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Abstract: The pressure effects on the lattice parameters and elastic constants of the tetragonal RNi2B2C
(R=Y, Lu) are investigated by means of the first principles. The predicted lattice constants and elastic
constants of YNi2B2C and LuNi2B2C at 0 GPa agree well with the available data. By the elastic
stability criteria under isotropic pressure, it is predicted that YNi2B2C and LuNi2B2C with tetragonal
structure are not mechanically stable above 93 GPa and 50 GPa, respectively. Pugh’s modulus
ratio, Poisson’s ratio, Vickers hardness, elastic anisotropy and Debye temperature of YNi2B2C in the
pressure range of 0–100 GPa and LuNi2B2C in the pressure range of 0-60 GPa are further investigated.
It is shown that the ductility and Debye temperature of tetragonal RNi2B2C (R=Y, Lu) increase with
increasing pressure, and LuNi2B2C is more ductile and lower Debye temperature than YNi2B2C
under different pressures.
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1. Introduction

Since the pioneering and seminal discovery of the superconducting alloy system Y-Ni-B-C [1,2]
by Nagarajan et al., much attention has been paid to synthesizing single phase samples of quaternary
boro-carbides. Cava et al. [3] have synthesized the quaternary nickel borocarbides RNi2B2C
(R=Y and rare earths), and found that Lu and Y compounds exhibit the highest superconducting
transition temperatures (Tc = 16.6 and 15.6 K, respectively), while compounds with magetic rare
earths exhibit lower Tc: Tm (Tc = 11 K), Er (Tc = 10.5 K), Ho (Tc = 8 K). The body-centered-tetragonal
RNi2B2C (R=Y, Lu) have I4/mmm space group and their crystal structure is shown in Figure 1, which
also can be seen as a layered structure consisting of the NaCl-type Y-C layers separated by the Ni2-B2

layers with 1:1 approaching each other alternately stacked [4]. Because RNi2B2C (R=Y, Lu) have
high-Tc superconductivity, considerable theoretical as well as experimental attention has been focused
on these borocarbide system. From experimental measurements, inelastic-neutron-scattering curve
techniques [5] were employed to measure the low-lying phonon-dispersion curves of LuNi2B2C
along the [100] and [001] symmetry directions, while results of Raman measurements on RNi2B2C
(R=Lu, Ho, and Y) single crystals were reported by Park et al. [6]. Meenakshi et al. [7] investigated
the high pressure behaviour of YNi2B2C at room temperature by electrical resistivity, thermopower
and X-ray diffraction incorporating imaging plate. Recently, Weber et al. [8] reported an inelastic
neutron scattering investigation of phonons with energies up to 159 meV in YNi2B2C. From theoretical
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research, Mattheiss [9] calculated band structures of LuNi2B2C and YNi2B2C via the linearized
augmented-plane-wave (LAPW) method. Lee et al. [10] systematically researched the electronic
structures of Ni-based superconducting quaternary compounds YNi2B2X (X=B, C, N, and O) by
employing the linearized muffin-tin orbital band method. The effect of pressure on the compressibilities
of LuNi2B2C and YNi2B2C has been investigated within the local-density approximation (LDA) to
density-functional theory (DFT) [11,12]. Recently, Wang et al. [13] calculated the elastic and electronic
structure properties of YNi2B2C under pressure by performing the generalized gradient approximation
(GGA) and LDA correction scheme in the frame of DFT. More recently, Tütüncü et al. [14] systematically
investigated the structural, electronic, vibrational, and superconducting properties of borocarbide
superconductors RM2B2C (R=Lu, La, Y; M=Ni, Pd, Pt) by employing the ab initio pseudopotential
calculations. All these researches are very important to further scientific and technical investigations.
However, so far, the influence of pressure on the structural, elastic and mechanical properties of
tetragonal RNi2B2C (R=Y, Lu) has received little attention.

Y 

Ni 

C 

Bz 

Figure 1. Crystal structure of YNi2B2C.

Elastic properties of a solid are very important because they are closely associated with some
physical properties such as bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio,
the velocity of sound of longitudinal wave and shear wave. f And the pressure dependence of
the elastic constants of a material is important for predicting and understanding the mechanical
strength, stability, and phase transitions of a material. Motivated by the interest in the elastic and
mechanical properties of RNi2B2C (R=Y, Lu), in this paper we will take the first-principles calculations
to further investigate the structural, elastic and mechanical properties of RNi2B2C (R=Y, Lu) under
pressure. The rest of the paper is organized as follows. The theory and computational details are given
in Section 2. Results and discussions are presented in Section 3. Finally, the summary of our main
results are drawn in Section 4.

2. Theory and Computational Details

Our first-principles calculations are performed using the VASP code, which is based on the
DFT [15–17]. The ion-electron interaction is described by the projector augmented wave (PAW)
method [18,19], and the exchange-correlation function is described within the GGA according to the
Perdew-Burke-Ernzerhof (PBE) functional [20]. In this work, the 4s, 4p, 4d and 5s electrons for Y,
the 5d and 6s electrons for Lu, the 2s and 2p electrons for C, the 2s and 2p electrons for B, and the 3d
and 4s electrons for Ni are treated as valence and the remaining electrons are kept frozen. Reciprocal
space is represented by Monkhorst-Pack special k-point scheme [21] with 15 × 15 × 5 grid meshes.
The plane wave cutoff energy is chosen to be 600 eV and the energy convergence criterion is set to
10−6 eV for all calculations.
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In this paper, the finite-strain continuum elastic theory is employed to calculate the elastic
constants [22–25]. The deformation tensor

Jij =
∂x′i
∂xj

(1)

where xi and x′i are the initial and strained configurations at the equilibrium, respectively, with i and
j (= 1, 2, 3) represent Cartesian coordinates. The relation between the elastic constants and the strain
energy density can be expressed as [22,23]

∆E
V

=
1
2! ∑

ijkl
Cijklηijηkl + · · · (2)

where ηij is the Lagrangian strain tensor, which is defined as [24]

ηij =
1
2 ∑

k
(Jik Jjk − δij) (3)

For RNi2B2C (R=Y, Lu) with tetragonal structure, there are six independent elastic constants C11,
C12, C13, C33, C44 and C66. To calculate the complete elastic constants, we introduce six Lagrangian
strain tensors in terms of a single strain parameter ξ, and the strain energy density ∆E

V can be Taylor
expanded in powers of the strain parameter ξ as

∆E
V

=
1
2

Λξ2 + O(ξ3) (4)

where V is the volume at the given pressure and Λ is the combination of the elastic constants.
We consider six sets of deformations:

A1 =

 ξ 0 0
0 0 0
0 0 0

 , A2 =

 ξ 0 0
0 ξ 0
0 0 0

 , A3 =

 0 0 0
0 0 0
0 0 ξ

 ,

A4 =

 ξ 0 0
0 0 0
0 0 ξ

 , A5 =

 ξ 0 0
0 0 ξ

0 ξ 0

 , A6 =

 ξ ξ 0
ξ 0 0
0 0 0

 .

(5)

The corresponding strain energy density on deformation parameter ξ for each considered strain
mode Aα(α = 1, 2, · · · , 6) can be expressed as

∆E(A1)/V = 1
2 C11ξ2

∆E(A2)/V = (C11 + C12)ξ
2

∆E(A3)/V = 1
2 C33ξ2

∆E(A4)/V = ( 1
2 C11 + C13 +

1
2 C33)ξ

2

∆E(A5)/V = ( 1
2 C11 + 2C44)ξ

2

∆E(A6)/V = ( 1
2 C11 + 2C66)ξ

2

(6)

ξ varies between −0.012 and 0.012 with step 0.003 for each strain mode Aα(α = 1,2, . . . , 6).
Taking YNi2B2C at 0 GPa as an example, Figure 2 shows the strain energy density as a function of
deformation parameter ξ for the considered six strain modes. The discrete points indicate the values
from the first principles calculations and the solid curves represent the results obtained from the
second-order polynomial fitting.
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Based on the calculated elastic constants, the bulk modulus B and shear modulus G can be
evaluated in terms of the Voigt-Reuss-Hill (VRH) scheme [26]. The Voigt modulus [27] are

BV = 1
9 [2(C11 + C12) + C33 + 4C13]

GV = 1
30 (M + 3C11 − 3C12 + 12C44 + 6C66)

M = C11 + C12 + 2C33 − 4C13

(7)

and the Reuss modulus [28] are

BR = C2/M
GR = 15/((18BV)/C2 + 6/(C11 − C12) + 6/C44 + 3/C66)

C2 = (C11 + C12)C33 − 2C2
13

(8)

Hill [26] proposed that the effective bulk and shear moduli should be the arithmetic mean values
of the Voigt and Reuss moduli and thus obtained by

B = (BV + BR)/2 G = (GV + GR)/2 (9)
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Figure 2. The strain-energy density relations of YNi2B2C at 0 GPa. The discrete points indicate the
values from the first principles calculations and the solid curves represent the results obtained from the
second-order polynomial fitting.

3. Results and Discussion

For RNi2B2C (R=Y, Lu) with tetragonal structure, the initial structural model is built according
to the previous available lattice parameters. There are six atoms per unit cell, with Y(Lu) located at
(0, 0, 0), the two Ni atoms at (0, 0.5, 0.25) and (0, 0.5, 0.75), the two B atoms at positions (0, 0, z) and
(1, 1, 1−z), and the C atom at (0, 0, 0.5), where z is the so-called internal parameter. Therefore, this
structure is defined by two lattice parameters (a and c) and one internal parameter (z). These lattice
parameters under different pressures are calculated by optimizing crystal structure at the given
pressure. When optimizing the structural parameters of RNi2B2C (R=Y, Lu), the full relaxations
with respect to the volume, shape and all internal atomic positions for the unit cell are carried out
until the change in the total energy is smaller than 10−5 eV between two ionic steps relaxation.
The calculated equilibrium lattice constants (a and c) and the internal parameter (z) at 0 GPa are
presented and compared with available experimental [29–38] and theoretical results [11,13,14,39]
in Table 1. The maximum deviations of the calculated equilibrium lattice constants a and c for
RNi2B2C (R=Y, Lu) correspond to 1.22% and 1.37% as compared with the respective experimental
values, while the internal parameters z are almost equal to their experimental values. This level
of disagreement in the lattice constants is quite common for theories based on the GGA. Besides,
the pressure dependent parameters a/a0, c/c0 and the ratio c/a are illustrated in Figure 3, where a0

and c0 are the equilibrium structure parameters at p = 0 GPa. In both systems the ratio c/c0 decreases
more quickly than a/a0 with increasing pressure, indicating that the compression along c-axis is larger.
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Table 1. Comparison of the calculated lattice parameters (Å) for RNi2B2C (R=Y, Lu) at p = 0 GPa with
the previous theoretical results and experimental data.

Material Method a/Å c/Å c/a z

YNi2B2C Present GGA 3.553 10.400 2.927 0.356
GGA [13] 3.541 10.482 2.960 0.358

LMTO [39] 3.507 10.485 2.937 0.353
Experimental [29] 3.526 10.543 2.990 0.358
Experimental [30] 3.524 10.545 2.992 0.375
Experimental [31] 3.5258 10.5425 2.990
Experimental [32] 3.51 10.53 3.0

LuNi2B2C Present GGA 3.473 10.552 3.038 0.359
GGA [14] 3.508 10.597 3.021 0.360
LDA [11] 3.457 9.989 2.889

Experimental [33] 3.464 10.631 3.069 0.362
Experimental [34] 3.467 10.633 3.067
Experimental [35] 3.464 10.623 3.067
Experimental [36] 3.464 10.635 3.070
Experimental [37] 3.464 10.623 3.067
Experimental [38] 3.464 10.631 3.069
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Figure 3. Normalized parameters a/a0, c/c0, c/a of (a) YNi2B2C and (b) LuNi2B2C as a function
of pressure.

Knowledge of the values of elastic constants is crucial for understanding the structural stability.
The calculated elastic constants of RNi2B2C (R=Y, Lu) under different pressures are tabulated in Table 2,
together with the experimental data [40] and other theoretical results [13]. It is found that our calculated
elastic constants of YNi2B2C agree well with the previous results. From Table 2, whatever YNi2B2C or
LuNi2B2C, it is clearly found that C11, C12, C13, C33, C66 increase and the change of C44 remains almost
invariant with increasing pressure. The change of the elastic constants of YNi2B2C is similar to the
Ref. [13] reported by Wang et al. It is also noted that C11 > C33 for YNi2B2C, which indicates that
atomic bonding strength along the {100} plane between the nearest neighbors is stronger than that
along the {001} plane in the whole range of pressure, but LuNi2B2C has the opposite change trend.
Besides, the relation C44 < C66 for RNi2B2C (R=Y, Lu) predicts that the [100](001) shear is expected to
be relatively easy in comparison with the [100](010) shear in the whole range of pressure. Moreover,
the elastic stability criterion for a tetragonal crystal under isotropic pressure is as follows [25,41,42]:

C̃P
11 − C̃P

12 > 0, C̃P
11 + C̃P

33 − 2C̃P
13 > 0

C̃P
αα > 0 (α = 1, 3, 4, 6), 2C̃P

11 + C̃P
33 + 2C̃P

12 + 4C̃P
13 > 0

(10)
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where C̃P
αα = CP

αα − P (α = 1, 3, 4, 6), C̃P
12 = CP

12 + P, C̃P
13 = CP

13 + P. With increasing pressure
C̃P

11 − C̃P
12 > 0 can not be firstly satisfied among all the mechanical stability conditions for RNi2B2C

(R=Y, Lu). Figure 4 shows CP
11 − CP

12 − 2P versus pressure for RNi2B2C (R=Y, Lu). It is observed that
the CP

11 − CP
12 − 2P values of YNi2B2C and LuNi2B2C are equal to zero at pressures about 93.6 GPa and

50.5 GPa, respectively, which indicates that the tetragonal structure is not mechanically stable above
pressures about 93.6 GPa and 50.5 GPa for YNi2B2C and LuNi2B2C, respectively. Wang et al. [13]
suggested that the structure phase transition of YNi2B2C may happen when p > 80 GPa.

Table 2. Calculated elastic constants Cij (GPa) of RNi2B2C (R=Y, Lu) under different pressures and
compared with available data.

Material Pressure C11 C12 C13 C33 C44 C66

YNi2B2C 0 281.7 135.4 130.3 279.9 61.4 127.9
292.7 a, 294.6 b 133.6 a, 157.7 b 138.6 a 282.4 a 68.6 a, 64.4 b 129.8 a, 142.1 b

284.7 c, 292 d 145.7 c, 149.8 d 125.6 b 261.5 b 67.1 c, 67.4 d 143.3 c, 132 d

10 332.6 174.4 175.9 308.3 66.0 151.1
20 378.2, 381.3 a 215.8, 211.3 a 212.2, 211.2 a 348.8, 362.6 a 74.7, 72.8 a 172.9, 174.9 a

30 420.5 255.9 247.7 388.4 73.0 192.6
40 461.2, 462.2 a 294.7, 298.9 a 283.4, 281.5 a 427.1, 427.0 a 74.3, 75.9 a 212.2, 211.8 a

50 503.9 331.1 319.7 467.1 75.2 230.5
60 544.8, 534.6 a 367.7, 373.3 a 347.1, 338.7 a 507.1, 519.5 a 76.3, 80.3 a 248.4, 245.8 a

70 584.4 404.6 378.8 546.3 76.9 263.4
80 622.6, 617.8 a 440.9, 449.4 a 409.7, 404.0 a 584.8, 609.3 a 77.6, 84.8 a 279.4, 279.4 a

90 661.3 475.9 440.2 622.1 77.9 295.0
100 699.7, 690.0 a 510.3, 529.6 a 477.5, 470.0 a 658.2, 683.1 a 76.7, 87.1 a 314.4, 311.7 a

LuNi2B2C 0 287.9 157.1 134.9 297.8 53.8 141.4
10 330.3 204.5 167.7 356.6 60.5 168.9
20 367.9 253.4 210.8 394.2 64.2 194.7
30 411.2 290.5 242.0 432.8 68.4 216.3
40 455.7 328.7 273.3 466.0 67.9 237.0
50 484.1 381.2 310.4 511.2 71.4 259.6
60 519.7 421.9 341.9 542.3 72.8 278.9

a Ref. [13] obtained from first-principles calculations; b Exp. (RUS, 300 K) from Ref. [40]; c Exp. (time-of-flight,
300 K) from Ref. [40]; d Exp. (time-of-flight, 2 K) from Ref. [40].
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Figure 4. CP
11 − CP

12 − 2P versus pressure for RNi2B2C (R=Y, Lu).

In order to predict the plastic properties of solids, Pugh [43] introduced a simple relationship
that linked empirically the brittle or ductile behavior of materials with their elastic moduli by G/B.
A ductile manner of material with lower G/B and brittle materials with higher G/B, the critical value
which separates ductile and brittle materials is about 0.57. Figure 5a shows the G/B value as a function
of pressure for RNi2B2C (R=Y, Lu). It is clear that the G/B ratio decreases with increasing pressure and
the calculated G/B values are all lower than 0.57 regardless of YNi2B2C or LuNi2B2C, which indicates
that they display ductile nature and pressure can improve their ductilities. Furthermore, it is observed
from Figure 5a that the G/B value of LuNi2B2C is always smaller than that of YNi2B2C, illustrating
that LuNi2B2C is more ductility than YNi2B2C under different pressures. In addition, Poisson’s
ratio with ν = 3B−2G

2(3B+G)
can also reflect the ductile properties, which usually ranges from −1 to 0.5,
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the smaller the Poisson’s ratio leading to more brittle behavior of a material. Figure 5b presents the
pressure dependent Poisson’s ratio ν for RNi2B2C (R=Y, Lu). The values of ν increase accordingly
along with pressure increasing regardless of YNi2B2C or LuNi2B2C, and the ν value of LuNi2B2C
is always larger than that of YNi2B2C under different pressures. That is, we can obtain the same
conclusion from both the G/B and ν. Moreover, hardness is another important parameter to describe
the mechanical properties of a material, which is employed to characterize the ability of a material
resistance to elastic and permanent plastic deformation or brittle failure [44]. Both the G/B and ν have
close relationship with the hardness of materials. Recently, based on the Teter’s famous empirical
correlation [45], a simplified formula of Vickers hardness proposed by Chen et al. [46,47] can be
expressed as Hv = 2(k2G)0.585 − 3, where k = G/B. The calculated values of Vickers hardness for
RNi2B2C (R=Y, Lu) under different pressures are plotted in Figure 5c. Obviously, the hardness of
RNi2B2C (R=Y, Lu) decreases with increasing pressure and LuNi2B2C has smaller Vickers hardness
value than YNi2B2C under different pressures, suggesting that the metallic bonding of LuNi2B2C
is stronger than that of YNi2B2C under different pressures. In other words, high pressure results in
increase of ductility for both YNi2B2C and LuNi2B2C, and LuNi2B2C is more ductility than YNi2B2C
under different pressures.

The elastic anisotropy of crystal is one of the most important parameters for engineering science
and estimating mechanical properties of compounds. For a tetragonal crystal the elastic anisotropy can
be described by the two shear factors A1 and A2. In the case of an isotropic crystal, A1 or A2 equals to
one, while any value smaller or larger than one is anisotropy. For RNi2B2C (R=Y, Lu), A1 and A2 can
be expressed as [48]:

A1 = A{100} =
4C44

C11+C33−2C13

A2 = A{001} =
2C66

C11−C33

(11)

The anisotropy factors A1 along {100} shear plane and A2 along {001} shear plane for RNi2B2C
(R=Y, Lu) are plotted in Figure 6. It is a pity that there are still no experimental data for comparison.
For YNi2B2C the shear anisotropic factor along {001} shear plane A{001} increases sharply from 1.75
to 3.32, and for LuNi2B2C it increases sharply from 2.16 to 5.69. However, the change of A{100}
remains almost invariant with increasing pressure regardless of YNi2B2C or LuNi2B2C. In addition,
Ranganathan and Ostoja-Starzewski [49] summarized the existing anisotropy theories and developed
a universal elastic anisotropy index AU , which is defined as

AU = 5
GV
GR

+
BV
BR
− 6 (12)

AU = 0 represents an isotropic material and a nonzero value of AU is a measure of the anisotropy.
Figure 6 also shows the pressure dependence of the AU for RNi2B2C (R=Y, Lu). It is clear that both
YNi2B2C and LuNi2B2C are anisotropic materials and their anisotropy can be enhanced with increasing
pressure. Besides, LuNi2B2C has more anisotropy than YNi2B2C under different pressures.

The Debye temperature (ΘD) is also an important fundamental parameter since it is closely related
to the specific heat, thermal conductivity, melting temperature, etc. The ΘD can be obtained from
elastic constants by the following equations [50,51]:

ΘD =
h
k

[ 3n
4π

(NAρ

M

)]1/3
vm (13)

vm =
[1

3

( 2
v3

t
+

1
v3

l

)]
(14)

vt =
√

G/ρ (15)
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vl =

√(
B +

4
3

G
)

/ρ (16)

where h is the Plank’s constant, k is the Boltzmann’s constant, n is the number of atoms per unit cell,
NA is the Avogadro’s number, ρ is the density, M is the molecular weight, respectively. vm, vt and vl
are the average, shear and longitudinal sound velocities, respectively.
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Figure 5. (a) Quotient of shear to bulk modulus G/B; (b) Poisson’s ratio ν and (c) Vickers hardness Hv

as a function of pressure for RNi2B2C (R=Y, Lu).
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Figure 6. The pressure dependence of the shear anisotropy factors (A{001}, A{100}) and universal
anisotropy factor (AU) for (a) YNi2B2C and (b) LuNi2B2C, respectively.

Table 3 displays the pressure dependence of ρ, vl , vt, vm and ΘD for RNi2B2C (R=Y, Lu).
Meanwhile, various elastic wave velocities and Debye temperature with pressure are also showed in
Figure 7 in order to clearly see their change with pressure. It can be found that, as the pressure increases,
the densities ρ and the longitudinal sound velocities vl increase monotonously, for YNi2B2C the shear
sound velocity vt firstly increases from 3566.17 m/s and then starts to decrease from 3793.77 m/s
to 3788.02 m/s after 90 GPa, and for LuNi2B2C it firstly increases from 2965.24 m/s and then starts
to decrease from 3120.50 m/s to 3088.95 m/s after 40 GPa. Because of the pressure effect on the
shear and longitudinal sound velocities, for YNi2B2C the average sound velocity vm firstly increases
from 3990.44 m/s and then starts to decrease from 4294.42 m/s to 4288.85 m/s after 90 GPa, and for
LuNi2B2C it firstly increases from 3323.92 m/s and then starts to decrease from 3519.38 m/s to
3492.15 m/s after 40 GPa. The Debye temperature of YNi2B2C at 0 GPa is 535.15 K, which is close
to the available experimental value ΘD = 537 K obtained through low temperature specific heat by
Hong et al. [52] and the theoretical result ΘD = 549.70 obtained by Wang et al. [13] from the first
principles. However, the Debye temperature of LuNi2B2C at 0 GPa is 450.39 K, which has larger
discrepancy with the experimental value 345 K [53]. Whatever YNi2B2C or LuNi2B2C, the Debye
temperature increases with pressure increasing, and the Debye temperature of YNi2B2C is always
larger than that of LuNi2B2C under different pressures. However, there are no experimental data of the
Debye temperature of RNi2B2C (R=Y, Lu) under high pressure for comparison. Therefore, the present
results could be served as a prediction for future experiment.
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Table 3. The density (ρ in g/cm3), longitudinal (vl), shear (vt) and average (vm) elastic wave velocities
(in m/s) and Debye temperature (ΘD in K) of RNi2B2C (R=Y, Lu) under different pressures.

Material Pressure ρ vl vt vm ΘD

YNi2B2C 0 6.069 6847.77 3566.17 3990.44 535.15
10 6.377 7246.30 3594.23 4033.93 549.98
20 6.643 7617.45 3691.12 4148.07 573.32
30 6.883 7878.95 3678.01 4141.22 579.19
40 7.102 8134.20 3691.23 4161.57 588.14
50 7.305 8381.16 3710.74 4188.02 597.45
60 7.494 8591.38 3749.03 4233.73 609.13
70 7.671 8791.34 3763.58 4253.32 616.75
80 7.839 8977.65 3779.16 4273.58 624.16
90 7.998 9152.06 3793.77 4294.42 631.14

100 8.151 9327.74 3788.02 4288.85 634.60

LuNi2B2C 0 8.505 5855.49 2965.24 3323.92 450.39
10 8.917 6210.38 3050.63 3430.36 472.20
20 9.277 6489.19 3055.01 3433.64 478.92
30 9.602 6730.18 3106.51 3499.64 493.77
40 9.898 6932.53 3120.50 3519.38 501.61
50 10.175 7125.55 3094.35 3495.08 502.75
60 10.432 7285.06 3088.95 3492.15 506.51
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Figure 7. The pressure dependence of the longitudinal (vl), shear (vt) and average (vm) elastic wave
velocities and Debye temperature ΘD for (a) YNi2B2C and (b) LuNi2B2C, respectively.

4. Conclusions

In summary, we have investigated the structure stability and mechanical properties of RNi2B2C
(R=Y, Lu) under different pressures by means of the first principles. The pressure dependent
normalized lattice parameters (a/a0, c/c0 and c/a) and elastic constants of RNi2B2C (R=Y, Lu) are
also presented. It is found that their lattice parameters and elastic constants agree well with the
previous theoretical results and experimental data. By the elastic stability criteria under isotropic
pressure, it is predicted that YNi2B2C and LuNi2B2C with tetragonal structure are not mechanically
stable above 93.6 GPa and 50.5 GPa, respectively. On the basis of the pressure dependent elastic
constants, the Pugh’s modulus ratio, Poisson’s ratio, Vickers hardness, elastic anisotropy and Debye
temperature of YNi2B2C in the pressure range of 0–100 GPa and LuNi2B2C in the pressure range
of 0–60 GPa are further investigated. It is shown that the ductility and Debye temperature of the
tetragonal RNi2B2C (R=Y, Lu) increase with increasing pressure, and LuNi2B2C is more ductility
and lower Debye temperature than YNi2B2C under different pressures. It is a pity that there are no
available experimental values under pressure for comparison, the present results could be served as a
prediction for future experiment.
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