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Abstract: One new coordination polymer, namely, [Cd3(H2L)3(Pza)2(H2O)2]n (1) was synthesized by the
reaction of Cd(NO3)2·4H2O with 1,4-di(1H-imidazol-4-yl)benzene (H2L) and 3,5-pyrazoledicarboxylic
acid (H3pza) and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis,
and powder X-ray diffraction (PXRD). The H3pza ligand was completely deprotonated to pza3−,
which bridged the Cd2+ to form one-dimensional (1D) chain. The adjacent 1D chains were further
linked into the two-dimensional (2D) layer by the linear H2L ligands. The weak interaction, including
hydrogen bonds and π−π stacking interactions, extends the 2D layers into three-dimensional
(3D) supramolecular polymer. Complex 1 shows intense light blue emission in the solid state at
room temperature.
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1. Introduction

In the recent years, rational design and successful construction of metal-organic frameworks
(MOFs) has become an expanding research topic in the fields of synthetic chemistry and materials
science not only because of their intriguing variety of architectures and captivating topologies but also
their potentially multi-field applications in numerous areas in fluorescence, gas adsorption/separation,
magnetic properties, electrochemistry, catalysis, and so on [1–8]. The MOFs possessing versatile
structures and desired properties are mainly dependent on the appropriate organic linkers [9,10], and the
external synthesis conditions such as pH values, molar ratio of reactants, reaction temperatures, solvent
system, and counter anions play important roles in deciding the resulting architectures [11–13]. Up to now,
the N- or O-donor organic ligands have been employed extensively to construct functional coordination
polymers [14–16]. Particularly, the N-donor compounds such as imidazole, pyrazole, triazole, and
tetrazole can exhibit flexible coordination modes and afford more predictable coordination modes,
as a result, these types of ligands have been extensively employed to construct diverse complexes.

In our previous studies, we have elaborately designed the series of 4-imidazole-containing
imidazole ligands such as 1,4-di(1H-imidazol-4-yl)benzene and 1,3,5-tri(1H-imidazol-4-yl)benzene
and successfully synthesized the porous MOFs based on the metal-imidazolate building units,
showing favorable gas adsorption, especially selective adsorption property for CO2 molecules [17,18].
Considering that a mixed ligand assembly strategy incorporating imidazole-containing ligands and
polycarboxylates can effectively construct diverse topological networks, we have employed the
4-imidazolyl-containing ligands to build some novel frameworks together with different carboxylate
ligands [19,20].
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As an extension of our previous work, we apply the 4-imidazoly-containing ligand of
1,4-di(1H-imidazol-4-yl)benzene to build new coordination polymer together with dicarboxylic acid
of a 3,5-pyrazoledicarboxylic acid containing pyzole parent nucleus. Here, we report the synthesis
and crystal structure of a new coordination polymer of [Cd3(H2L)3(Pza)2(H2O)2]n (1) obtained by the
reaction of these mixed ligands with CdCl2·2.5H2O under hydrothermal condition.

2. Results and Discussion

2.1. Structural Description of [Cd3(H2L)3(Pza)2(H2O)2]n (1)

Single crystal X-ray diffraction analysis reveals that [Cd3(H2L)3(Pza)2(H2O)2]n crystallizes in
triclinic P-1 space group. The asymmetric unit of 1 contains two crystallographically independent
Cd(II) atoms, one and a half L ligands, one completely deprotonated pza3−, and one coordinated
water molecule. It should be mentioned that both H2L and H3pza have active hydrogen atoms in
the heterocyclic rings, and can deprotonate to be anion ligands, but the H2L keeps a neutral ligand
and three active protons from the carboxyl groups and pyzole of H3Pza completely deprotonated to
be pza3−, in this sense, the complex keep neutral. As shown in Figure 1, the Cd1 center is sitting on
an inversion center and has octahedral coordination geometry with N4O2 binding set coordinated
by two pairs of atoms (O(4), N(7) and O(4A), N(7A)) from two distinct pza3− ligands and another
two nitrogen atoms (N5, N5A) from two other H2L ligands. The Cd–N distances are 2.299(2) and
2.3449(19) Å while the Cd–O distance is 2.3324 (18) Å, and the coordination angles around Cd(1) are in
the range of 73.27(6)◦~180.0◦ (Table 1). In this complex, both of carboxyl group in µ1-η1:η0-monodentate
coordination mode from pza3− ligand together with adjacent N atom chelate with one Cd(II) atom,
in return, each pza3− ligand acts as a µ2-bridge to link two Cd(II) atoms. This connection makes
a one-dimensional (1D) chain of [Cd3(Pza)2] (Figure 2). These adjacent 1D chains are connected by linear
H2L ligand into two-dimensional (2D) layer structure (Figure 3). Particularly, the NH or N atom of
imidazolyl groups and the carboxyl group, can act as hydrogen bonding donor or acceptor, thus easily
benefiting the construction of supramolecular structures. Therefore, there exists rich hydrogen bonding
interaction in this complex, and the N−H···O and C−H···O (N(2)···O(1) 2.738(3) Å, N(2)–H(2A)···O(1)
160◦; N(4)···O(3) 2.744(3) Å, N(4)–H(4A)···O(3) 176◦; N(6)···O(3) 2.745(3) Å, N(6)–H(6)···O(3) 161◦;
C(4)···O(1) 3.071(3) Å, C(4)–H(4)···O(1) 117◦) hydrogen bond exist among the 2D layers highlighted in
pink dotted lines (Table 2), moreover, the classic weak π−π stacking interactions also exist between
the two neighboring 2D layers. The two imidazole rings of the H2L ligands between the adjacent
2D layers are parallel and are separated by a centroid−centroid distance of 3.86 Å, indicating the
presence of π−π stacking interactions [21]. Generally, the weak interactions of hydrogen bonding
and π−π stacking interactions further link the 2D layers into three-dimensional (3D) supramolecular
polymer (Figure 4).
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Table 1. Selected bond lengths (Å) and bond angles (◦) for 1.

Bond d Bond d

Cd(1)–N(5) 2.299(2) Cd(1)–O(4) 2.3324(18)
Cd(1)–N(7) 2.3449(19) Cd(2)–N(3) 2.258(2)

Cd(2)–N(1) ii 2.245(2) Cd(2)–N(8) iii 2.3473(19)
Cd(2)–O(2) 2.4204(17) Cd(2)–O(5) 2.481(2)

Angle ω Angle ω

N(5) i–Cd(1)–N(5) 180.000(1) N(5) i–Cd(1)–O(4) 86.21(8)
N(5)–Cd(1)–O(4) 93.79(8) O(4)–Cd(1)–O(4) i 180.0

N(5) i–Cd(1)–N(7) 93.10(7) N(5)–Cd(1)–N(7) 86.90(7)
O(4)–Cd(1)–N(7) 73.27(6) O(4) i–Cd(1)–N(7) 106.73(6)

O(4)–Cd(1)–N(7) i 106.73(6) N(7)–Cd(1)–N(7) i 180.00(6)
N(1) ii–Cd(2)–N(3) 146.85(8) N(1) ii–Cd(2)–N(8) iii 116.08(8)
N(3)–Cd(2)–N(8) iii 92.92(7) N(1) ii–Cd(2)–O(2) iii 86.93(7)
N(3)–Cd(2)–O(2) iii 119.34(8) N(8) iii–Cd(2)–O(2) iii 70.78(6)
N(1) ii–Cd(2)–O(2) 87.58(7) N(3)–Cd(2)–O(2) 86.32(7)
N(8) iii–Cd(2)–O(2) 128.20(6) O(2) iii–Cd(2)–O(2) 65.03(7)
N(1) ii–Cd(2)–O(5) 80.02(7) N(3)–Cd(2)–O(5) 81.14(8)
N(8) iii–Cd(2)–O(5) 96.39(7) O(2) iii–Cd(2)–O(5) 155.45(8)

O(2)–Cd(2)–O(5) 134.25(7)

Symmetry codes: (i) –x + 1, −y, −z + 3 (ii) x − 1, y, z + 1; (iii) –x + 1, −y + 1, −z + 2.

Table 2. Hydrogen Bond Lengths (Å) and Bond Angles (◦) for 1.

D–H···A d(D–H) d(H···A) d(D···A) ∠∠∠DHA

O(5)–H(5W1)···O(4) a 0.83 1.90 2.722(3) 173(3)
N(2)–H(2A)···O(1) b 0.8600 1.9100 2.738(3) 160.00
N(4)–H(4A)···O(3) c 0.8600 1.8900 2.744(3) 176.00
N(6)–H(6)···O(3) d 0.8600 1.9200 2.745(3) 161.00
C(4)–H(4)···O(1) b 0.9300 2.5300 3.071(3) 117.00

C(12)–H(12)···O(5) e 0.9300 2.4900 3.033(3) 117.00

Symmetry codes: (a) x, 1 + y, −1 + z; (b) 1 − x, 1 − y, 1 − z; (c) 1 − x, -y, 2 − z; (d) 1 + x, y, z; (e) 1 + x, y, −1 + z.
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2.2. Thermal Analysis and Powder X-ray Diffraction Analysis

Complex 1 was examined by thermogravimetric analysis (TGA) to investigate the thermal stability
of supramolecular architecture in the N2 atmosphere from 25–750 ◦C, and the result is shown in Figure 5.
For 1, weight loss of 2.93 % was observed in the temperature range of 80–105 ◦C, which corresponds to
the exclusion of coordinated water molecules (calcd 2.75 % for 1), and further weight loss was observed
at about 320 ◦C, owing to the decomposition of the framework of 1. A powder XRD experiment
was carried out to confirm the phase purity of bulk sample, and the experimental pattern of the
as-synthesized sample can be considered comparable to the corresponding simulated one, indicating
the phase purity of the sample (Figure 6).
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2.3. Photoluminescent Property

Inorganic–organic hybrid complexes, especially comprising the d10 closed-shell metal center and
aromatic-containing system, have been reported to have the ability to adjust the emission through
incorporation of metal centers, which impetus us to investigate the fluorescence property [22–24].
In this paper, the solid-state photoluminescent property of complex 1 as well as the organic ligands has
been investigated in the solid state at room temperature as depicted in Figure 7. The free H2L ligand
shows intense emission band at 455 nm upon excitation at 342 nm, which may be attributed to π*→ π

transition of the intraligands because the aromatic nucleus of H2L ligand are coplane [25]. However,
the H3pza nearly does not show fluorescence because the fluorescent emission of benzene-dicarboxylate
ligands resulting from the π*→ n transition is very weak compared with that of the π*→ π transition of
the H2L ligand, therefore, benzene-carboxylate ligands almost have no contribution to the fluorescent
emission of as-synthesized coordination polymers [16,26]. It can be seen that complex 1 exhibits strong
broad blue photoluminescence with emission maxima at 420 nm upon excitation at 338 nm. By contrast
with the free ligand, the emission bands of complex 1 are 35 nm blue-shifted. Such board emission
bands may be tentatively assigned to ligand-to-metal charge transfer (LMCT) [27,28]. In addition,
the Figure 7 shows that the luminescence intensity of 1 has increased compared with the free ligand
under the same conditions, which may mainly originate from the coordination interactions between
the metal Cd(II) atom and the ligand, which enhanced its conformational rigidity and then decreased
the nonradiative energy loss [29].
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Figure 7. Solid-state photoluminescent spectra of 1 and H2L ligand at room temperature.

3. Experimental Section

3.1. Materials and Instrumentation

All the chemicals and solvents used in this experiment were of reagent grade without
further purification. Elemental analyses were performed on a Perkin-Elmer 240C Elemental
Analyzer (PerkinElmer, Waltham, USA). IR spectra were recorded on a Bruker Vector 22 FT-IR
spectrophotometer (Instrument Inc., Karlsruhe, Germany) using KBr pellets. Thermogravimetric
analyses (TGA) were performed on a simultaneous SDT 2960 thermal analyzer (Thermal Analysis
Instrument Inc., New Castle, DE, USA) under nitrogen with a heating rate of 10 ◦C min−1.
Power X-ray diffraction (PXRD) patterns were measured on a Shimadzu XRD-6000 X-ray diffractometer
(Shimadzu Corporation, Kyoto, Japan) with CuKα (λ = 1.5418 Å) radiation at room temperature.
The fluorescent spectra were measured using a Perkin Elmer LS-55B fluorescence spectrometer
(PerkinElmer, Billerica, MA, USA).

3.2. Synthesis of [Cd3(H2L)3(Pza)2(H2O)2]n (1)

A mixture of H2L (0.021 g, 0.1 mmol), H3Pza (0.0308 g, 0.1 mmol), CdCl2·2.5H2O (0.0228 g,
0.1 mmol) and NaOH (0.004 g, 0.1 mmol) in 10 mL H2O was sealed in a 20 mL Teflon-lined stainless steel
container and heated at 180 ◦C for 48 h. Coloress block crystals of 1 were collected with a yield of 52% by
filtration and washed with water and ethanol for several times. Anal. Calcd. (%) for C46H36N16O10Cd3:
C, 42.17; H, 2.77; N, 17.11. Found (%): C, 42.36; H, 2.92; N, 17.31. IR(KBr): 3371−2545(m), 1598(vs),
1551(vs), 1512(m), 1392(vs), 1298(m), 1190(m), 1171(m), 1129(s), 1059(w), 955(m), 859(s), 829(m), 788(s),
705(m), 650(m), 510(m) cm−1.

3.3. Crystal Structure Determination

The single crystal data of [Cd3(H2L)3(Pza)2(H2O)2]n (1) was collected on a Bruker Smart APEX
CCD diffractometer with graphite-monochromated MoKα radiation (λ = 0.71073 Å) at 293(2) K.
The structure was solved by direct method and refined by full-matrix least squares on F2 using the
SHELX-97 program [30]. The hydrogen atoms were generated geometrically. The crystallographic
data and structural refinement are listed in Table 3.
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Table 3. Crystallographic data and structure refinement for 1.

Empirical Formula C46H36N16O10Cd3

Formula weight 1310.14
Temperature/K 296(2)
Crystal system Triclinic

Space group P-1
a/Å 9.5416(10)
b/Å 11.3868(12)
c/Å 12.8411(14)
α/◦ 65.8260(10)
β/◦ 77.4100(10)
γ/◦ 80.1150(10)

Volume/Å3 1236.9(2)
Z 1

$calcmg/mm3 1.759
µ/mm−1 1.353

S 1.090
F(000) 648

Index ranges
−11 ≤ h ≤ 11,
−13 ≤ k ≤ 14,
−16 ≤ l ≤ 15

Reflections collected 9658
Independent reflections 5038

Data/restraints/parameters 5038/2/348
Goodness-of-fit on F2 1.090

Final R indexes [I ≥ 2σ(I)] R1 = 0.0225, wR2 = 0.0619
Final R indexes [all data] R1 = 0.0259, wR2 = 0.0639

Largest diff. peak/hole / e Å−3 1.298/−0.327

Crystallographic data for the structure reported in this paper has been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication Nos. CCDC 1554215 for 1. Copy of the data
can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK
(Fax: +44-1223-336-033; E-Mail: deposit@ccdc.cam.ac.uk).

4. Conclusions

In summary, we have successfully obtained a new coordination polymer [Cd3(H2L)3(Pza)2(H2O)2]n

(1) by the reaction of Cd(II) salt with mixed imidazole and carboxylate ligands. The H3Pza was
completely deprotonated to pza3− anions that connected Cd(II) into infinite 1D chain structure.
The adjacent 1D chains were further linked to form a 2D network by rigid ditopic H2L ligands.
Furthermore, the 3D coordination polymer was generated by the classic weak hydrogen bond and
π−π stacking interactions. Moreover, the complex 1 exhibits blue photoluminescence emission at
420 nm upon excitation at 338 nm.
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