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Abstract: Large-scale Cu2S tetradecahedrons microcrystals and sheet-like Cu2S nanocrystals were
synthesized by employing a hydrothermal synthesis (HS) method and wet chemistry method (WCM),
respectively. The morphology of α-Cu2S powders prepared by the HS method is a tetradecahedron
with the size of 1–7 µm. The morphology of β-Cu2S is a hexagonal sheet-like structure with a
thickness of 5–20 nm. The results indicate that the morphologies and phase structures of Cu2S are
highly dependent on the reaction temperature and time, even though the precursors are the exact
same. The polycrystalline copper sulfides bulk materials were obtained by densifying the as-prepared
powders using the spark plasma sintering (SPS) technique. The electrical and thermal transport
properties of all bulk samples were measured from 323 K to 773 K. The pure Cu2S bulk samples
sintered by using the powders prepared via HS reached the highest thermoelectric figure of merit
(ZT) value of 0.38 at 573 K. The main phase of the bulk sample sintered by using the powder prepared
via WCM changed from β-Cu2S to Cu1.8S after sintering due to the instability of β-Cu2S during the
sintering process. The Cu1.8S bulk sample with a Cu1.96S impurity achieved the highest ZT value of
0.62 at 773 K.
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1. Introduction

Thermoelectric (TE) material is a kind of energy conversion material which takes advantage of
solid material internal carriers and phonon interactions to convert thermal and electrical energy directly
into each other. The energy crisis and environmental problems have promoted the swift development
of TE materials in the past few decades [1–4]. Compared to the mainstream tellurium-based TE
materials [5–8], nanostructured metal chalcogenides with low cost, low toxicity, and abundant elements
exhibit interesting physical properties [9,10]. Therefore, nanostructured metal chalcogenides TE
materials such as Cu-Se [11–13] and Cu-S materials [14–17] have received more attention.

Copper sulfides (Cu2 − xS (0 ≤ x ≤ 1)), with different copper stoichiometric ratios, which are
a series of compounds ranging from copper-rich Cu2S to copper deficient CuS, are considered to
be superionic conductors [18]. As an important semiconductor, Cu2S is of high interest due to its
unique electronic, thermodynamic, optical, and other physical and chemical properties. It has great
potential in a wide range of applications such as thermoelectric materials [19], solar cells [20,21],
conductive fibers [22], optical filters [23], and high-capacity cathode materials in lithium secondary
batteries [24]. Moreover, Cu2S nanoparticles with various morphologies have been synthesized by
various approaches such as chemical precipitation [25], solventless thermolysis [26], water-oil interface
confined method [27], and thermal decomposition [28].
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Here, we employed facile solution methods, including hydrothermal synthesis (HS) and wet
chemistry method (WCM), to synthesize Cu2S powders with controllable microstructures under
relatively facile conditions. Then, polycrystalline copper sulfides were fabricated by densifying the
compound powders using the spark plasma sintering (SPS) technique. The thermoelectric properties
of all the bulk samples were measured.

2. Experimental Section

Commercial high-purity powders of CuO (99.9%) and S (99.99%) were used as raw materials.
Meanwhile, ethylene diamine (EDA) and hydrazine hydrate (N2H4·H2O) were used as a chelating
agent (EDA) and a reducing agent (N2H4·H2O), respectively. In a typical wet chemistry method, CuO
(10 mmol) and S (20 mmol) were first added to EDA (40 mL) by stirring at room temperature for
10 min. Then, N2H4·H2O (35 mL) was dripped slowly into the beaker under further stirring for 12 h at
room temperature. The chelating agent EDA reacted with Cu ions to form the complex compounds for
avoiding the precipitation of metal Cu. The reducing agent N2H4·H2O reduced the Cu2+ to Cu+ and S
to S2−, respectively.

In a typical hydrothermal synthesis [29] method, CuO (10 mmol) and S (20 mmol) were first added
to EDA (40 mL), and the mixture was stirred and heated to 373 K for 10 min. After that, N2H4·H2O
(35 mL) was dripped slowly into the solution under further stirring for 10 min at 373 K. The mixed
solution was then transferred into a Teflon-lined stainless steel autoclave (100 mL capacity), which
was sealed and maintained at 453 K for 6 h. The final solid products were filtered and washed with DI
water and ethanol three times before drying under vacuum at 333 K for 12 h.

The resultant powders were loaded into a graphite die with an inner diameter of 15 mm and then
sintered at 773 K for 5 min (heating rate of 100 K/min) under an axial compressive stress of 40 MPa
in a vacuum by using a spark plasma sintering (SPS) system (SPS1050; Sumitomo, Tokyo, Japan).
The SPS-prepared specimens were disk-shaped with dimensions of Φ15 mm × 4 mm. The phase
structure was analyzed by X-ray diffraction with a Cu Kα radiation (λ = 1.5406 Å) filtered through
Ni foil (RAD-B system; Rigaku, Tokyo, Japan). The morphologies of the powders and the fracture of
the bulk samples were observed by field-emission scanning electron microscopy (FESEM, SUPRA 55,
Carl Zeiss, Oberkochen, Germany). The microstructure of the powder was also checked using
transmission electron microscopy (TEM, Phililp Tecnai F20, Amsterdam, Dutch). In a typical TEM
sample preparation procedure, powders were first added to ethyl alcohol, and stirred for 10 min by
ultrasound. Then, the supernatant was dropped on the copper grid.

The electrical transport properties were evaluated along a sample section perpendicular to the SPS
pressing direction. The Seebeck coefficient and electrical resistivity were measured from 323 to 773 K
in a helium atmosphere using a Seebeck coefficient/electrical resistance measuring system (ZEM-3,
Ulvac-Riko, Kanagawa, Japan). The density (d) of the sample was measured by the Archimedes
method. In addition, the thermal conductivity of the samples was calculated by the relationship
κ = DCpd from the thermal diffusivity D measured by the laser flash method (LFA457; NETZSCH, Selb,
Bavaria, Germany).

3. Results and Discussion

3.1. Powder Synthesis and Characterization

3.1.1. XRD Analysis

Figure 1 shows the XRD patterns of Cu2S powders which prepared by WCM and HS methods.
All of the diffraction peaks of the HS sample are well-matched with the standard card of α-Cu2S
(JSPDS no. 83-1462), showing that the pure monoclinic α-Cu2S powders were obtained by HS methods.
All of the diffraction peaks of the WCM sample are well-matched with the standard card β-Cu2S
(JCPDS no. 26-1116), showing that the pure hexagonal β-Cu2S powders were obtained by WCM.
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Actually, the hexagonal β-Cu2S is high-chalcocite (378–698 K); it would be not stable under thermal
shock. The diffraction peaks of powder samples are wider compared to the standard card, indicating
the small grain size of the obtained powder. The XRD refinement was performed for the two samples as
shown in Figures S1 and S2. The location, proportion and lattice constant of experiment and refinement
Cu ions for hexagonal β-Cu2S powder are shown in Table S1. The proportion of Cu1 changed from 0.75
to 0.4896, indicating that there are more Cu vacancies, smaller lattice parameters, and the possibility of
defects in hexagonal Cu2S.
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Figure 1. XRD patterns with a selected 2θ range of 20◦–70◦ for Cu2S powders.

3.1.2. FESEM and TEM Analysis

Figure 2 shows the FESEM images of Cu2S prepared by different synthesis methods. The pure
α-Cu2S powder which was prepared by the HS method is shown in Figure 2a. The morphology of
α-Cu2S powder prepared by the HS method is a tetradecahedron with the size of 1–7 µm. Figure 2b is
a magnified image of a typical single-crystalline α-Cu2S, shown in Figure 2a. The pure β-Cu2S
powder which was prepared by WCM is shown in Figure 2c. The morphology of hexagonal β-Cu2S
is hexagonal nanosheets. Each nanosheet has an edge length of 10–200 nm and a thickness of
5–20 nm. The morphologies of the powder are highly related to the crystal structure [30]. Similar work
reported in the literature for molybdate materials [31] suggests that the synthesis temperature has
a strong influence on the morphology of Cu2S samples. Under the synthesis conditions of high
temperature and high pressure, the monoclinic α-Cu2S showed a tetradecahedron morphology.
Also, under relatively mild synthesis conditions (WCM), the hexagonal β-Cu2S nanosheets were
synthesized at room temperature.

The high magnification FEM image of β-Cu2S is shown in Figure 2d. The β-Cu2S has a hexagonal
sheet-like structure with a thickness of 20 nm. The TEM image (Figure 3a) and selected area of electron
diffraction (SAED) patterns (Figure 3b) of a single crystal α-Cu2S revealed a tetradecahedron Cu2S
of 1 µm in width. The SAED pattern for the tetradecahedron particles (Figure 2b) indicated a highly
crystallized monoclinic structure of the α-Cu2S. Additionally, the TEM image (Figure 3c) and SAED
patterns (Figure 3d) of a single-crystalline β-Cu2S revealed a sheet-like Cu2S of 10–200 nm in width
and of 5–20 nm in thickness. The results are in agreement with SEM observations.
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3.1.3. Synthesis Mechanism

The synthesis process and mechanism of Cu2S, similar to the flower-like α-Fe2O3 reported by
Penki et al. [32], were investigated in detail, as shown in Figure 4. The raw CuO (black) and S (yellow)
were mixed in a N2H4·H2O and EDA solution to initially produce the precursor Cu2O and S2−,
and then further react to become the product Cu2S under the different reaction conditions. When the
HS method was employed, the reaction temperature was 453 K and the product was monoclinic
α-Cu2S, as indicated in XRD shown in Figure 1. After 6 h of hydrothermal reaction, the single crystal
monoclinic α-Cu2S formed a tetradecahedron with a dimension of several micrometers as shown
in Figure 2a. But when WCM was employed with a reaction temperature of room temperature,
the product was hexagonal β-Cu2S, as indicated in XRD shown in Figure 1. After a 12-h reaction,
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the single crystal hexagonal β-Cu2S grew to form nanosheets with an edge length of 10–200 nm and
thickness of 5–20 nm as shown in Figure 2c. The reaction process can be described by Equations (1)–(3).

2CuO + 2N2H4·H2O→ Cu2O + 2NH4
+ + H2O + 2OH− + N2↑ (1)

S + 2N2H4·H2O→ S2− + 2NH4
+ + 2H2O + N2↑ (2)

2Cu2O + 2S2− + 2H2O→ 2Cu2S + 4OH- (3)

Finally, it is suggested that the morphologies and phase structures of Cu2S are highly dependent
on the reaction temperature and time, even if precursors are exactly the same.
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Figure 4. Schematic illustration of the growth mechanism of the Cu2S powders synthesized by the
WCM and HS methods.

3.2. Bulk Characterization

3.2.1. XRD and FESEM Analysis

The bulk sample abbreviated as HS-bulk was prepared by applying SPS at 773 K for 5 min using
monoclinic α-Cu2S powders. The bulk sample abbreviated as WCM-bulk was prepared by applying
SPS at 773 K for 5 min using hexagonal β-Cu2S powders. The XRD patterns of those bulk samples
are shown in Figure 5a. The green arrows index the impurity peaks of Cu1.96S. The HS-bulk is still
in the α-Cu2S phase. The SEM image of HS-bulk shown in Figure 5b shows a high relative density
of 96% and an average grain size of 5 µm, which is very similar to the powders formed by the rapid
sintering process. SPS is a rapid sintering technology, after which the nanoscale particles can be
maintained in bulk [14]. As shown in the XRD pattern (Figure 5a), the WCM-bulk exhibits a main
phase of Cu1.8S with an impurity of Cu1.96S. The hexagonal β-Cu2S is in the high-chalcocite phase,
which is instable during the sintering process. Because of thermal shock in the SPS process, the phase
transition occurred from β-Cu2S to Cu1.8S, which is the most stable phase in the Cu-S system. Cu2S is
a superionic conductor, and the superionic phase transition temperature is over 689 K [33]. In the SPS
sintering program, the sintering temperature is 773 K, and the Cu ions show liquid behavior under
this temperature. The extra Cu may precipitate on the anode and be removed during the polishing
and cutting process. As shown in Figure 5c, the WCM-bulk sample with a relative density of 90.2%
has an average size of 200 nm.
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Figure 5. XRD patterns with a selected 2θ range of 20◦–70◦ for bulk samples prepared by SPS at
773 K for 5 min, and field emission scanning electron microscopy of the fractured surfaces for the bulk
samples. (a) XRD patterns of the two bulk samples; (b) FESEM image of HS-bulk; (c) FESEM image
of WCM-bulk.

3.2.2. Thermoelectric Transport Properties

The TE properties of the two bulk samples were measured. The TE properties of Cu1.8S bulk
sample in the literature [34], which were prepared by the same SPS process but using the mechanical
alloying (MA) treated powders, are shown for comparison. Figure 6a illustrates the temperature
dependence of electrical conductivity (σ) for the bulk samples. As shown in Figure 6a, the HS-bulk
has the highest σ value up to 218 Scm−1 at 373 K, and WCM-bulk has the highest σ value up
to 2490 Scm−1 at 373 K. Both the HS-bulk and the WCM-bulk have lower σ than the MA-bulk.
The WCM-bulk has a similar main phase to the MA-bulk but a low relative density and impurity
of Cu1.96S, which decrease the σ value. The HS-bulk sample has the main phase of Cu2S, while the
electrical conductivity of Cu2−xS depends on the Cu content due to its superionic behavior. Therefore,
the HS-bulk sample has the lowest electrical conductivity. The WCM-bulk sample has one turning
point in the σ curve due to the one phase transition of Cu1.8S during the measured temperature range of
323 K to 773 K [34]. Two turning points in the σ curve were observed for the HS-bulk sample due to the
two phase transitions of Cu2S during the measured temperature range. As reported by Li et al., bulk
Cu2S exhibits three phases (α-phase, β-phase, γ-phase) in the temperature ranges of >698, 378–698,
and <378 K [35,36], respectively. The high temperature region to the right of the blue dashed line in
Figures 6 and 7 is the γ-phase.

The positive Seebeck coefficient (α) in Figure 6b indicates all bulks are p-type semiconductors.
According to the equations σ = eµn, and α ≈ γ − lnn, [37] where σ, µ, n, α and γ are electrical
conductivity, carrier mobility, carrier concentration, Seebeck coefficient and scattering factor,
respectively, α is usually inversely proportional to σ. The HS-bulk achieved the largest α value
of 532 µVK−1 at 673 K. The WCM-bulk achieved the largest α value of 101 µVK−1 at 773 K. The PF
was calculated by PF = α2σ and is shown in Figure 6c. The PF of the HS-bulk reaches 196 µWm−1K−2

at 573 K, and that of the WCM-bulk achieved 985 µWm−1K−2 at 773 K.
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factor (c) for the two bulk samples and the reference [34].

Figure 7 shows the temperature dependence of thermal conductivity (κ) (a) and the thermoelectric
figure of merit, ZT (b). The κ value of the HS-bulk and the WCM-bulk are lower than that of the
MA-bulk [34], due to the fine grain size and the lower relative density. The HS-bulk sample obtained
the lowest κ value of 0.20 WmK−1 at 673 K. The WCM-bulk sample obtained the lowest κ value of
1.23 WmK−1 at 773 K. The κ curve of the HS sample also has two turning points according to the two
phases transitions of Cu2S, which are also similar to the previous report by He et al. [33]. Based on the
above measurement results, the ZT was calculated by ZT = σα2 T/κ as shown in Figure 7b. The highest
ZT value of 0.38 was obtained at 573 K for the HS-bulk sample, and the WCM-bulk sample obtained the
highest ZT value of 0.62 at 773 K. This shows that Cu2S is a promising thermoelectric material, and the
method combining the solution phase method and SPS may be an efficient route for synthesizing high
performance bulk TE materials [37].
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were densified to bulk by SPS. Due to the fine grains, low thermal conductivity was achieved, 
resulting in enhanced TE properties. The highest ZT value of 0.38 was obtained at 573 K for the HS-
bulk sample, which is better than the values achieved by the other two samples in this temperature. 
The WCM-bulk sample obtained the highest ZT value of 0.62 at 773 K. Compared with the MA-bulk 
[34], the WCM-bulk has a 26.53% increase of ZT value at 773 K. Our work indicated that the 
morphologies and phase structures of Cu2S are highly dependent on the reaction temperature and 
time even when the raw materials were exactly the same. 
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4. Conclusions

The stable solution phase processes for preparing the single phase Cu2S powders were obtained.
Large-scale Cu2S tetradecahedron microcrystals with monoclinic symmetry and sheet-like Cu2S
nanocrystals with hexagonal β-Cu2S symmetry were synthesized by employing the hydrothermal
synthesis (HS) method and the wet chemistry method (WCM), respectively. The Cu2S nanopowders
were densified to bulk by SPS. Due to the fine grains, low thermal conductivity was achieved, resulting
in enhanced TE properties. The highest ZT value of 0.38 was obtained at 573 K for the HS-bulk sample,
which is better than the values achieved by the other two samples in this temperature. The WCM-bulk
sample obtained the highest ZT value of 0.62 at 773 K. Compared with the MA-bulk [34], the WCM-bulk
has a 26.53% increase of ZT value at 773 K. Our work indicated that the morphologies and phase
structures of Cu2S are highly dependent on the reaction temperature and time even when the raw
materials were exactly the same.
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