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Abstract: Crystal plasticity finite element models have been extensively used to simulate various
aspects of polycrystalline deformations. A common weakness of practically all models lies in
a relatively large number of constitutive modeling parameters that, in principle, would require
dedicated measurements on proper length scales in order to perform reliable model calibration. It is
important to realize that the obtained data at different scales should be properly accounted for in
the models. In this work, a two-scale calibration procedure is proposed to identify (conventional)
crystal plasticity model parameters on a grain scale from tensile test experiments performed on both
single crystals and polycrystals. The need for proper adjustment of the polycrystalline tensile data
is emphasized and demonstrated by subtracting the length scale effect, originating due to grain
boundary strengthening, following the Hall–Petch relation. A small but representative volume
element model of the microstructure is identified for fast and reliable identification of modeling
parameters. Finally, a simple hardening model upgrade is proposed to incorporate the grain size
effects in conventional crystal plasticity. The calibration strategy is demonstrated on tensile test
measurements on 316L austenitic stainless steel obtained from the literature.

Keywords: crystal plasticity; multi-scale calibration; Hall–Petch effect; tensile test; finite element
simulation; austenitic stainless steel

1. Introduction

Crystal plasticity theory has been extensively employed in the research of metal plasticity.
Since the introduction of the concept of dislocations [1,2], many advances in the understanding
of slip systems, work hardening and texture evolution have been made. These findings led to the
development of crystal plasticity (CP) models and their implementation into commercial finite element
(FE) solvers. Recent developments in crystal plasticity finite element modeling (CPFEM) have enabled
the investigation of a variety of aspects concerning the heterogeneous plastic response [3–7] and texture
evolution [5,8–14] of polycrystalline metals under general boundary conditions.

To accurately predict local stresses and strains with CPFEM simulations, proper identification
and reliable calibration of the underlying CP models are obviously needed. For example, there is
a growing tendency of building [15] and using FE models that resemble true grain topology, true
texture and/or realistic loading conditions with the intention to compare the predictions of emerging
local phenomena of the underlying CP models (e.g., grain boundary stress concentrations [16–18],
plastic strain localization and the formation of slip bands [19,20], crack initiation and
propagation [6,19,21]) directly with measurements. In such cases, appropriately-calibrated constitutive
laws would certainly be required, which, however, is not a trivial task. Due to the potentially
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large number of constitutive modeling parameters (typically ∼10 in conventional CP models)
and CPU time-consuming CPFEM simulations (especially true for large polycrystalline models),
the identification strategy should be cleverly designed and automatized.

In principle, CP parameters should be identified upon measurements performed on a (length)
scale of the underlying constitutive model: if CP behavior is modeled on a grain scale, experiments
on single crystalline specimens should be considered in the calibration. In this way, the effects of
deformation mechanisms not considered in the CP model would be automatically avoided from the
data. However, the availability of measurements on a required (length) scale may be limited, and usage
of experimental data on other (usually larger length) scales may become tempting or even necessary.
It is important to realize that such data should be properly adjusted before they can be used in CP
model calibration.

To overcome the issue of using data on different length scales, novel approaches were recently
developed to determine reliable single crystal material parameters by using high-energy synchrotron
X-ray diffraction measurements to measure grain scale deformation behavior within a polycrystalline
aggregate during in situ mechanical loading [22–24]. The diffraction data obtained directly on a grain
scale were used together with crystal-based finite element simulations to identify single crystal elastic
moduli [22,23] and slip system strength evolution [24] in titanium alloys.

In the present work, a reliable calibration strategy is proposed for the identification of CP model
parameters when experimental tensile data are combined from two length scales: single crystals
(meso scale) and polycrystals (macro scale). It is argued that grain boundary strengthening effects
due to finite grain sizes should be effectively removed from the polycrystalline data in order to
be considered in CP model calibration simultaneously with single crystalline data. In this respect,
a well-known Hall–Petch relation [25,26],

σ(ε) = σ0(ε) +
K(ε)√
〈D〉

(1)

is used to correlate flow stress σ with average grain size 〈D〉. Both σ0(ε) and K(ε) are strain-
(and temperature-) dependent macroscopic material properties; at yield stress (σ = σy), σ0 is usually
interpreted as the frictional stress opposing the glide of dislocations and K a measure of grain boundary
resistance to the transmission of slip from one grain to the next.

The proposed calibration strategy is applied to the conventional, length-scale independent CP
model, originally proposed by Hill and Rice [27], with a more advanced constitutive hardening
law, initially proposed by Bassani and Wu [28] for Stage I and II hardening and later upgraded by
Bassani [29] to include also Stage III hardening. An automated fitting approach is developed where
model parameters are limited to discrete values with prescribed precision in order to speed up the
calibration procedure. The feasibility of the approach is furthermore expanded by identifying an FE
model of the representative volume element (RVE) of the microstructure, which is computationally
inexpensive and, in this respect, comparable to single crystalline FE models. The identification of the
parameters is performed with respect to tensile test measurements on AISI 316L austenitic stainless
steel obtained from the literature: single-crystal measurements at 22 ◦C for the three tensile directions
[001], [111] and [123] were published in [30] and polycrystal measurements for different average grain
sizes at 24 ◦C in [31]. Finally, a simple upgrade of the hardening model is proposed to include the
length scale in the conventional CP model.

2. Constitutive Model

In the present work, conventional single crystal plasticity [27] is employed with anisotropic
elasticity governed by Hooke’s law. The corresponding elastic constants for 316L stainless steel are
considered [13,32]: c11 = 204,600 MPa, c12 = 137,700 MPa, c14 = 126,200 MPa. The model assumes
that plastic flow in single crystals takes place through slip on prescribed slip systems. The FCC crystal
considered here has 12 slip systems available for plastic deformation where each slip system α is
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defined by its slip plane normal nα
i and slip direction mα

i . It is assumed that deformation takes place
through dislocation glide, and the evolution of the plastic velocity gradient Lp

ij is given by:

Lp
ij = ∑

α

γ̇αmα
i nα

j (2)

where the summation is performed over all active slip systems α and γ̇α represents shear strain rate.
The crystalline slip is assumed to obey Schmid’s law where γ̇α is assumed to depend on the current
Cauchy stress σij solely through the Schmid stress τα defined as:

τα = mα
i σijnα

j . (3)

The shear strain rate for a visco-plastic flow can be expressed in the form of a power law [33]:

γ̇α = γ̇α
0

∣∣∣∣τα

sα

∣∣∣∣n sign(τα), (4)

which is a reasonable approximation for metals at room temperature, ordinary strain rates and
pressures [34]. Here, γ̇α

0 represents a reference strain rate; n is the rate sensitivity index; and sα is the
current strength of slip system α. Both γ̇α

0 and n were set to constant values of, respectively, 10−4 s−1

and 20 to reproduce negligible viscous behavior. The strength rate can be expressed in the following
general form:

ṡα = ∑
β

hαβ

∣∣∣γ̇β
∣∣∣ (5)

where hαβ is a slip hardening matrix describing the hardening of the slip system α due to slip activity
on any other slip system β.

In this work, an empirical constitutive hardening law of Bassani and Wu [28,29] is employed with
the following form for hardening moduli (see Figure 1a for the graphical interpretation),

hαα =

[
(h0 − hs)sech2

(
h0 − hs

τs − τ0
γα

)
+ hs

] [
1 + ∑

β 6=α

fαβtanh
(

γβ

γ0

)]
(6)

hαβ = qhαα, α 6= β. (7)

Here, h0 and hs define the hardening slopes immediately following initial yield and during easy
glide within Stage I hardening, respectively. Parameter τ0 is yield stress, equal to the initial value
of the strength, sα(0) = τ0, and τs is the saturation stress or a reference stress where large plastic
flow initiates. The off-diagonal terms hαβ for α 6= β are defined through the small parameter q.
The second term in the expression for hαα deals implicitly with cross-hardening that occurs between
slip systems during Stage II. Here, fαβ is an interaction matrix that depends on the nature of the
junctions formed between slip systems α and β, and γ0 represents the amount of slip after which the
interaction between slip systems reaches the peak strength. In general, the interaction matrix fαβ for
FCC crystals involves five different parameters whose values depend on the relative strengths of the
junctions [28]. However, in this study, the matrix has been simplified to a single value, fαβ = f0.

The hardening law in Equations (6) and (7) includes the effects of Stage I and Stage II hardening.
Bassani [29] later proposed a way to include the effects of Stage III hardening by assuming that hs

depends on total accumulated slip Γ = ∑α

∫
|γ̇α|dt on all systems,

hs = hI
s + (hI I I

s − hI
s)tanh

(
Γ

γI I I
0

)
(8)
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where γI I I
0 is approximately the accumulated slip at the onset of Stage III deformation, while hI

s and
hI I I

s define the hardening slopes at the beginning of Stage I and Stage III deformation, respectively.
The extended version of the law, Equations (6)–(8), was used throughout this work.
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Figure 1. (a) Typical τα − γα curve of a pure FCC single crystal loaded in a uniaxial tension with
an initial orientation for single slip. (b) Polycrystalline tensile data of 316L stainless steel at room
temperature for various average grain sizes 〈D〉. Data were extracted from [31]. The red line denotes
the extrapolated tensile curve σ0(ε) using the Hall–Petch relation.

The hardening constitutive equations were implemented numerically into finite element solver
Abaqus [35] by upgrading Huang’s user material subroutine (UMAT) [36] on the parts of the code that
address self hardening. The CP model was implemented for finite deformations and rotations using
the forward gradient time integration scheme and linear incremental formulation. The general static
implicit method was used in Abaqus to solve the constitutive equations.

3. Two-Scale Calibration Strategy

The proposed strategy for the two-scale calibration of the CP model comprises the following main
assumptions and ideas:

• The hardening parameters are identified on a grain scale by fitting the calculated tensile responses
to corresponding experimental stress-strain curves. Simultaneous fitting is performed against
single and polycrystalline tensile data.

• Before being used in the calibration, the length scale effects due to grain boundary strengthening
need to be subtracted from the measured polycrystalline data. The Hall–Petch relation is used to
obtain the adjusted (infinite-grain-size) macroscopic tensile stress (σ0(ε) in Equation (1)).

• The RVE model of the polycrystalline microstructure is identified and used in the identification
procedure. To allow for fast simulations during calibration iterations, a small representative
polycrystalline model is determined, containing a comparable number of finite elements as single
crystalline FE models.

• The automated optimization procedure for hardening parameters is introduced where parameters
are constrained to take only discrete values with a prescribed precision (step size).

3.1. Subtracting Grain Boundary Strengthening Effects from Raw Polycrystalline Data

The adjusted macroscopic tensile stress curve, free of grain boundary strengthening effects,
was extracted from the published data for polycrystalline 316L stainless steel [31]. In [31], tensile
specimens of 316L stainless steel with average grain sizes 〈D〉 in the range of 3.1–86.7 µm were
deformed in tension to 0.34 strain at temperatures of 24, 400 and 700 ◦C and a strain rate of 10−4 s−1 to
investigate the Hall–Petch relationship; Equation (1). The experimental stress-strain curves obtained at
24 ◦C are shown in Figure 1b, where in general, higher flow stresses are observed for smaller grain
sizes. After performing Hall–Petch type plots between σ(ε) and 〈D〉−0.5 at several constant strain
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levels at 24 ◦C, it was found that up to ∼0.05 strain, the Hall–Petch relationship exhibits a bi-linearity
with larger slope K and smaller friction stress σ0 for fine grains, 〈D〉 ≤ 7.3 µm, than for coarse grains
(please refer to Figure 4a in [31]). For strains larger than ∼0.05, a single Hall–Petch slope was observed.

For the purposes of this study, stress σ0(ε) was extrapolated from tensile data at 24 ◦C shown in
Figure 1b. The extrapolation was performed at seven macroscopic strain levels: 0.002, 0.01, 0.02, 0.05,
0.10, 0.24 and 0.34. For ε ≤ 0.05, σ0(ε) was obtained by fitting a Hall–Petch relation over the coarse
grain size range, 〈D〉 > 7.3 µm, while the entire grain size range was used to obtain σ0(ε) for ε ≥ 0.10.
The extrapolated stress σ0(ε) for 316L stainless steel is shown by the red line in Figure 1b, representing
the limit 〈D〉 → ∞.

3.2. Representative Volume Element

To identify an RVE for a 316L stainless steel specimen of gauge size 12.5× 5.4× 25.4 mm3 [31],
several polycrystalline FE models with regular partitioning of the modeling space were built.
Aggregates with different numbers of grains Ng, different mesh densities, denoted by the number
of elements per grain Neg, as well as different random initial grain orientations were analyzed in
order to identify later the corresponding continuum limit, Ng → ∞ and Neg → ∞, of the macroscopic
tensile response. Table 1 lists all of the aggregate models used in the study, and Figure 2 shows a few
examples. To allow for systematic study, the variability of grain shapes was intentionally omitted by
assigning a cubic shape to all of the grains. It seems reasonable to assume that such a rather unrealistic
grain topology should not affect substantially the calculated macroscopic tensile response. In fact, this
is justified later by performing comparisons with more realistic Voronoi tessellations.

X
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(a)
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25.4

X

Y

Z

(b)

X

Y

Z

(c)

X

Y

Z
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Figure 2. Examples of polycrystalline aggregate models with realistic gauge geometry: (a) Ng = 64,
Neg = 8, (b) Ng = 64, Neg = 64, and (c) Ng = 512, Neg = 64. (d) Single crystal model with Neg = 48.
The colors denote different grains with common crystallographic orientation. Grains are meshed by
linear hexahedral elements (C3D8) in polycrystalline models and by quadratic hexahedral elements
with reduced integration (C3D20R) in a single crystal model. Arrows in (a,d) denote the boundary
conditions used in tensile simulations.
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Table 1. A list of aggregate models used in this study. Ng stands for the number of grains, Neg for the
number of elements per grain and Ne for the number of total elements.

i Ng Neg Ne

1 2× 4× 8 = 64 13 = 1 64
2 64 23 = 8 512
3 64 43 = 64 4096
4 64 83 = 512 32,768
5 64 163 = 4096 262,144

6 4× 8× 16 = 512 1 512
7 512 8 4096
8 512 64 32,768
9 512 512 262,144

10 8× 16× 32 = 4096 1 4096
11 4096 8 32,768
12 4096 64 262,144

13 16× 32× 64 = 32,768 1 32,768
14 32,768 8 262,144

15 32× 64× 128 = 262,144 1 262,144

The grains were meshed by linear hexahedral elements (named C3D8 in Abaqus [35]) using finite
element solver Abaqus. The cubic shape of the elements (as well as grains) was preserved at all mesh
refinings. Regarding boundary conditions, an incremental tensile displacement was applied along
the axial direction (Z axis) to all of the nodes on the front surface, while the nodes on the back surface
were constrained to have zero axial displacement. The applied strain was set to 32% and strain rate to
10−4 s−1, in accordance with [31]. Using general static implicit scheme in Abaqus, the applied strain
and strain rate were implemented by setting total tensile displacement and assigning total simulation
time, respectively. All four side surfaces of the model were assumed free of the constraints.

In Abaqus, the grains were defined through sections of common crystallographic orientations.
Random initial grain orientations were assigned to all of the models. Models with the same number
of grains shared the same set of grain orientations. In aggregates with a smaller number of grains
(Ng = 64 and 512), however, twenty different random set orientations were generated to estimate an
average tensile response. A random set that provided the closest response to the average one was then
selected to be used in the extrapolation analysis. As expected, models with more grains (Ng ≥ 4096)
showed practically no variability with respect to different initial random sets.

The continuum limit of the realistic 316L stainless steel specimen was identified through the
extrapolation of calculated tensile curves on various polycrystalline aggregates with different numbers
of grains and elements per grain. Figure 3 presents the simulated stress-strain curves of some of
the models from Table 1 calculated with the same set of CP parameters. A large scatter of calculated
tensile curves is observed, however, with the following general tendencies: (i) a stiffer tensile response
is obtained for increasing number of grains Ng (at constant Neg), and (ii) a softer tensile response is
obtained for increasing number of elements per grain Neg (at constant Ng). The latter behavior (ii)
can be understood in terms of putting more degrees of freedom toward the grains, thus effectively
making them softer. As linear elements, in general, assume a constant strain (and stress) within the
element, possibly large local strain gradients, physically present due to complex grain loading from the
surrounding (anisotropic) neighborhood, may not be accurately resolved in the simulation when using
too small a number of elements per characteristic length (i.e., Neg). As a consequence, the whole grain
may appear as too stiff (unable to deform adequately to prescribed loads, thus providing, on average,
higher stress). While Behavior (ii) is a numerical feature, Behavior (i) is related to the physics of the
problem and can be connected to the probability of finding a cross-section along the specimen with
the softest grains; with smaller Ng, soft cross-sections are more likely to be found, thus providing
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lower tensile response. Although similar in effect, this behavior should not be misinterpreted as a grain
boundary strengthening effect, which was avoided by design by using length-size independent CP law.
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Figure 3. Calculated tensile responses of some of the aggregate models from Table 1 with (a) fixed
Ng = 64 and increasing Neg and (b) fixed Neq = 1 and increasing Ng. The two arrows depict the values
of strains for which a convergence analysis was performed.

In Figure 4, the convergence analysis of the calculated tensile stresses from Figure 3 is performed
at true strains ε33 = 0.1 and 0.2. The goal of the analysis is to identify a converged stress value by
extrapolating the calculated stresses to the limiting case of Ng → ∞ and Neg → ∞. In Figure 4a,b, the
two opposite stress tendencies for increasing Ng and Neg are clearly visible. However, they both seem
to nicely follow a power law behavior. For this reason, a power law fitting function was constructed to
account simultaneously for both variables Ng and Neg,

σ33 = σ∗33 − a1N−a2
g + a3N−a4

eg , (9)

where σ∗33 and ai are fitting parameters to be adjusted to the stress data. The resulting fits (see fitted
dashed lines) show an excellent agreement between the calculated data points and Equation (9).
The results of the fits are summarized in Table 2.

Table 2. Results of the fitting of Equation (9) to the calculated stress data of Figure 3 at ε33 = 0.1 and 0.2.

ε33 a1 a2 a3 a4 σ∗33

0.1 126 MPa 0.244 56.1 MPa 0.230 359 MPa
0.2 177 MPa 0.260 94.6 MPa 0.184 461 MPa

The values of σ∗33 were finally used to identify the RVE model from the list in Table 1 that provides
the closest stress value to σ∗33 for all considered strains. According to the extrapolations performed at
strains 0.1 and 0.2, the RVE model is selected to be a model with Ng = 64 grains and Neg = 8 elements
per grain. From Figure 4, it can be estimated that stresses of the proposed model should not deviate
more than 10 MPa from the stress σ∗33. This model is also small enough (Ne = 512 of total elements) to
allow short simulation times in the calibration procedure.
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Figure 4. Convergence analysis of tensile stress σ33 calculated at (a,b) ε33 = 0.1 and (c,d) ε33 = 0.2 as a
function of the number of grains Ng and the number of elements per grain Neg. Dashed lines represent
a fit with a power law; Equation (9). Extrapolated stress value σ∗33 is marked by a horizontal dashed
line. The representative volume element (RVE) model is marked by a red square.

3.3. Single-Crystal Models

Single-crystal models were built from 48 (3 × 2 × 8) quadratic hexahedral elements with
reduced integration (named C3D20R in Abaqus [35]) to model the realistic specimen gauge section
of 3× 1.5× 8 mm3 of 316L stainless steel used in [30]. Three directions of straining, [001], [111] and
[123], were modeled by assigning appropriate material orientations. The finite element mesh was
checked for convergence for all three tensile directions. In this way, an estimated accuracy of a few
MPa in macroscopic tensile response was achieved with a 48-element model for the [123] direction
of straining. Tension tests were simulated with the displacement control analysis using a fixed strain
rate of ε̇ = 5× 10−5 s−1 according to [30]. The displacement boundary condition was specified in the
axial direction (Z axis) for all of the nodes on the front surface, and the nodes on the back surface were
constrained to have zero axial displacement. For the [123] direction of straining, the global rotation of
the model around tensile axis was prevented by additionally constraining two pairs of edges on the
front and back surfaces.
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3.4. Automated Optimization of Model Parameters Defined on Discrete Range

The automated optimization procedure was originally proposed in [37] and later used in [13] for
the calibration of the simpler Stage I and II hardening law of Bassani and Wu [28] against single crystal
measurements on 316L stainless steel. In the present work, the procedure is upgraded to account also
for polycrystalline data and optimized for speed by using a discrete parameter set.

In the optimization procedure, the CP parameters are identified by fitting simultaneously the
three calculated stress-strain curves (strained along [001], [111] and [123] directions) and the fourth,
polycrystalline tensile curve, to the corresponding single- and adjusted poly-crystal measurements
on 316L stainless steel. The optimal values for the parameters are obtained by minimizing the χ2

merit function,

χ2 =
1
4

(
χ2
[001] + χ2

[111] + χ2
[123] + χ2

poly

)
=

1
4 ∑

ori

m

∑
i=1

(σori,i − σori(εori,i, P))2

m
, (10)

where σori,i and εori,i are, respectively, the measured true stress and true inelastic strain for a given
direction of straining denoted by ori. The σori(εori,i, P) is the calculated true stress component along
tensile direction (Z axis) obtained for a given crystal orientation (or polycrystal) and parameter set P.
In addition, a flexible fitting domain is introduced by setting a maximum strain in the calculation of
χ2 (addressed by variable m). Here, four fitting domains were used with corresponding maximum
nominal strains emax = 0.1, 0.2, 0.3 and 0.4.

Minimization of χ2 with respect to model parameters pi ∈ P was performed using Powell’s
minimization method [38]. In this respect, a two-way communication between Abaqus and
the minimization subroutine was established through a separate program, which enabled an
automatic identification of the parameters. To speed up the iteration procedure, the parameters
pi were furthermore constrained to take only discrete values p(j)

i = p(0)i + j∆pi on a given range
pi,min ≤ pi ≤ pi,max. Here, a fixed step was selected to be 2% of the initial parameter value,

∆pi = 0.02p(0)i . Nine fitting parameters of the hardening law are summarized in Table 3.

Table 3. A list of fitting parameters with corresponding minimum and maximum values used in the
calibration procedure.

pi pi,min pi,max

τ0 50 MPa 300 MPa
τs 50 MPa 3000 MPa
h0 0 MPa 1000 MPa
hI

s 0 MPa 1000 MPa
hI I I

s 0 MPa 1000 MPa
γ0 0 1

γI I I
0 0 1
f0 0 1
q 0 1.4

Typically, 103 FE simulations were needed in Abaqus to achieve the convergence of Powell’s
method. For a given mesh density (i.e., 48 elements for the single- and 512 elements for the poly-crystal
model), this resulted in 1–2 days of CPU time. Several runs with different initial parameter sets were
tested to approach the global minimum of χ2.

4. Results of Model Calibration

Results of the two-scale calibration procedure are summarized in Figure 5 for four fitting domains
studied in this work. In general, very good agreement is observed between the fitted lines and
corresponding measurements in all considered domains. This strongly suggests that the proposed
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CP model with the Bassani and Wu hardening law [29], denoted as BW3, proves to be adequate
to describe the tensile behavior of 316L stainless steel at room temperature both at single- and
poly-crystalline scales.

Naturally, not all domains provide equally good fits. For example, in the shortest domain with
emax = 0.1 (Figure 5a), an almost perfect fit is obtained with the average stress deviation of only√

χ2 = 6.7 MPa and the corresponding parameter set P1 given in Table 4. However, extending the
curves beyond emax = 0.1 (dashed lines in Figure 5a), but computed with the same set P1,
produces poorer results especially in [111] direction. This rather large misfit in the [111] direction at
ε > 0.1 is successfully suppressed when using larger fitting domains, emax ≥ 0.2. However, few other
discrepancies emerge on the other two tensile directions ([001] and [123]). It is interesting to note that
the agreement with the (adjusted) polycrystalline data remains very good up to emax = 0.4. Since no
information on the measurement error is given neither in [30], nor [31], the obtained fits for emax = 0.2,
0.3 and 0.4 are still considered as very good (note that

√
χ2 < 21 MPa), thus successfully validating

the employed BW3 model. The corresponding parameter sets P2, P3, P4 can be found in Table 4.
Small variations among the parameters of the three sets (P2, P3, P4) suggest that the parameters are

well determined and thus belong to the same “material state”. The largest uncertainty can be assigned
to parameter hI

s , which shows variations from 71 MPa in P2 to 125 MPa in P4. This may indicate that,
in addition, other tensile directions would be required in the fitting procedure in order to reduce the
ambiguity of hI

s . Moreover, a relatively small value of γI
0 ∼ 0.02 and a high value of f0 ∼ 0.67 indicate

a short Stage I region and hard activation of the cross slip during Stage II hardening. This agrees with
the behavior of low stacking-fault energy steels [39]. A low value of q ∼ 0.2 also suggests that self
hardening dominates over latent hardening in 316L stainless steel at room temperature.

0 0.1 0.2 0.3 0.4
true strain, ε

33

0

200

400

600

800

1000

tr
ue

 s
tr

es
s,

 σ
33

 (
M

Pa
)

exp. single [001]
exp. single [111]
exp. single [123]
exp. poly σ

0

best fit, √

χ2

  = 6.7 MPa
simulations beyond e

max

(a)

0 0.1 0.2 0.3 0.4
true strain, ε

33

0

200

400

600

800

1000

tr
ue

 s
tr

es
s,

 σ
33

 (
M

Pa
)

exp. single [001]
exp. single [111]
exp. single [123]
exp. poly σ

0

best fit, √

χ2

  = 12.6 MPa

(b)

0 0.1 0.2 0.3 0.4
true strain, ε

33

0

200

400

600

800

1000

tr
ue

 s
tr

es
s,

 σ
33

 (
M

Pa
)

exp. single [001]
exp. single [111]
exp. single [123]
exp. poly σ

0

best fit, √

χ2

  = 14.6 MPa

(c)

0 0.1 0.2 0.3 0.4
true strain, ε

33

0

200

400

600

800

1000

tr
ue

 s
tr

es
s,

 σ
33

 (
M

Pa
)

exp. single [001]
exp. single [111]
exp. single [123]
exp. poly σ

0

best fit, √

χ2

  = 20.7 MPa

(d)

Figure 5. Results of the two-scale calibration showing a comparison between calculated tensile curves
of the crystal plasticity (CP) model with the Bassani and Wu hardening law (BW3) hardening model
and corresponding measurements on 316L stainless steel [30,31]. The calculated lines are fitted to the
experimental data using four different fitting domains: (a) emax = 0.1, (b) emax = 0.2, (c) emax = 0.3 and
(d) emax = 0.4. The corresponding hardening parameters are shown in Table 4.
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Table 4. Hardening parameters for 316L stainless steel obtained from the two-scale calibration procedure.
Different hardening models were considered in the calibration: BW3 (Bassani and Wu [29] with Stages I,
II, III), BW2 (Bassani and Wu [28] with Stages I, II) and PAN (Peirce, Asaro and Needleman [40] with
Stage I). Parameters hi, τi and

√
χ2 are shown in units of MPa.

Model Set emax τ0 τs h0 hI
s hI I I

s γI
0 γI I I

0 f0 q
√

χ2

BW3

P1 0.1 83.1 88.3 214 159 111 0.034 0.186 0.328 0.836 6.70
P2 0.2 82.8 96.0 394 71 86 0.018 0.104 0.674 0.175 12.6
P3 0.3 82.8 96.0 410 98 86 0.019 0.158 0.674 0.172 14.6
P4 0.4 82.8 96.0 459 125 89 0.020 0.186 0.647 0.172 20.7

BW2

P5 0.1 83.1 84.9 210 150 0.026 0.321 0.836 7.20
P6 0.2 82.8 97.9 386 70 0.018 0.674 0.175 12.9
P7 0.3 84.5 96.0 418 98 0.019 0.674 0.172 16.3
P8 0.4 82.0 93.9 418 91 0.016 0.659 0.172 21.6

PAN

P9 0.1 78.6 2754 224 1.51 9.90
P10 0.2 78.6 200 215 1.75 27.5
P11 0.3 78.6 200 215 1.75 29.7
P12 0.4 78.6 204 228 1.68 35.4

4.1. Introduction of Length Scale into Crystal Plasticity

As conventional crystal plasticity is length-scale independent, here, a simple modification of the
hardening law is suggested to incorporate grain boundary effects in a polycrystalline simulations
following the Hall–Petch relation; Equation (1). The idea is to introduce an empirical rather
physics-based modification that will produce a desired macroscopic polycrystalline response [41–44].

It is assumed that hardening moduli hαβ remain length-scale independent, and the inclusion of
Hall–Petch relation is carried out by adding a new term to Equation (5) for the strength rate and initial
strength of the material,

ṡα = ∑
β

hαβ

∣∣∣γ̇β
∣∣∣+ ṡHP (11)

sα(0) = τ0 + sHP(0). (12)

The introduced grain boundary strengthening is assumed to be isotropic (i.e., slip
system independent):

sHP(t) =
1√
〈D〉

k(Γ(t), 〈D〉) (13)

with k(Γ, 〈D〉) being a grain-scale Hall–Petch parameter that is assumed to depend on total
accumulated slip on all systems, Γ = ∑α

∫
|γ̇α|dt, and also on average grain size 〈D〉. This last

dependence on 〈D〉 is introduced to allow for a non-standard Hall–Petch relationship (e.g., bi-linearity
observed in 316L stainless steel at room temperature [31], see also Section 3.1). For the standard
Hall–Petch relation, k = k(Γ).

In the limit where k is weakly dependent on Γ, ṡHP ∼ 0, and the proposed modification merely
shifts the macroscopic tensile curve σ0(ε) in the vertical direction, which is in accordance with
experimental observations on 316L stainless steel at least for ε . 0.1 and 〈D〉 & 7.3 µm (see Figure 1b).
This suggests that k may be accurately expressed in terms of the powers of Γ with only a few lowest
terms retained, e.g., k = ∑j k jΓj ≈ k0 + k1Γ. In this way, the modified hardening law, Equations (11)
and (12), can be simplified to:

ṡα = ∑
β

(
hαβ +

k1√
〈D〉

) ∣∣∣γ̇β
∣∣∣ (14)
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sα(0) = τ0 +
k0√
〈D〉

. (15)

Note that this linearized approximation in Γ is similar in effect to the law introduced in [43,44].
Parameters k0 and k1, which may also depend on 〈D〉, can be identified by (second) fitting of
the simulated polycrystal response to a given experimental curve with finite 〈D〉; see Figure 6a.
The remaining parameters of the BW3 model used in Figure 6a were taken from set P4 of Table 4.
Very good agreement is observed with all tensile measurements on 316L stainless steel [31] on the whole
strain domain, which confirms the validity of the proposed modification in Equations (14) and (15).
However, the obtained k0- and k1-values, optimized separately for each 〈D〉, are not unique, but
scattered with corresponding averages and standard uncertainties: k0 = (79± 16) MPa

√
µm and

k1 = (87± 21) MPa
√
µm. Part of this scatter can be attributed to the bi-linear Hall–Petch relationship

observed in this material for ε . 0.1. It is expected that the scatter can be further reduced if tensile
measurement errors (not reported in [31]) would be also accounted in the fits.

To avoid the additional fitting performed in Figure 6a, k(Γ, 〈D〉) may be in general related directly
to experimental K(ε, 〈D〉) from Equation (1) as:

k(Γ, 〈D〉) ≈ K(Γ/〈M〉, 〈D〉)
〈M〉 (16)

by using grain-averaged Taylor factor 〈M〉 for a random (untextured) polycrystal under tension:

〈M〉 =
σ0y

τ0
=

Γ
εp
∼ 2.4. (17)

Here, σ0y represents the macroscopic yield stress of a polycrystal with 〈D〉 → ∞, and εp is
a macroscopic plastic strain (note, however, that εp ≈ ε). In the limit of homogeneous strain
(Taylor model), 〈M〉 ∼ 3 for FCC polycrystals, while 〈M〉 ∼ 200 MPa/82.8 MPa ∼ 2.4 can be
estimated from the calculated data for 316L stainless steel. The value 〈M〉 ∼ 2.4 should in fact apply to
any random FCC polycrystal with slip-driven plastic flow.

The modified hardening law, Equations (11) and (12), can finally be expressed solely in terms of
experimentally determined Hall–Petch parameter K ≡ K(ε, 〈D〉) as:

ṡα = ∑
β

(
hαβ +

1√
〈D〉〈M〉2

∂K
∂ε

∣∣∣∣
ε=Γ/〈M〉

) ∣∣∣γ̇β
∣∣∣ (18)

sα(0) = τ0 +
1√
〈D〉〈M〉

K(0, 〈D〉). (19)

For demonstration purposes, K(0, 〈D〉) and ∂K/∂ε were estimated from [31] for 316L stainless
steel at room temperature only for larger grain sizes, 〈D〉 ≥ 7.3 µm, to avoid the bi-linearity of the
Hall–Petch relation: K(0, 〈D〉) ∼ 135 MPa

√
µm, ∂K/∂ε ∼ 0 for ε ≤ 0.05 and ∂K/∂ε ∼ 750 MPa

√
µm

for ε > 0.05. These values were used in polycrystalline simulations along with the parameters of set
P4 of Table 4 to calculate the tensile responses shown in Figure 6b. Although no additional fitting
was required in the calculations, still a very good agreement is observed with corresponding tensile
measurements, thus confirming the validity of the proposed modification in Equations (18) and (19).

It is to be noted, however, that the introduced length scale in the hardening law is intended to
be used when performing polycrystalline simulations with CP parameters determined on a single
crystal scale (i.e., without grain boundary strengthening effects). In the calibration itself, as proposed
in Section 3, the length scale effects are excluded from the experimental data; therefore, no modification
of the hardening law is needed.
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δK/δε ε ≤ 0.05
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Figure 6. (a) Results of the calibration of the modified BW3 hardening model, Equations (14) and (15),
calculated with newly identified parameters k0 and k1 (shown in legend in units of MPa

√
µm)

and previously identified set P4 from Table 4. A comparison is shown with tensile measurements on
316L stainless steel at room temperature [31]. (b) Same as (a), but using Equations (18) and (19) for the
modified BW3 hardening model and experimental Hall–Petch slope K(ε, 〈D〉) (shown in the legend in
units of MPa

√
µm) from [31].

5. Discussion

5.1. Comparison with Simpler Hardening Models

The presented results can be put in the perspective of previous studies on 316L stainless steel.
In [37], the original hardening model of Bassani and Wu with Stages I and II [28] (BW2) was calibrated
with respect to single crystalline measurements alone. To allow for a comparison, a similar study was
conducted here using the same BW2 model, Equations (6) and (7) with hs = hI

s and γ0 = γI
0, but with

the proposed two-scale calibration approach to account also for polycrystalline data [31]. Table 4 shows
four best-fitting parameter sets (P5, P6, P7, P8) obtained on four strain ranges emax. The sets agree to a
high extent (within∼10%) to corresponding sets reported in [37], where, however, a larger variability of
the parameters was observed across different fitting domains. This can be readily explained by noting
that fitting in [37] was performed with three (and not four) tensile curves. The fact that the inclusion of
the additional polycrystalline fit reduces the ambiguity of the parameters without producing additional
off-set is in favor of the proposed two-scale calibration strategy.

Furthermore, a comparison between the BW2 and BW3 fitting sets in Table 4 reveals high similarity
also among the two hardening models: Pi ∼ Pi+4 for all i = 1, 2, 3, 4. Although with a slightly bigger
(∼1 MPa) average stress deviation

√
χ2, the BW2 tensile curves (shown in Figure 7a for emax = 0.2) are

practically the same as those presented in Figure 5 for BW3. It is interesting to note that in BW3 fits,
the optimal hI I I

s is similar in amplitude to hI
s , which, according to Equation (8), translates BW3 close to

the BW2 limit. This may indicate a (very) slow Stage II to Stage III transition with slip in 316L stainless
steel at room temperature. Therefore, at these conditions, both BW2 and BW3 hardening models are
shown to provide an equally good description of material deformation.

Table 4 contains also the calibrating sets (P9, P10, P11 and P12) of the relatively simple hardening
model of Peirce, Asaro and Needleman [40] (PAN) with the following hardening moduli,

hαα = h0sech2
(

h0

τs − τ0
Γ
)

(20)

hαβ = qhαα, α 6= β, q ≥ 1. (21)

The parameters of PAN have an analogous meaning as in BW2 and BW3, and Γ = ∑α

∫
|γ̇α|dt

denotes the total accumulated slip on all systems. Although a reasonably good fit is obtained for
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emax = 0.1 (
√

χ2 = 9.9 MPa), the results for emax ≥ 0.2 are already less convincing (
√

χ2 ≥ 27.5 MPa).
The corresponding tensile lines for emax = 0.2 are shown in Figure 7b.
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Figure 7. Results of the two-scale calibration showing a comparison between calculated tensile curves
and corresponding measurements on 316L stainless steel [30,31]. The calculated lines are fitted to
the experimental data on a fixed strain domain emax = 0.2 using four different strategies: (a) BW2
hardening model, (b) PAN hardening model, (c) BW3 hardening model, but with raw polycrystalline
data with 〈D〉 = 3.1 µm, and (d) BW3 hardening model, but with raw polycrystalline data with
〈D〉 = 86.7 µm. The corresponding hardening parameters are shown in Tables 4 and 5.

The importance of removing grain boundary strengthening effects from polycrystalline data
before using it in the two-scale calibration procedure is quantified in Figure 7c,d and Table 5. In this
respect, the adjusted polycrystalline tensile curve σ0(ε) was replaced by raw measurements obtained
on the 316L stainless steel specimen with the average grain size 〈D〉 = 3.1 and 86.7 µm [31]. The raw
tensile data were then used simultaneously with the three single-crystalline curves in the calibration
of the BW3 model for emax = 0.2. The resulting best-fit parameter set P14 for 〈D〉 = 86.7 µm is very
similar to P2 obtained on the extrapolated 〈D〉 → ∞ model (Table 5). Furthermore, the corresponding
tensile curves in Figure 7d are shown to agree well with the measurements. This indicates that grain
boundary strengthening effects in 316L stainless steel with 〈D〉 = 86.7 µm are relatively weak and
may as well be ignored at room temperature. However, the opposite is observed in Figure 7c for
〈D〉 = 3.1 µm. Here, the grain boundary strengthening effects are too strong to be ignored in the
hardening model; therefore, a poor fit is realized. The corresponding parameter set P13 is obviously
not representative of 316L stainless steel.
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Table 5. Hardening parameters for the BW3 model [29] for 316L stainless steel obtained from the
two-scale calibration procedure when using raw polycrystalline data with different 〈D〉 and fixed
emax = 0.2. Parameters hi, τi and

√
χ2 are shown in units of MPa and 〈D〉 in µm.

Model Set 〈D〉 τ0 τs h0 hI
s hI I I

s γI
0 γI I I

0 f0 q
√

χ2

BW3 P13 3.1 91.1 104 292 0 99 0.001 0.150 0.930 0.060 60.3
P14 86.7 82.8 96.0 378 93 87 0.016 0.203 0.674 0.175 16.1

P2 ∞ 82.8 96.0 394 71 86 0.018 0.104 0.674 0.175 12.6

As demonstrated above, the polycrystalline tensile data need to be properly adjusted for reliable
two-scale calibration of the length-scale independent hardening model defined on the grain scale.
However, it has to be noted that raw polycrystalline data may, of course, be used directly in a single-
(macro) scale calibration. In that case, high uncertainty of the fitting parameters is expected given that
the number of modeling parameters is large enough (e.g., ∼10 as in BW2) and the fact that they are
obtained by fitting to one single macroscopic curve (in the case of untextured material). Table 6 lists
a few such examples for 316L stainless steel taken from the literature [6,14,15,32,45]. Indeed, a large
scatter of the hardening parameters is observed when compared to the results of Table 4. It is to be
noted that model parameters from Table 6 fail to reproduce the single-crystal tensile responses of 316L
stainless steel. Moreover, it is easy to anticipate that large uncertainty of modeling parameters may
also induce large uncertainty of predicted local fields calculated within a polycrystalline model (see the
next section for more details). Anyhow, finding a “true” parameter set from raw polycrystalline data is
certainly possible, but may require additional validation with other complementary experiments [46].

Table 6. Hardening parameters for 316L stainless steel taken from the literature. Note that only (raw)
polycrystalline data were used in the identification procedure. Parameters hi and τi are shown in units
of MPa.

Model τ0 τs h0 hI
s hI I I

s γI
0 γI I I

0 f0 q Source

BW2 150 75 75 30 0 1 1 [6,15]
PAN 150 75 75 1 [14,45]
PAN 90 175 675 1 [32]

5.2. Local Fields

In the following, the uncertainty of local stress fields is estimated in a more realistic Voronoi
polycrystal FE model with large grain sizes (i.e., diminishing grain boundary strengthening effects)
when using different hardening models with corresponding best-fit parameters P2, P6 and P10 from
Table 4. The goal is to quantify the differences in the local von Mises stress of a polycrystal when using
different hardening models calibrated to the same material, as shown in Figures 5b and 7a,b.

In this respect, the RVE model from Figure 2a with 64 grains and 512 elements was replaced with
a Voronoi aggregate model with 1000 grains and 1.4 million quadratic tetrahedral elements (named
C3D10 in Abaqus [35]). Software package Neper [47] was used to build the model geometry and the
corresponding FE mesh. The FE model is shown in Figure 8a. The average grain in the model was
assumed isotropic in shape (i.e., not elongated in any direction). All of the grains were assigned the
same material properties, but random crystallographic orientations, thus providing zero texture to the
aggregate. Grain boundaries were not modeled explicitly. In fact, various other Voronoi models were
constructed with different numbers of grains and mesh densities to assure that the tensile response of
the presented model with 1000 grains is a good approximation of the continuum limit. In Figure 8b,
the tensile responses of the Voronoi model are shown for the three calibrated hardening models with
corresponding sets P2, P6 and P10 from Table 4. As already mentioned in a previous section, a very
good agreement with the experimental σ0(ε) line is observed for BW3 and BW2 models, while a



Crystals 2017, 7, 181 16 of 20

slightly poorer result is provided by the PAN model. In the inset of Figure 8b, the results of the Voronoi
FE model are furthermore compared with the results of the RVE model that was used in the calibration
procedure. Practically identical responses observed for all three hardening models prove that the
strategy employed in Section 3.2 for the identification of the RVE model was appropriate.
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Figure 8. (a) Voronoi aggregate model with 1000 grains denoted by different colors. Grains are meshed
by quadratic tetrahedral elements C3D10. (b) Tensile curves calculated with a Voronoi model using
best-fit parameters P2, P6 and P10 from Table 4. In the inset, also the results of the RVE model are shown
for comparison.

In Figure 9, the Voronoi model was used to compare the local stress fields, in terms of von Mises stress
σmis, among the hardening models. The comparison was performed at nominal strain 0.2, where average
tensile stress is roughly 〈σ33〉 = 500 MPa. As shown in Figure 9, local stresses are largely driven by the
geometry of the grains, which develop stress concentrations close to grain boundaries with amplitudes
up to ∼2 times the average stress. In such locations, also the influence of different hardening models is
expected to be more pronounced due to amplification. However, local differences between BW3 and BW2
models are practically invisible in Figure 9, but become considerably larger when compared to the PAN
model (note ∼40 MPa larger average stress in PAN). With PAN model, for example, relatively higher
stress concentrations are predicted at several grain boundaries, as shown in Figure 9.

Figure 9. Comparison of von Mises stress fields calculated on a top free surface of the Voronoi model
(marked by white rectangle in Figure 8a) at nominal strain e = 0.2 using the three hardening models
with best-fit parameters P2, P6 and P10 from Table 4.

In order to quantify the differences between the BW3, BW2 and PAN models the subtracted von
Mises stress fields from Figure 9 are presented in Figure 10a. As anticipated, some of the biggest
variations of von Mises stress ∆σmis are observed close to grain boundaries, however, with no clear



Crystals 2017, 7, 181 17 of 20

correlation between ∆σmis and σmis. An obvious difference of the involved stress ranges is visible
in Figure 10b: the standard deviation of ∆σmis between the BW3 and BW2 models is estimated as
∼5 MPa (i.e., 1% of 〈σ33〉), while an order of magnitude bigger value of ∼70 MPa (i.e., 13% of 〈σ33〉) is
observed between the BW3 and PAN models. Although macroscopic differences between the latter
two models are relatively small (e.g., compare the fits in Figures 5b and 7b), substantially larger local
stress deviations imply that great caution should be taken when interpreting the results of local fields.
It seems, in fact, that grain-scale CP model calibration against tensile curves may not be sufficient to
validate the model also on a local (sub-grain) scale. This is especially relevant, for example, when
performing polycrystalline FE simulations of (intergranular) crack propagation (e.g., [6,19,21]), where
strong geometrical amplification of stresses close to a crack tip is expected to increase the sensitivity of
the model response (i.e., crack growth) to the involved uncertainties in the CP model.
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Figure 10. (a) Difference of the von Mises stress fields ∆σmis between the BW3 and BW2 models
and between the BW3 and PAN models from Figure 9. (b) Distributions of ∆σmis calculated from all
integration points of the Voronoi model at e = 0.2.

6. Conclusions

The purpose of this work was to demonstrate a strategy for reliable calibration of the
conventional, length-scale independent crystal plasticity model when using combined experimental
data from the meso (single crystalline) and macro (polycrystalline) scales. In particular, the need
for proper adjustment of the polycrystalline tensile data was emphasized and demonstrated by
subtracting the length scale effect, due to grain boundary hardening, according to the Hall–Petch
relation. The introduced automated calibration procedure was shown to be effective when the
computationally-expensive polycrystalline finite element model was replaced by the small, but
representative volume element model of the microstructure. The procedure for its identification was
presented and validated by comparing with larger Voronoi-like aggregates. Finally, a simple hardening
model upgrade was proposed to incorporate the grain size effects in conventional crystal plasticity.

The constitutive model was calibrated and validated with the published experimental data for
316L stainless steel obtained at room temperature. The model was found to be very accurate in
reproducing experimental results, implying that the Bassani and Wu hardening law is accurate enough
to predict tensile behavior of 316L stainless steel at both single- and poly-crystalline scales. However,
strong geometrical amplification of local stresses close to crack tips or grain boundaries is expected
to increase the sensitivity of the behavior response to involved uncertainties in the crystal plasticity
model; therefore, great caution should be taken when interpreting the results of local (sub-grain) fields.

In addition, the following main findings about the deformation behavior of 316L stainless steel at
room temperature were gained in this work:
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• A relatively small value of γI
0 ∼ 0.02 and a high value of f0 ∼ 0.67 in the Bassani and Wu hardening

law indicate a short Stage I region and hard activation of cross slip during Stage II hardening.
A low value of q ∼ 0.2 also suggests that self-hardening dominates over latent hardening.

• High similarities between two-stage and three-stage Bassani and Wu hardening models indicate a
very slow Stage II to Stage III transition with slip.

• Grain boundary strengthening effects become relatively weak when average grain size
〈D〉 & 90 µm, thus providing negligible additional hardening in the tensile response.
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