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Abstract: Searching for new nonlinear optical (NLO) crystals to be used in the infrared (IR) region
is still a challenge. This paper presents the synthesis, crystal structure and properties of a new
halide, RbHgI3. Its non-centrosymmetric single crystal can be grown in solution. In its crystal
structure, all the polar [HgI4]2− groups align in such a way that brings a favorable net polarization.
The measurement by Kurtz–Perry powder technique indicates that RbHgI3 shows a phase-matchable
second harmonic generation (SHG) property seven times stronger than that of KH2PO4 (KDP).
RbHgI3 displays excellent transparency in the range of 0.48–25 µm with relatively good thermal
stability. The UV absorption implies that this yellow compound’s band gap is about 2.56 eV, close to
that of AgGaS2. A preliminary measurement indicates that the laser-induced damage threshold of
the crystal is about 28.3 MW/cm2. These preliminary experimental data reveal that RbHgI3 is a new
candidate as nonlinear optical material in the infrared region.

Keywords: nonlinear optical crystal; infrared region; RbHgI3; synthesis; crystal structure

1. Introduction

Second-order nonlinear optical (NLO) crystals are very important high-tech materials due
to their application in laser frequency convention, optical parameter oscillator (OPO), and signal
communication [1,2]. According to wavelength range, second-order NLO materials can be classified
into three categories, namely ultraviolet NLO crystals, visible NLO crystals and infrared NLO crystals.
Great progress has been made in ultraviolet NLO crystals in the last several decades. For instance,
some excellent new crystals such as β-BaB2O4 (BBO) [3], LiB3O5 (LBO) [4], KBe2BO3F2 (KBBF) [5–7]
have been developed by Chuangtian Chen and his colleagues. In the visible region, there are some
excellent NLO crystals such as KH2PO4 (KDP) [8], KTiOPO4 (KTP) [9] and so forth. Nevertheless,
numerous NLO crystals in IR regions are not fully satisfied. Some common infrared NLO crystals,
such as AgGaS2 [10], AgGaSe2 [11] and ZnGeP2 [12] possess two drawbacks: one is their low laser
damage thresholds (LDT), and the other is not easy to grow high-quality crystals. Therefore, searching
for new infrared NLO crystals is still a challenge in this field.

However, general knowledge indicates that high LDT of the materials originates from the large
gap. Guided by this purpose, thousands of IR NLO crystals have been discovered and many materials
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exhibit excellent performance such as halides, chalcogenides, iodates and phosphides etc., Two review
articles [13,14] about IR NLO materials have been recently published. It has been accepted that the
band gap which causes thermal and electronic effects is in accord with laser damage threshold [15,16].
As we know, halides usually exhibit large band gaps, and there are four halogen atoms to choose from.
Moreover, halides can be easily dissolved in solvents so that it is easier to grow single crystals. On the
other hand, mercury atom is a heavy metal element. This is beneficial for the wide transparence in the
IR region. Furthermore, the mercury (II) cation (Hg2+) possesses d10 electronic configuration and does
not emerge d-d transition. This will lead to relatively wide band gaps. Therefore, with Chuangtian
Chen’s long-term help and collaboration, we have pursued research on exploring new second-order
NLO crystals to be used in the mid-IR region from halides, and some new potential mid-IR NLO
crystals such as Cs2HgCl2I2 [17], Cs2Hg3I8 [18], HgBrI [19], HgBr2 [20], Hg2BrI3 [21], CsHgBr3 [22],
β-HgBrCl [23], NaSb3F10 [24] and Rb2CdBr2I2 [25] have been developed by this idea on our group.

In this paper, we report the synthesis, crystal structure, and NLO properties of a new compound
RbHgI3. The compound is pure RbHgI3 without crystalline water and it differs from the compound of
RbHgI3·H2O reported in the literature [26]. The powder second harmonic generation (SHG) effect of
RbHgI3·H2O is very weak and not phase-matchable. The existence of the crystalline water is harmful
for thermal stability and transparent region in the IR region. Differently, RbHgI3 shows a powder
second harmonic generation (SHG) property seven times as high as that of KDP. It also exhibits a wide
transparent window in the infrared region. It also shows reasonable band gap and thermal stability.
To conclude, RbHgI3 is a potential candidate as new IR NLO material.

2. Results and Discussion

2.1. Synthesis and Analysis

RbHgI3 was synthesized with HgI2 and RbI by conventional solution reaction. The phase purity
was checked by powder XRD. No impurities were observed, and the diffraction patterns are not
consistent with those of HgI2 [27] or RbI [28] phase, and also not the sum of HgI2 and RbI phases by
the XRD contrast analyses. The measured powder X-ray diffraction patterns are in agreement with the
simulated patterns based on the single crystal structure of RbHgI3 obtained from the solution reaction
(See Figure 1).
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2.2. Crystal Structure

RbHgI3 crystallizes in the noncentrosymmetric orthorhombic space group Ama2 (No. 40).
Figure 2a shows the packing diagram of RbHgI3 along bc plane. Each [HgI4]2− group forms a distorted
tetrahedron (Figure 2b), which is connected with the neighbors by sharing an iodine atom to form a
one-dimensional (1D) zigzag chain along the a-axis (Figure 2c). The chains are then to form layers
along the ab plane, and the planes are further connected into a three-dimensional (3D) framework
by the Rb atoms that occupy the empty spaces surrounded by iodine atoms (Figure 2). In the crystal
structure, it also exhibits disorder of Rb atom in the symmetry unit with 50% occupancies (Figure 2a).
As shown in Figure 2b, in each [HgI4]2− group there are two types of Hg-I bond lengths, namely,
two shorter Hg-I bond length (2.724(3) Å and 2.730(3) Å, respectively), and two longer bond lengths
(both 2.868(16) Å). Interestingly, all the shorter Hg-I bonds are always located above the Hg atoms in
each [HgI4] tetrahedron (Figure 2c). This packing style gives rise to a net polarization parallel to the
direction of the c axis (indicated by the black arrow in Figure 2b,c). Due to the favorable alignment and
high density of the [HgI4]2− anionic group, the compound can show a relatively strong SHG response.
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Figure 2. (a) Ball-and-stick packing diagrams of RbHgI3 along bc plane; (b) [HgI4] tetrahedron in a
unit cell. Each Hg atom is bonded to four iodine atoms with two types of the bond length, namely,
two are short (2.730(3) and 2.724(3) Å) and the other two are longer (2.868(16) Å); (c) Ball-and-stick
diagrams of [HgI4] tetrahedron (Rb atoms are omitted for clarity). All the longer Hg-I bonds are always
located below the Hg atom in each [HgI4] tetrahedron, giving rise to a net dipole moment parallel to
the c axis (indicated by the black arrow).
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2.3. Infrared Spectrum and UV-Vis Diffuse Reflectance Spectrum

The attenuated total reflection Fourier-transformed infrared (ATR-FTIR) spectrum of RbHgI3

crystalline samples is shown in Figure 3. The ATR-FTIR spectrum indicates no absorption in the middle
IR region from 4000 to 400 cm−1 (2.5–25 µm). This agrees quite well with the reported compounds such
as Tl4HgI6 [29] and Cs2Hg3I8 [18,30], and they are transparent between 4000 and 400 cm−1. According
to the references, Tl4HgI6 exhibits a broad range of transparency from 1.4 to 40 µm, while Cs2Hg3I8 is
reported to be transparent between 0.5 and 25 µm. The UV-Vis diffuse reflectance spectrum of RbHgI3

is shown in Figure 4. The compound is yellow and the spectrum shows that the absorption edge
near the UV side is about 484 nm, and this indicates that the optical band gap of the compound is
approximately 2.56 eV. Based on these data, the transparent range of RbHgI3 is 0.48–25 µm.
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2.4. NLO Property and LDT Measurement

Powder SHG measurements using 1064 nm laser radiation revealed that RbHgI3 showed powder
SHG efficiencies seven times as strong as that of KDP. The study result of the SHG intensity as a
function of particle size (from 20 to 300 µm) is shown in Figure 5. The intensity of SHG signals at
first increases gradually with the increase of the sample size and then reaches saturation when the
sample size increases further. It is a typical curve for indicating that the SHG effect of RbHgI3 is
phase-matchable [31].
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2.5. Thermogravimetric Analysis

The yellow powder crystal of RbHgI3 is not hygroscopic and does not change its color after
being exposed to air for about six months. The thermal behavior of RbHgI3 was investigated using
thermogravimetric analysis (TGA). The TG curve reveals that the compound starts losing its weight
when it is heated to above 120 ◦C (See Figure 6), and then it continues to lose weight and reach a
platform at about 450 ◦C. The thermal stability of RbHgI3 is not very high and may be due to the
existence of the iodine atom.
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2.6. Electronic Structure and Optical Properties Calculation

To better understand the relationship of structure and the optical properties of the RbHgI3, the
first-principles density functional theory (DFT) calculations were performed. The calculated band
gap is 1.95 eV. The deviations from the experimental values should be attributed to the limitation of
DFT [33]. Hence, scissors of 0.61 eV has been added to shift up the conduction band (CB) levels in
order to agree with the measured value of the band gap for the following calculations and analyses.

The partial density of states (PDOS) projected on the constitutional atoms in RbHgI3 are shown
in Figure 7. The Rb s, Rb 4p, I 5s and Hg 5d orbitals are strongly localized in the valence band (VB)
about −25 eV, −10 eV and −5.8 eV, respectively. The upper of the valence states from −2.5 eV show a
large hybridization between Hg 5p (and 5d) and I 5p orbitals, indicating very strong chemical bonds
between the Hg and I atoms, but the VB maximum is dominated by I 5p orbitals which are higher than
Hg 5d orbitals in the VB. The bottom of CB is mainly composed of the 5s and 5p orbitals of I atom
and 6s orbitals of Hg atom, but I 5s orbitals are lower than Hg 5s orbitals in the CB. This means that
the iodide anion directly determines the energy band gap of RbHgI3. This is the reason why the laser
damage threshold is not high and it agrees with the experimental value.
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On the basis of the above electronic band structure, the refractive indices and second harmonic
generation (SHG) coefficients of RbHgI3 were obtained. The refractive indices are shown in Figure S2
(see the supporting information) and the calculated refractive indices and birefringence at several
radiation wavelengths are listed in Table 1. It is shown that the birefringence ∆n is larger than
0.08 as the wavelength is longer than 1000 nm, so RbHgI3 is phase-matchable for the SHG in the
IR region. Furthermore, we theoretically determined the SHG coefficients of RbHgI3. For the
orthorhombic mm2 point group and considering the restriction of Kleinman’s symmetry, the title
compound (Ama2) has three (d15, d24 and d33) independent SHG tensors and the static SHG coefficients
are as follows: d15 = 28.99 pm/V, d24 = −27.19 pm/V and d33 = 2.95 pm/V. The calculated results
agree with the experimental observation that RbHgI3 exhibits a SHG response seven times that of
KDP (d36 = 0.39 pm/V). Therefore, we are confident that RbHgI3 possess strong SHG effects and is a
promising candidate for the nonlinear optical applications.
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Table 1. Calculated Refractive Indices at Selected Wavelengths for RbHgI3.

Wavelength nx ny nz ∆n (ny − nx)

1000 nm 2.01 2.09 2.07 0.08
1064 nm 2.00 2.08 2.06 0.08
2000 nm 1.97 2.05 2.03 0.08

~∞ 1.96 2.04 2.02 0.08

3. Materials and Methods

3.1. Synthesis and Crystal Growth

All the starting materials are analytically pure from commercial sources and used without further
purification. RbHgI3 was synthesized by conventional solution reaction. HgI2 and RbI (mole ratio 1:1)
are carefully dissolved in ethanol. The mixture was stirred at 80 ◦C for 5 h. The yellow solution was
filtered and slowly cooled, then kept in a flask at room temperature. After a few days, some yellow
crystals appeared in the bottom of the flask. The yellow crystals were filtered and carefully washed
with cool ethanol. A single phase of RbHgI3 crystals was obtained with the yield of 65% (based on
HgI2). The RbHgI3 crystal can be grown from the ethanol solution and a photograph of the RbHgI3

crystal is presented in Figure S1 (see the supporting information).

3.2. Structure Determination

A single crystal of RbHgI3 with dimensions of ca. 0.10 × 0.10 × 0.08 mm3 was selected and
used for single-crystal diffraction experiment. Data sets were collected using a Bruker SMART APEX
diffractometer (Bruker, Karlsruhe, Germany) equipped with a CCD detector (graphite-monochromated
Mo-Kα radiation λ = 0.71073 Å) at 298(2) K. Data sets reduction and integration were performed using
the software package SAINT PLUS [34]. The crystal structure is solved by direct methods and refined
using the SHELXTL 97 software package [35,36]. Single crystal data collection, cell parameters and
basic information for RbHgI3 are summarized in Table 2. Further details of the crystal structure studies
may be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen,
Germany (Fax: (49) 7247808666; e-mail: crysdata@fiz-karlsruhe.de), on quoting registry number
CSD-432180 for RbHgI3.

Table 2. Crystallographic data of RbHgI3.

Empirical Formula RbHgI3

Formula weight 666.76
Temperature 296(2)
Wavelength 0.71073
Crystal color Yellow

Crystal system Orthorhombic
Space group Ama2 (No.40)

Crystal size (mm3) 0.10 × 0.10 × 0.08
Unit cell dimensions (Å) a = 8.838(3), b = 9.824(3), c = 11.050(3)

Z 4
V (Å3) 959.4(5)

Absorption coefficient (mm−1) 30.640
Density (calculated) 4.616

Goodness-of-fit on F2 1.149
Reflections collected 1473

Independent reflection 1337 [R (int) = 0.0293]
R1, wR1 [I > 2σ (I)] 0.0682/0.1845
R2, wR2 (all data) 0.0637/0.1818

Min/max ∆ρ/e·Å−3 −3.472/3.022

ω = 1/[s2 (Fo2) + (0.0702P)2 + 51.3875P], where P = (Fo2 + 2Fc2)/3.



Crystals 2017, 7, 148 8 of 11

3.3. Powder XRD Measurement

X-ray powder diffraction (XRD) patterns of the polycrystalline material were collected using
a Bruker D8 Advanced diffractometer (Bruker, Karlsruhe, Germany) with Cu kα1 radiation
(λ = 154186 Å) in the range of 10–80◦ (2θ) at a scanning rate of 6◦/min−1.

3.4. Optical Spectroscopy

The optical transmission in the mid-IR region was recorded on a NICOLET 5700
Fourier-transformed infrared (FT-IR) spectrophotometer (Manufacture, City, Country) in the
4000–400 cm−1 (2.5–25 µm) region using the attenuated total reflection (ATR) technique with a
diamond crystal. The crystal sample was loaded on the samples stage and then the ATR-FTIR spectrum
was measured. The UV-Vis absorption spectrum was recorded on a Varian Cary 5000 UV-Vis-NIR
spectrophotometer (Agilent, Palo Alto, CA, USA) in the region 200–800 nm. A BaSO4 plate was used
as the standard (100% reflectance), on which the finely ground samples from the crystals were coated.
The absorption spectrum was calculated from the reflectance spectrum using the Kubelka–Munk [37]
function: α/S = (1 − R2)/(2R), where α is the absorption coefficient, S is the scattering coefficient, and
R is reflectance.

3.5. Second-Harmonic Generation (SHG) and Laser Damage Threshold (LDT) Measurement

The NLO efficiencies of the samples were investigated using a Kurtz–Perry powder technique [30].
A pulsed Q-switched Nd:YAG laser was utilized to generate fundamental 1064 nm light with a pulse
width of 10 ns. Microcrystalline KDP was served as the standard. The particle sizes of the sieved
sample and KDP were arranged from 25 to 260 µm for the measurement of size-dependent SHG effect.
The energy of each pulse was measured to be about 200 mJ. The sample crystal was fixed on the
bracket. An optical concave lens was used to adjust the diameter of the laser beam to obtain different
intensities. The samples endured gradually enhanced radiation until their appearance changed under
a microscope after the irradiation.

3.6. Thermogravimetric Analysis

The thermogravimetric analysis (TGA) was carried out on a SDTQ 600 simultaneous analyzer
instrument (TA Instruments, New Castle, PA, USA). The crystal sample was added into an Al2O3

crucible and heated from room temperature to 800 ◦C at a heating rate of 10 K min−1 under flowing
nitrogen gas.

3.7. Theoretical Calculation

The electronic structure and optical properties for the title compound were performed using the
first principles plane-wave pseudopotential method implemented in the Cambridge Serial Total Energy
Package (CASTEP) [38]. According to the experimental structure, the model was built and Rb atom was
located at (0.7500, 0.3831, 0.9670) in the unit cell because of its order. The optimized normal-conserving
pseudopotentials [39] in the Kleinman–Bylander form are chosen and the valence electrons are 4s, 4p
and 5s for Rb; 5p, 5d and 6s electrons for Hg; and 5s, 5p electrons for I. The local-density approximation
(LDA) with a high kinetic energy cutoff of 900 eV is adopted. Monkhorst–Pack [40] k point meshes with
a density of 4 × 4 × 4 points in the Brillouin zone of the unit cell are used. The scissor-factors-corrected
LDA are used to calculate the second-order susceptibility χ2 based on the formula developed by
Lin et al. [41].
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4. Conclusions

A new ternary RbHgI3 with an orthorhombic space group Ama2 has been obtained by reaction of
HgI2 and RbI (1:1) in alcohol. The compound shows phase-matchable SHG of about seven times as
strong as that of KDP, a wide transparent region (in the range of 0.48–25 µm), and a relatively good
stability to the environment. Its crystals can be grown in solution. Owing to these properties, RbHgI3

appears to be a promising new NLO crystal applicable in the infrared region. Our future efforts will be
devoted to growing large and high-quality crystals of RbHgI3 to further study its optical properties,
for instance SHG coefficients, refractive indices and laser damage threshold.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4352/7/5/148/s1:
Figure S1: Figure S1. As grown crystal of RbHgI3; Figure S2: Figure S2. The calculated refractive indices
for RbHgI3.
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