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Abstract: A new cobaloxime was synthesized by the reaction of cobalt chloride and
diphenylglyoxime in methanol, followed by the addition of 4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine, pytpy.
This complex was characterized by UV–Vis spectroscopy, 1H-NMR spectroscopy, cyclic voltammetry,
and single-crystal X-ray diffraction analysis. In cyclic voltammetry experiments an irreversible
reduction wave assigned to Co(III)/Co(II) at Ecp = −0.31 V vs. Ag/AgCl and a quasi-reversible
process assigned to the Co(II)/Co(I) reduction at −0.72 V vs. Ag/AgCl were observed. The crystal
of the complex belongs to the triclinic space group P1 with a = 12.4698(6) Å, b = 14.1285(8) Å,
c = 15.5801(8) Å, α = 109.681(4)◦, β = 112.975(4)◦, γ = 81.67(96.414(4)◦3)◦, V = 2284.0(2) Å3, Z = 2,
Dc = 1.408 mg·m−3, µ = 0.66 mm−1, F(000) = 996, and final R1 = 0.0564,ωR2 = 0.1502.
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1. Introduction

The cobaloximes are a family of vic-dioxime cobalt complexes known from a long time [1].
The interest on these compounds has emerged recently due to their ability to catalyze the reduction of
protons at low overpotentials in non-aqueous solvents [2–4]. Several mechanisms for the production
of dihydrogen has been proposed [5,6], most of them consider the presence of cobalt in a low
oxidation state.

Since the most common oxidation potentials for these complexes are +3 and +2, a reduction
process must happen before the proton reduction occurs. To accomplish the reduction of the cobalt
center, a number of methods have been employed, electrochemical [7] and photochemical reductions [8]
have been reported.

In several studies, the cobaloxime moiety has been bound to a photosensitizer in order to
reduce the cobalt center by a photoinduced electron transfer [9,10]. The synthesis of photosensitizers
bearing a cobaloxime unit could be sometimes laborious, therefore the design and preparation of new
cobaloximes which could be easily introduced in the structure of metallic photosensitizers are attractive.

In this work, we show the preparation as well the electrochemical, spectroscopic, and structural
characterization of a novel cobaloxime which could be used as a ligand in the formation of polynuclear
coordination compounds that could be potentially used in the photocatalytic generation of dihydrogen.
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2. Results and Discussion

2.1. Synthesis

The 4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine ligand was synthesized by modifying procedures
described in the literature. The synthesis was performed by condensation between
4-pyridinecarboxaldehyde and two equivalents of 2-acetylpyridine in the presence of a sodium
methoxide solution, finally condensation of the product was conducted with ammonium acetate
to obtain the desired ligand with high yields.

The complex [CoCl(dpg)(dpgH2)(pytpy)], where dpgH2 is diphenylglyoxime,
dpg is diphenylglyoxamate and pytpy is 4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine, was prepared
in a two-step synthesis by the reaction of cobalt chloride and diphenylglyoxime in methanol,
followed by the addition of pytpy as shown in Figure 1.
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Figure 1. Synthetic route to prepare the [CoCl(dpgH)2(pytpy)] complex.

2.2. 1H-NMR

Figure 2 shows the proton magnetic resonance spectrum for [CoCl(dpgH)2(pytpy)] recorded
in DMSO-d6. In this spectrum, we observe a pair of signals with a chemical shift of 7.23 and
7.34 ppm which make up the equivalent of 8 and 12 protons respectively, assigned to protons 1 and 2
corresponding to the phenyl rings in the ligand dpgH. At the lower field of the signals corresponding
to the pytpy ligand. With a chemical displacement of 8.25 and 8.50 ppm, integrating the equivalent
of two protons assigned to hydrogens 4 and 3 respectively correspond to the protons of the pyridine
ring that is directly bound to the cobalt center. The protons 9, 6, and 5 appear in a very low field,
specifically 8.67, 8.75, and 8.77 ppm, this is due to the anisotropic currents generated by the pyridine
rings. Finally, with a chemical displacement of 7.55 and 8.05 ppm that comprises an equivalent of two
protons for each, this signal is assigned to hydrogens 8 and 7.

2.3. UV–Vis Spectroscopy

Figure 3 shows the UV–Vis spectra registered in dichloromethane solution, the maximum
wavelength of highest intensity band is observed at 270 nm, followed by two unresolved bands
at ca. 330 nm and 400 nm, respectively. These bands are ascribed to terpyridine based π→ π* and
n→ π* transitions.
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2.4. Electrochemistry

The electrochemical properties of the complex were investigated using cyclic voltammetry.
Figure 4 shows the cyclic voltammogram of the complex registered in a 0.1 M tetrabutylammonium
hexafluorophosphate (TBAPF6) DMF solution.

An irreversible reduction wave assigned to the Co(III)/Co(II) is observed at Ecp = −0.31 V
vs. Ag/AgCl, this wave is broad and unresolved due to the equilibrium associated with the axial
chloride lost. A quasi-reversible process assigned to the Co(II)/Co(I) reduction is observed at −0.72 V
vs. Ag/AgCl, this last process is termed quasi-reversible since the separation of the cathodic and
anodic peak potential is ∆E = 0.08 V. Finally, an anodic irreversible process is observed at Eap = 0.1 V
vs. Ag/AgCl and assigned to the Co(II)/Co(III) oxidation. A similar electrochemical behavior has been
reported for other cobaloximes with different dioxime ligands [11]. Table 1 resumes the electrochemical
data obtained for [CoCl(dpgH)2(pytpy)] together with those of reference compounds for comparison.
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Figure 4. Cyclic voltammogram of [CoCl(dpgH)2(pytpy)] taken at 0.1 V/s in DMF 0.1 M TBAPF6 using
a vitreous carbon working electrode. Fc+/Fc vs. Ag/AgCl = 0.55 V in DMF [12].

Table 1. Electrochemical data of [CoCl(dpgH)2(pytpy)] and [CoCl(dpgH)2(py)].

Compound Epc CoIII/II (V) E1/2 CoII/I (V)

[CoCl(dpgH)2(py)] # −0.43 −0.71
[CoCl(dpgH)2(pytpy)] −0.32 −0.72

All data were measured in 0.1 M TBAPF6 DMF solution using a vitreous carbon working electrode (0.07 cm2)
# py is pyridine. Fc+/Fc vs. Ag/AgCl = 0.55 V in DMF [12].

The cathodic peak assigned to the CoIII/II reduction in the [CoCl(dpgH)2(pytpy)] is observed
at more positive potentials than the parent complex [CoCl(dpgH)2(py)], suggesting an influence
of the pytpy axial ligand on the chloride lost equilibrium [8]. On the other hand, the Co(II)/Co(I)
reduction wave appears, between the experimental error, at the same potential.

2.5. X-ray Crystallography

Slow diffusion of ethylic ether in a dichloromethane solution of the compound yielded
appropriate crystals for X-ray diffraction studies. The refined structure is shown in Figure 5.
Cobalt is octahedrally coordinated to a diphenylglyoximate ligand (dpg) and a diphenylglyoxime
ligand (dpgH2) in the equatorial plane. The axial sites are occupied by a chloride anion and a nitrogen
of the pyridine residue of the 4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine ligand. Representative bond distances
and bond angles of the coordination sphere are listed in Table 2.Crystals 2017, 7, 175  5 of 7 
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Table 2. Selected bond lengths and bond angles for [CoCl(dpgH)2(pytpy)].

Bond Length (Å) Bond Angles (◦)

Co1-N1 1.8930 N1-Co1-N2 81.880
Co1-N2 1.8866 N2-Co1-N3 98.672
Co1-N3 1.8995 N3-O3-H1 101.476
Co1-N4 1.8945 N1-C1-C2 112.681
Co1-N5 1.9640 N2-C2-C1 112.563
Co1-Cl1 2.2236 N3-C3-C4 111.986
N1-C1 1.3030 N4-C4-C3 112.946
N2-C2 1.3050 Cl1-Co1-N1 89.776
N3-C3 1.2980 N1-Co1-N5 89.770
N4-C4 1.2945 N3-O3-H1 101.476
N1-O1 1.3332 N4-O4-H2 102.600
N2-O2 1.3370 O1-N1-C1 121.800
N3-O3 1.3463 O2-N2-C2 121.870
N4-O4 1.3453

The crystallographic data of this complex is summarized in Table 3.

Table 3. Experimental details of the crystal structure determination.

Property

Empirical formula C49H38Cl3CoN8O4
Temperature 173(2) K

Crystal system Triclinic
Space group P-1

a 12.4698(6) Å
b 14.1285(8) Å
c 15.5801(8) Å
α 109.681(4)◦

β 112.975(4)◦

γ 96.414(4)◦

Volume 2284.0(2) Å3

Z 2
Density (calculated) 1.408 Mg/m3

Absorption coefficient 0.606 mm−1

F(000) 996
Crystal size 0.370 × 0.350 × 0.340 mm3

Theta range for data collection 3.191◦ to 26.452◦

Index ranges −15 ≤ h ≤ 15, −17 ≤ k ≤ 17, −19 ≤ l ≤ 19
Reflections collected 41,194

Independent reflections 9334 [R(int) = 0.0560]
Completeness to theta = 25.000◦ 99.7%

Absorption correction Semi-empirical from equivalents
Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 9334/0/604
Goodness-of-fit on F2 0.987

Final R indices [I > 2sigma(I)] R1 = 0.0564, wR2 = 0.1502
R indices (all data) R1 = 0.0630, wR2 = 0.1552

Extinction coefficient n/a

3. Materials and Methods

3.1. Apparatus and Reagents

All reagents were from commercial sources and were used without further purification.
Anti-diphenylglyoxime (97%), 4-pyridinecarboxaldehyde (97%), 2-acetylpyridine (99%), and cobalt(II)
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chloride hexahydrate (97%) were purchased from Aldrich, sodium hydroxide (98%), methanol
was purchased from Merck.

The absorption spectra were obtained using a Jasco 530 UV–Visible spectrophotometer
(Tokyo, Japan). Electrochemical measurements were performed using a Princeton Applied Research
PG 580 potentiostat and a classical three-electrode setup consistent on a vitreous carbon flat disk
working electrode (3 mm diameter), a Pt wire auxiliary electrode and an Ag/AgCl reference electrode.
NMR spectra were recorded on a Brucker AVANCE 400 MHz spectrometer (Bremen, Germany) using
DMSO-d6 with tetramethylsilane (TMS) as internal reference. High-resolution mass spectrometer
Exactive™ Plus Orbitrap, ThermoFisher Scientific (Bremen, Germany). Scan parameters: Resolution:
140,000, automatic gain control target: 1e6, Max. inject time: 200. HESI source: Sheath gas flow: 12,
Aux gas flow rate: 2, Sweep gas flow rate: 0, Capillary temp.: 300 ◦C, S-lens RF level: 100, Heater temp:
100 ◦C.

The complex Co(dpgH2)(dpgH)Cl2 was synthesized as reported in the literature [13].

3.2. 4′-(4′-Pyridyl)-2,2′:6′,2”-Terpyridine (Pytpy)

4-pyridinecarboxaldehyde (0.88; 8.20 mmol) was dissolved in 10.0 mL of methanol, then a mixture
of 2-acetylpyridine (2.0 g; 16.4 mmol) and 1.0 mL of 10% sodium methoxide solution was added.
The solution was stirred for three hours at 0 ◦C and then ammonium acetate (1.50 g; 20.0 mmol)
was added along with 20.0 mL of methanol, the mixture was brought to reflux conditions for 3 h.
The white solid is filtered and washed with two portions of cold methanol and then recrystallized by
slow evaporation of a methanol/chloroform mixture (10/3). Yield 1.2 g (47%). UV/Vis (CHCl3, nm):
247, 279, 319. 1H-NMR (400 MHz, CDCl3) δ 8.76 (d, J = 5.2 Hz, 2H), 8.75 (s, 2H), 8.72 (d, J = 4.2 J = 7.8,
1.6 Hz, 2H), 7.80–7.76 (m, 2H), 7.36 (dd, J = 6.9, 5.3 Hz, 2H).

3.3. Synthesis of [CoCl(dpgH)2(Pytpy)]

Co(dpgH2)(dpgH)Cl2 (0.40 g, 0.65 mmol) and pytpy (0.20 g, 0.65 mmol) were mixed in 15.0 mL of
methanol. The mixture was brought to reflux conditions for six hours. The solid formed is filtered and
washed with portions of methanol and finally crystallized by slow diffusion between dichloromethane
and ether. Yield 0.32 g (55%). 1H-RMN (400 MHz, DMSO-d6) δ 8.77 (s, 2H), 8.75 (d, J = 4.8 Hz, 2H),
8.67 (d, J = 7.9 Hz, 2H), 8.50 (d, J = 6.1 Hz, 2H), 8.25 (d, J = 6.1 Hz, 2H), 8.05 (td, J = 7.8, 1.8 Hz, 2H),
7.55 (dd, J = 7.4, 5.0 Hz, 2H), 7.34 (d, J = 6.9 Hz, 12H), 7.23–7.17 (m, 8H). MS m/z: Calculated: 883.20;
Found: 883.1935.

Crystallographic data for the structure reported in this paper has been deposited with
the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC 1535750. Copy of
the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ,
UK (Fax: +44-1223-336-033; E-Mail: deposit@ccdc.cam.ac.uk).

4. Conclusions

The new cobaloxime [CoCl(dpgH)2(pytpy)] was successfully prepared and fully characterized;
the spectroscopic and electrochemical properties are similar to previously reported cobaloximes,
maintaining its ability to achieve the Co(I) oxidation state at relatively positive potentials.
The terpyridine moiety of the axial ligand contains three nitrogen atoms which are available for
coordination to other metal centers, making the capacity to form binuclear complexes easier.
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