Al source forms the voids.
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