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Abstract: Effectively, two-dimensional (2D) closed films exhibiting in-plane orientational ordering
(ordered shells) might be instrumental for the realization of scaled crystals. In them, ordered shells
are expected to play the role of atoms. Furthermore, topological defects (TDs) within them would
determine their valence. Namely, bonding among shells within an isotropic liquid matrix could be
established via appropriate nano-binders (i.e., linkers) which tend to be attached to the cores of
TDs exploiting the defect core replacement mechanism. Consequently, by varying configurations of
TDs one could nucleate growth of scaled crystals displaying different symmetries. For this purpose,
it is of interest to develop a simple and robust mechanism via which one could control the position
and number of TDs in such atoms. In this paper, we use a minimal mesoscopic model, where
variational parameters are the 2D curvature tensor and the 2D orientational tensor order parameter.
We demonstrate numerically the efficiency of the effective topological defect cancellation mechanism
to predict positional assembling of TDs in ordered films characterized by spatially nonhomogeneous
Gaussian curvature. Furthermore, we show how one could efficiently switch among qualitatively
different structures by using a relative volume v of ordered shells, which represents a relatively simple
naturally accessible control parameter.
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1. Introduction

In recent years, it was demonstrated that topology and curvature could be exploited to nucleate
diverse complex patterns in nature [1–3]. Of particular interest are topological defects (TDs), which,
in isolation, are topologically protected and consequently they cannot be destroyed [4]. They might
represent “fundamental particles” of the Standard model (which are from this perspective emergent)
if relevant fields represent fundamental entities of nature [5] as first suggested by Skyrme already
in 1962 [6]. Note that the first theory on coarsening dynamics of TDs was developed in cosmology
in order to explain TDs in the Higgs field of the early universe [7]. Furthermore, recent relativistic
simulations imply [8] that negative curvature of the “empty” part of the universe might explain the
origin of the so-called “dark energy”. Since these phenomena show remarkable universalities, it is of
interest to find appropriate systems where their fundamental behavior can be relatively easily assessed
and probed [9,10].

Why are TDs so ubiquitous in nature? The reason behind this is that any continuous symmetry
breaking phase transition can be represented by an order parameter field [11] consisting of two

Crystals 2017, 7, 153; doi:10.3390/cryst7060153 www.mdpi.com/journal/crystals

http://www.mdpi.com/journal/crystals
http://www.mdpi.com
http://dx.doi.org/10.3390/cryst7060153
http://www.mdpi.com/journal/crystals


Crystals 2017, 7, 153 2 of 11

qualitatively different components: amplitude field and gauge (also called symmetry breaking or
non-hydrodynamic) field. For example, the classical para-ferromagnetic transition is described by
the vector order parameter field

→
s = s

→
e , |→e | = 1, where s(

→
e ) plays the role of amplitude (gauge) field.

The amplitude measures the degree of ordering in the symmetry broken phase. For given conditions,
it possesses a single equilibrium value. On the other hand, the gauge component determines a highly
degenerated symmetry breaking choice. Due to the latter fact, TDs can be formed.

The key property of TDs is their discrete topological charge [4,10] q, which is a conserved property.
Its quantum character arises due to degeneracy of equilibrium values of a relevant gauge field. In three
spatial dimensions, q reveals how many times all possible “orientations” of the gauge field are realized
while crossing a closed surface enclosing the defect [10]. In two-dimensions (2D), to which we are
restricted in this paper, q is equivalent [10] to the winding number m.

Of particular recent interest is to understand the impact of curvature and topology on the number
and position of TDs. A convenient system for such studies, both from experimental and theoretical
perspectives, are numerous effectively two-dimensional soft material [10,11] films, exhibiting some
sort of in-plane ordering [11–15]. Typical representative systems are colloidal liquid crystalline (LC)
shells [15] and various biological membranes [13,14] composed of anisotropic constituents, or isotropic
membranes with adsorbed anisotropic nano-sized complexes (e.g., proteins). We henceforth refer
to these orientationally anisotropic effectively 2D (i) open or (ii) closed soft films as (i) ordered films
and (ii) ordered shells, respectively. In the case of non-toroidal geometries, ordered shells unavoidable
contain TDs due to the Gauss-Bonnet and Poincare-Hopf theorems [16]. According to these theorems,
the integrated Gaussian curvature K over a closed surface exhibiting orientational ordering determines
the total topological charge (i.e., the winding number) mtot of the system [16]:

1
2π

{
Kd2r = mtot (1)

Recently, it has been shown [12] that one can assign the effective topological charge ∆meff to a surface
patch ∆ζ of an ordered film characterized by its spatially averaged Gaussian curvature K. In the absence
of “impurities” it can be expressed as ∆meff = ∆m + ∆mK [12]. Here, ∆m stands for the total charge of
“real” TDs within ∆ζ and the hypothetical smeared Gaussian curvature charge [12,17] is defined as

∆mK(∆ζ) = − 1
2π

x

∆ζ

Kd2r (2)

In cases where ∆ζ represents a closed surface, it holds true that ∆meff = 0, owing to
Equations (1) and (2). In this sense, one could say that any closed system is strictly neutral.
The neutralization tendency ∆meff(∆ζ)→ 0 [4,17] is presented also in each finite (unclosed) patch
of a surface exhibiting spatial non-homogeneities in K, which is referred to as the effective topological
charge cancellation (ETCC) mechanism [12]. However, if a neutralization within a patch cannot be
achieved via redistribution of existing TDs, it is necessary that a large enough local curvature exists
that has the potential to trigger formation of pairs {defect, antidefect} of TDs. Here, defect (antidefect)
refers to a topological defect bearing m > 0 (m < 0).

Note that ordered shells could be exploited to nucleate formation of different new materials
and even metamaterials. For example, Nelson [15] proposed that colloidal nematic shells (i.e., colloids
covered with a thin nematic LC film) immersed in isotropic matrix containing appropriate nano-binders
could be organized in periodic configurations (i.e., scaled crystals) analogous to “real” crystals
(consisting of atoms). In this analogy, the ordered shells play the role of atoms and TDs determine
their valence [15]. Namely, the nano-binders tend to be attached to the cores of TDs due to the defect
core replacement (DCR) [18] mechanism. The DCR mechanism is based on the reduction of the defect
core penalty by partially replacing an energetically expensive condensation penalty volume with the
nano-binder’s volume. In such a way, the nano-binders bind nearby shells together [15], nucleating
colloidal crystal growth.
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By varying the number and position of TDs within an ordered shell, one could control the symmetry
of resulting crystals and consequently the key physical characteristics of crystals. For this purpose, it is
of strong interest to find ways to form and control different shapes of ordered shells and consequently
tame their valence. Note that, in general, much larger diversity of shell geometries, and consequently
symmetries, could be realized in comparison to those existing in atoms. Therefore, scaled crystals
formed by ordered shells, exhibiting complex geometries, could in general exhibit qualitatively new
symmetries (and consequently new physical properties) not encountered in “real” atom-based crystals.

In this paper, we theoretically analyze the impact of different geometries of ordered films and
ordered shells on the number and position of TDs. We first illustrate the efficiency of the ETCC
mechanism in predicting the presence of TDs. Next, we demonstrate a relatively simple path to switch
among different configurations of TDs in ordered shells by varying a single control parameter.

2. Results

In this section, we demonstrate numerically, using mesoscopic description, how one could
relatively easily manipulate shapes of effectively two-dimensional soft system exhibiting in-plane
ordering and, consequently, control the predetermined number and position of TDs.

To determine shapes of shells and in-plane orderi ng within these films, we use a mesoscopic
modelling, where the system’s properties are described using the curvature tensor C and the tensor
nematic order parameter Q. The Weingarten curvature tensor C [19] determines the local curvature of
a surface ζ, which is embedded in 3D Cartesian system:

C = C1e1 ⊗ e1 + C2e2 ⊗ e2 (3)

The unit vectors {e1, e2} point along the surface principal directions exhibiting principal
curvatures {C1, C2}. The invariants of C are trace and determinant, yielding the mean local curvature
(H) and the Gaussian curvature (K), respectively:

H :=
Tr[C]

2
=

C1 + C2

2
, K :=Det[C] = C1C2 (4)

We set that molecules exhibiting nematic orientational ordering are bound to lie in the local
tangent plane of the surface and are otherwise unconstrained. The molecules are assumed to be
rod-like, exhibiting the so-called head-to-tail invariance. The corresponding local orientational order
is described in terms of the 2D tensor order parameter Q. In the diagonal form, it can be expressed
as [20]

Q = λ(n⊗ n− n⊥ ⊗ n⊥) (5)

Here, the orthogonal unit vectors n and n⊥ are the eigenvectors of the tensor Q, while λ ∈ [0, 1/2]
and −λ are the corresponding eigenvalues. The lower bound λmin = 0 corresponds to isotropic local
ordering, while the upper bound λmax = 1/2 corresponds to rigidly aligned molecules in a small area
along the direction n, commonly referred to as the nematic director field.

For numerical convenience, we restrict to axially symmetric surfaces of revolution ζ with rotational
symmetry about the z-axis. We parametrize the position vector r of a generic point lying on ζ as

r(ϕ, s) = ρ(s) cos ϕex + ρ(s) sin ϕey + z(s)ez (6)

where ϕ ∈ [0, 2π), s ∈ <, and the unit vectors {ex, ey, ez} determine the Cartesian coordinate system.
On the surface of revolution, parallels and meridians are lines of principal curvature. We set that
the principal directions (see Equation (3)) {e1, e2} point along meridians (ϕ = const) and parallels
(s = const), respectively.
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We consider two qualitatively different geometries. First, we study possible defect structures on
a catenoid’s [21] surface (see Figure 1) defined by

ρ(s) = a cosh(s/a), z(s) = s (7)

where the length a characterizes a catenoid.
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Figure 1. Schematic representation of a catenoid in the Cartesian coordinate system. Meridians and
parallels on the catenoid are described by ϕ = const and s = const, respectively, where the {ϕ, s}
parametrization is defined in Equations (6) and (7). Color determines the Gaussian curvature K. The mean
curvature H is zero everywhere on the surface. The arrows indicate the principal directions of C.

This geometry is interesting for several reasons. Firstly, its mean curvature equals zero everywhere
on the surface. In general, surface curvature is energetically expensive. Therefore, such minimal surfaces,
characterized by H = 0, often represent natural ”structural attractors” (at least locally). Secondly, the
integral of the Gaussian curvature over the catenoid’s surface is a constant, i.e., 1/(2π)

s
Kd2r = −2.

Therefore, the catenoid’s surface enforces the smeared Gaussian curvature charge ∆mK = 2, so TDs
bearing the total charge ∆m = −2 should be introduced in order to make the nematic patch neutral
(∆meff = 0). Note that the film shape in catenoids is prescribed and the variational parameter is solely
the nematic tensor order parameter.

Next, we consider also cases of ordered shells exhibiting spherical topology, where the shapes of
shells are calculated by minimizing the bending elastic energy for a given relative volume v = V/V0 ∈
[0, 1]. Here V stands for the volume of a film of total surface area A, and V0 = 4πR3/3 is the volume of
the sphere having the same surface area, where R =

√
A/(4π).

2.1. Ordered Films

To demonstrate the adequacy of the effective charge cancellation mechanism, we first consider open
ordered films. As a testing ground, we chose a catenoid. We show that by squeezing the catenoid’s neck,
four TDs bearing m = −1/2 are formed in order to compensate the smeared Gaussian curvature charge
∆mK = 2 localized at the neck. Numerically calculated order parameter textures are shown in Figure 2.
In column (a), we depict the catenoid’s shape. Its neck is gradually squeezed on passing downwards.
In the case shown in the first row, the curvature and the related nematic elastic distortions are relatively
weak. Consequently, it holds ∆meff(∆ζ) = 2 where ∆ζ denotes the catenoid’s surface. The nematic
order parameter exhibits relatively weak spatial variations, see Figure 2b. The corresponding nematic
director profile n is homogeneous in the (ϕ, s) plane as shown in Figure 2c. Therefore, n is aligned
along parallels of the catenoid. In the Cartesian coordinates, this corresponds to concentric circles
centered at the origin of the z-axis.

In the case shown in the 2nd row of Figure 2, elastic distortions at the neck are relatively strong
and nematic ordering is almost melted at the neck area (Figure 2b, 2nd row) , where the distortions are
the largest. However, the local curvature is still not strong enough to trigger the formation of TDs and
the nematic director field is still aligned along the parallels.
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When the critical condition is met, four ݉ = −1/2 defects are created at the neck in order to 
compensate the smeared Gaussian curvature charge. The resulting structure exhibits zero effective 
topological charge and is in this sense neutral. Representative configurations are depicted in the 3rd 
row of Figure 2. At the center of the cores of TDs, the nematic order parameter is melted (Figure 2b, 
3rd row). The characteristic nematic director profile of defects is well visible in the 3rd row of Figure 
2c. In the Cartesian coordinates, this profile corresponds to parallel alignment of ࢔ in the regions 
relatively far from the neck. 

2.2. Ordered Shells 

Next, we consider ordered shells where both surface geometry and degree of nematic ordering 
are varied. We demonstrate that one can efficiently switch between qualitatively different 
configurations simply by varying the relative volume ݒ of a shell. 

Using our simple modelling, one can obtain three qualitatively different geometries of shells by 
varying ݒ, which is presented in Figure 3. These structures are commonly referred to as stomatocytes, 
oblates and prolates [22–24]. In Figure 3, they are depicted with black, red and blue color, 
respectively. Each class of shapes is stable at a certain range of the reduced volume values. 
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Figure 2. The nematic ordering on catenoid films. (a) Catenoid’s shapes with the superimposed color
code determined nematic order parameter. (b) The nematic order parameter variation in the (ϕ, s)
plane. (c) n spatial variation in the (ϕ, s) plane. 1st row : a/ξ = 10; 2nd row : a/ξ = 1, 3rd row:
a/ξ = 0.1; ξ is the nematic correlation length.

When the critical condition is met, four m = −1/2 defects are created at the neck in order
to compensate the smeared Gaussian curvature charge. The resulting structure exhibits zero effective
topological charge and is in this sense neutral. Representative configurations are depicted in the 3rd row
of Figure 2. At the center of the cores of TDs, the nematic order parameter is melted (Figure 2b, 3rd row).
The characteristic nematic director profile of defects is well visible in the 3rd row of Figure 2c. In the
Cartesian coordinates, this profile corresponds to parallel alignment of n in the regions relatively far
from the neck.

2.2. Ordered Shells

Next, we consider ordered shells where both surface geometry and degree of nematic ordering are
varied. We demonstrate that one can efficiently switch between qualitatively different configurations
simply by varying the relative volume v of a shell.

Using our simple modelling, one can obtain three qualitatively different geometries of shells by
varying v, which is presented in Figure 3. These structures are commonly referred to as stomatocytes,
oblates and prolates [22–24]. In Figure 3, they are depicted with black, red and blue color, respectively.
Each class of shapes is stable at a certain range of the reduced volume values. Stomatocytes are globally
stable for v < v1 ∼ 0.59, prolates for v > v2 ∼ 0.65, and oblates exist in the interval [v1, v2].
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within the sphere in order to maximize the mutual separation among TDs [19,20,25]. 

On decreasing ݒ , different patches, characterized by different spatially averaged Gaussian 
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4. 

Figure 3. Stability diagram of qualitatively different closed shell shapes, calculated within the
spontaneous curvature model for different values of the reduced volume v. The bending energy
of shells is given in units F0, where F0 describes the energy calculated for v = 1.

Note that all the structures in Figure 3 exhibit the spherical topology. According to the
Gauss-Bonnet and Poincare-Hopf theorems, such structures bear the total topological charge mtot = 2
in order to neutralize the whole shell. For v = 1, shells are spherical and the Gaussian curvature is
spatially independent (K = 1/R2, where R is the radius of the sphere). Consequently, a sphere typically
hosts four m = 1/2 TDs residing at the vertices of a hypothetical tetrahedron inscribed within the
sphere in order to maximize the mutual separation among TDs [19,20,25].

On decreasing v, different patches, characterized by different spatially averaged Gaussian
curvature K, become apparent. Consequently, the positions and even the number of TDs are changing.
Established configurations of TDs tend to neutralize each patch according to the ETCC mechanism.
Typical spatial variations of K in stomatocytes, oblates and prolates are shown in Figure 4.
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illustrated in Figure 5. 

Figure 5. Orientation ordering profile calculated on a prolate ordered shell. Left side: superimposed 
nematic director field and order parameter profile ߣ in the (߮,  plane. Right side: the shell’s shape (ݏ
with the corresponding order parameter profile is presented from different perspectives. Positions of 
topological defects (TDs) are denoted with capital letters. The calculations were performed for ݒ ߦ/ܴ ,0.80= = 100. 

Figure 4. Typical K = K(s) spatial variation in stomatocyte (v = 0.30, depicted with black color), oblate
(v = 0.60, depicted with red color), and prolate (v = 0.80, depicted with blue color) structure. The total
length of representative profile curves equals to Ls, while R stands for the radius of the sphere with the
same surface area as the surface of the investigated shape.

In the first regime ( v > v2 ∼ 0.65), the shells adopt prolate-type shapes where bumps exhibiting
progressively bigger positive Gaussian curvatures form at the poles (see Figure 4). Therefore,
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in each pole region it roughly holds ∆mK(∆ζ) = −1, while the equatorial regime is characterized by
∆mK(∆ζ) = 0. Consequently, to neutralize each patch, four m = 1/2 TDs are attracted to the poles as
illustrated in Figure 5.
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Figure 5. Orientation ordering profile calculated on a prolate ordered shell. Left side: superimposed
nematic director field and order parameter profile λ in the (ϕ, s) plane. Right side: the shell’s shape
with the corresponding order parameter profile is presented from different perspectives. Positions of
topological defects (TDs) are denoted with capital letters. The calculations were performed for v = 0.80,
R/ξ = 100.

Within the parameter window [v1, v2], oblate structures are formed (see Figure 6). For these
structures, positive Gaussian curvature exhibits a pronounced maximum at the equatorial ring
(Figure 4). This maximum acts as a strong attractor for TDs. Consequently, four m = 1/2 TDs
assemble in the equatorial region.
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For v < v1 ∼ 0.59, stomatocyte shapes are formed (Figure 7). These structures possess
the neck, where K � 0 (see Figure 4). The local elastic distortion is strong enough to enable
the formation of two additional pairs {defect, antidefect}, bearing topological charges {1/2,−1/2}.
Consequently, stomatocytes typically host eight TDs, where the total topological charge remains
mtot = 2, i.e., the structure is neutral. The two m = −1/2 TDs are localized at the neck in order to
partially screen K < 0. On the other hand, the six TDs bearing m = 1/2 are distributed in the regime
where K > 0.

Crystals 2017, 7, 153  8 of 12 

 

Within the parameter window [ݒଵ,  ଶ], oblate structures are formed (see Figure 6). For theseݒ
structures, positive Gaussian curvature exhibits a pronounced maximum at the equatorial ring 
(Figure 4). This maximum acts as a strong attractor for TDs. Consequently, four ݉ = 1/2  TDs 
assemble in the equatorial region. 

Figure 6. Typical orientational ordering profile on an oblate ordered shell. Left side: superimposed 
nematic director field and order parameter profile ߣ in the (߮,  plane. Right side: the shell’s shape (ݏ
with superimposed order parameter profile presented from different perspectives. Topological 
defects are denoted with capital letters. Parameters: ݒ = ߦ/ܴ ,0.60 = 100. 

For ݒ <  ,ଵ~0.59, stomatocyte shapes are formed (Figure 7). These structures possess the neckݒ
where ܭ ≪ 0 (see Figure 4). The local elastic distortion is strong enough to enable the formation of 
two additional pairs {defect, antidefect}, bearing topological charges {1/2,−1/2} . Consequently, 
stomatocytes typically host eight TDs, where the total topological charge remains ݉୲୭୲ = 2, i.e., the 
structure is neutral. The two ݉ = −1/2 TDs are localized at the neck in order to partially screen ܭ <0. On the other hand, the six TDs bearing ݉ = 1/2 are distributed in the regime where ܭ > 0. 

Figure 7. Typical orientational ordering profile exhibited by stomatocyte shapes. Left side: 
superimposed nematic director field and order parameter profile ߣ in the (߮,  :plane. Right side (ݏ
shell’s shapes with superimposed order parameter profiles presented from different perspectives. 
Topological defects are denoted with capital letters. Parameters: ݒ = ߦ/ܴ ,0.30 = 100. 

  

Figure 7. Typical orientational ordering profile exhibited by stomatocyte shapes. Left side:
superimposed nematic director field and order parameter profile λ in the (ϕ, s) plane. Right side: shell’s
shapes with superimposed order parameter profiles presented from different perspectives. Topological
defects are denoted with capital letters. Parameters: v = 0.30, R/ξ = 100.

3. Discussion

Of our interest was to identify a relatively simple and “natural” way to vary shapes of ordered shells
and to predict the number and position of TDs within the resulting configurations. A possible future
application based on such systems might be scaled crystals [15,25–28]. Namely, different configurations
of TDs on ordered shells, immersed in an isotropic host, are expected to nucleate self-assembling
into periodic structures exhibiting different symmetries and, consequently, quantitatively or even
qualitatively different physical properties [15].

Firstly, we demonstrated that, for a given geometry, one could relatively reliably predict the
number and position of TDs. For this purpose, the effective topological charge cancellation [12] mechanism
can be used. Its predicting power works well in the cases where the so-called intrinsic geometry
contributions [1–3,29] are dominant in the free energy terms coupling geometry and orientational
ordering. The ETCC mechanism is useful for the geometries that possess surface patches exhibiting
significantly different characteristic Gaussian curvatures. We illustrated its efficiency on an open
catenoid [21] geometry, where topology does not require the presence of TDs. Our simulations reveal
that if a catenoid’s neck is squeezed enough, so that the local curvature is strong enough to nucleate
the formation of pairs {defect, antidefect}, four m = −1/2 TDs appear at the neck in order to compensate
the local negative Gaussian curvature. Note that the accompanying four m = 1/2 TDs are not visible
in equilibrium structures (see Figure 2, 3rd row) because the catenoid’s surface is “open”.

Afterwards, we considered ordered shells of spherical topology. We were changing the geometry
of shells by varying the relative volume v. Namely, decreasing v enables switching among three
qualitatively different shapes, referred to as oblates, prolates and stomatocytes [22]. Such structures
are among others observed in biological membranes [14,22–24], where v could be relatively easily
varied by changing the osmotic pressure of a system. Furthermore, in biological membranes there
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are several different origins of in-plane ordering [12]. In our simulations, stability ranges of different
structures are as follows: oblates are stable within the window v ∈ [v1 ∼ 0.59, v2 ∼ 0.65], prolates for
v > v2, and stomatocytes for v < v1. For parameters used in our study, prolate and oblate structures
possess four TDs, each bearing m = 1/2, tending to be assembled in the regions exhibiting relatively
high positive Gaussian curvature. Consequently, in prolates, TDs are assembled near the poles and in
oblates at the equatorial region. On the other hand, in stomatocytes, a relatively narrow neck exhibiting
negative Gaussian curvature is formed. The curvature there is strong enough to nucleate two pairs of
{defect, antidefect} = {m = 1/2, m = −1/2}. Therefore, the resulting structure has eight TDs carrying
the total topological charge equal to two. The two antidefects are localized within the neck in order to
compensate for relatively strong local negative Gaussian curvature. The remaining six TDs, bearing
m = 1/2, are distributed in the remaining part of the structure which exhibits K > 0. Relative position
of TDs in these regions is dominated by mutual repulsion among TDs because K exhibits relatively
weak spatial variations.

Our work is illustrative and demonstrates a possible way of varying shapes and, consequently,
configurations of TDs. Note that, in real configurations, elastic anisotropies [26–28] of relevant elastic
constants and extrinsic [2,3,29–31] geometric terms might play an important role in the positioning
of TDs. In our modelling, we considered only the so-called intrinsic free energy curvature terms.
However, as illustrated in [3,21,29], in general, extrinsic curvature terms are also present. The intrinsic
terms penalize in-plane distortions of ordering which are independent of embedding of a 2D manifold
in 3D. On the other hand, the extrinsic terms penalize out-of-plane distortions which are sensitive to 3D
embedding. Despite the fact that both contributions have common origin (i.e., curvature) their effect
on TDs is, in general, contradicting. Namely, the intrinsic terms favor assembling of TDs in regions
exhibiting strong curvature. On the other hand, the extrinsic terms act as a local ordering field tending
to align an orientational ordering either (depending on values of extrinsic elastic constants) along
the maximal or minimal principal curvature direction. The relative role of extrinsic terms increases
with the difference ∆C = C1 − C2. Therefore, they are absent for cases ∆C = 0. For example, this
is realized in a sphere. In the case of catenoids, it holds ∆C = 2C1 = −2C2. In our simulations, we
considered only intrinsic terms. Consequently, in catenoids TDs are created at the catenoid’s neck for
strong enough curvature. However, if extrinsic terms are present, their field-like alignment tendency is
most effective exactly at the neck. Consequently, on increasing the extrinsic term strength TDs would
be expelled from the neck region. This was demonstrated in [21] where a simple nematic director field
description was employed. The competition of these contradicting ordering mechanisms is the focus
of our future paper.

4. Methods

We express the total free energy functional of the ordered soft film surface ζ as F =
s

ζ f d2r.
The free energy density f = fb + fc + fe consists of surface bending ( fb), order condensation ( fc),
and intrinsic elastic ( fe) term. Here, we took into account only the most essential terms needed to
describe the phenomena of our interest. Note that, in general, the so-called extrinsic elastic contribution
also exists, but is discarded in this study. We express the densities as [12,20]:

fb = k(TrC)2 (8)

fc = −αTrQ2 + β
(

TrQ2
)2

(9)

fe = kiTr((∇sQ)2) (10)

Here k, α, β and ki are material parameters. The bending (k) and intrinsic (ki) elastic constants are
positive, and the orientational ordering exists for positive values of α and β.
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In the eigenframe of C, tensor Q can be parametrized as [20]

Q = q0(e1 ⊗ e1 − e2 ⊗ e2) + qm(e1 ⊗ e2 + e2 ⊗ e1) (11)

where q0 and qm are scalar order parameters and λ =
√

q2
0 + q2

m, see Equation (5).
For simulation purposes, we introduce scaled and dimensionless quantities. We introduce

material-dependent order parameter correlation length ξ =
√

ki/|α| and geometrically imposed
length R. The former estimates the distance on which a local perturbation in order parameter relaxes
on a flat surface. The quantity R describes some characteristic geometrically imposed length in the
system, i.e., it equals to the radius of the sphere with the same surface area as the surface of the
investigated shell. Furthermore, we introduce the parameter λ0 =

√
α/β/2 that determines the bulk

equilibrium value of order parameter in flat geometries. With this in mind, we introduce the scaled
order parameter (Q→ Q/λ0 ), the scaled curvature tensor (C→ RC ), and we measure all length in
units of R. The resulting dimensionless free energy density ( f → f R2/ki ) reads

f =
k
ki
(TrC)2 + λ2

0

(
−TrQ2 +

1
4

(
TrQ2

)2
+ Tr((∇sQ)2)

)
(12)

In case of catenoids, the geometry of ordered films was prescribed. In case of ordered shells, we first
minimized the Helfrich curvature contribution (the first term in Equation (12)) for a prescribed value
of v. For a given geometry, we then calculated the nematic ordering by minimizing the free energy
potential with respect to Q.
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