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Abstract: Pr9.33(SiO4)6O2 crystals have been grown by the Cz-method for the first time for near
UV–visible Faraday rotation applications. Rietveld refinement of XRD data demonstrates that the
compound crystallizes in the oxyapatite structure with space group P63/m, with oxyapatite structure.
In contrast to Tb3Ga5O12, Pr9.33(SiO4)6O2 crystal shows a higher transparency in the UV–visible
wavelength region, and a shorter cutoff at 270 nm. The Faraday rotation performance and the
temperature-dependence of the field-cooled (FC) and zero-field-cooled (ZFC) magnetic susceptibility
have been investigated, which indicate that the Pr9.33(SiO4)6O2 crystal exhibits paramagnetic behavior
in the experimental temperature range from 2 to 300 K and yields a larger FR angle which rapidly
increases towards the cutoff. Pr9.33(SiO4)6O2 crystal is therefore a promising magneto-optical crystal
in particular for potential FR applications in the near UV–visible spectral region.
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1. Introduction

The Faraday isolators (FIs) using the non-reciprocity principle are poised to be a significant
player in a modern optical information processing system to eliminate optical noise and feedback [1–5].
Yttrium-iron garnet (Y3Fe5O12, YIG), the most commonly used FI material in the near IR spectral region
so far, is transparent in the 1.2~5.0 µm wavelength regions and exhibits an extremely large Faraday
rotation (FR) angle [6,7]. Nevertheless, with the rapid expansion of visible solid-state lasers and
laser-diodes, as well as excimer lasers in the UV, the demand of FIs operated at these spectral regions is
rapidly promoting [8–10], while the conventional Yttrium-iron garnet crystals are not practical because
of their poor transparency in this wavelength region [11].

The most widely employed magneto-optical (MO) materials for the visible and near IR spectral
regions are terbium-gallium garnet (Tb3Ga5O12, TGG) crystals [1,12] and Tb-doped glasses [13–15].
Nevertheless, due to poor relative stability and low thermal conductivity, Tb-doped glasses could
not be employed in high-power lasers [16]. For another, TGG crystal, as a crystalline MO material,
is a congruently melting material and therefore can be synthesized by the Czochralski (Cz) method.
However, because of the evaporation and decomposition of Ga2O3 from the congruent melt during
the Czochralski growth process, its growth technique is not exempt of difficulties [17,18]. Furthermore,
owing to the electric-dipole 4f -4f transitions of the MO active ion Tb3+, TGG crystal presents two
physical drawbacks: the increasing transmission loss in the visible spectral region, and the strong
absorption bands in the near UV [19]. Therefore, with the continuous development of fiber-lasers
and laser-diodes operating at shorter spectral regions, the demand of FIs operating in the UV–visible
wavelength region is rapidly increasing.

Among the rare earth ions, Tb3+, Ce3+, Pr3+, and Dy3+ have been pointed to exhibit the best MO
performance [20,21], and Pr3+ is more transparent in the near UV. Taking into account the requirements
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for a new generation of MO materials employed in the near UV–visible spectral region, Pr9.33(SiO4)6O2

(PSO), a member of the oxyapatite-type silicate [22–24], which crystallizes in the hexagonal system
and demonstrates great potential for application in phosphors [25] and high-power lasers [26,27], has
attracted growing attention from our research team in recent years.

PSO crystal melts congruently and presents strong crystallizability [28], hence, in the present
investigation, we try to adopt the common RF-heating Cz-method to grow PSO crystals. The optical
transmission, magnetic, and magneto-optical performances have also been discussed.

2. Experimental

PSO single crystals were synthesized by the common Cz-technique with RF-heating [29].
The polycrystalline materials used for PSO crystals growth were synthesized by the solid-phase
reaction method using high-purity initial reagents Pr6O11, and SiO2 powders. The stoichiometric
amounts of starting materials were weighed accurately with the overweight 1 wt% of SiO2 in order
to make up for its potential volatilization losses during the PSO crystals growth. The raw materials
mixed homogeneously in a corundum mortar with the ethanol were pressed into tablets and then
sintered at 1470 K in air for 23 h.

The polycrystalline tablets with single apatite phase were added into an iridium crucible with
dimensions of Ø56 × 43 mm2, and then heated by a ratio frequency induction furnace under a
protective atmosphere of N2. After the PSO polycrystalline material was melted completely, the <001>
oriented PSO crystal, obtained through growth on the iridium wire, was used as seeds and dipped into
the PSO melt with 15~20 rpm rotating rate and 1.0~1.5 mm h−1 pulling rate. After growth, the PSO
crystal was pulled out of the melt and then annealed at a rate of 15~60 K h−1 to room temperature.

The photograph of the as-grown PSO single crystal is shown in Figure 1a. The PSO crystal is
crack free and transparent with a light green coloration. Owing to the optically uniaxial crystal, PSO
single crystal should be oriented along the crystallographic c-axis to avoid the effects of birefringence
in the FR measurements. The PSO crystal was oriented by X-ray diffraction, and the wafers, cut along
the (001) crystal plane, are shown in Figure 1b.
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< 80° with a scanning step of 0.01° and a scanning rate of 0.12°/min at room temperature. Structural 
parameter refinement of PSO crystal was carried out by analyzing the X-ray diffraction data using 
the DBWS-9411 PC program [30]. The absorption spectrum of as-grown PSO crystal was tested by 
using a Lambda900 UV-Vis-NIR spectrophotometer (Perkin-Elmer, Waltham, MA, USA), over the 
spectral range of 200–800 nm at room temperature with a 2 nm resolution. The temperature-
dependence of the field-cooled (FC) and zero-field-cooled (ZFC) magnetic susceptibilities were tested 
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Figure 1. Photographs of as-grown PSO single crystal (a), and polished wafers (b).

The X-ray diffraction measurement for Rietveld refinement were carried out on a Rigaku-Ultima
III X-ray diffractometer (Rigaku, Tokyo, Japan) using the Cu-Kα line (λ = 1.54051 Å) between
10◦ < 2θ < 80◦ with a scanning step of 0.01◦ and a scanning rate of 0.12◦/min at room temperature.
Structural parameter refinement of PSO crystal was carried out by analyzing the X-ray diffraction data
using the DBWS-9411 PC program [30]. The absorption spectrum of as-grown PSO crystal was tested
by using a Lambda900 UV-Vis-NIR spectrophotometer (Perkin-Elmer, Waltham, MA, USA), over the
spectral range of 200–800 nm at room temperature with a 2 nm resolution. The temperature-dependence
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of the field-cooled (FC) and zero-field-cooled (ZFC) magnetic susceptibilities were tested by using a
superconducting quantum interference device magnetometer (SQUID, Quantum Design MPMS-XL,
San Diego, CA, USA) in the temperature range from 2 to 300 K with an applied field of 0.1 T. Faraday
rotation angles of the as-grown PSO single crystal along the crystallographic c-axis were measured
by using the photo-extinction technique [31] at room temperature with the average values of six data
for interpretation. A commercial TGG single crystal, supplied by Physcience Opto-electronic Co., Ltd.
Beijing, was used as a reference material and has also been evaluated under the same test conditions.

3. Results and Discussion

3.1. Structure Refinement

The powder X-ray diffraction pattern of the as-grown PSO single crystal are displayed in Figure 2.
The Rietveld refinement unambiguously indicates the existence of the single hexagonal oxyapatite
phase with the space group P63/m. The atomic coordinates, unit cell parameters, and refinement
results for the as-grown PSO crystal are compiled in Table 1, which indicate that each cation occupies
the expected cationic site according to the atomic radius, that is, Pr9.33(SiO4)6O2. The 6h sites are fully
occupied by Pr3+ and the cation vacancy are all present at the 4f sites with concentration of 6.7%. It is
noteworthy that the oxide ions coordinated by Pr (1) ions at the 4f site are all belong to (SiO4)4 group.
However, the other oxide ions, at the 2a site, have three-fold coordination with the Pr (2) ions at the
6h site and do not belong to any (SiO4)4 group. Therefore, placing Pr ions on the 6h site can satisfy
electrostatic charge balance more efficiently. On the other hand, the 4f site is an ionic site, while the
6h site is a covalent site on the basis of the bond valence sums [32]. So it seems to be that the cation
vacancies are preferred at the 4f site. These conclusions from our Rietveld refinement present good
agreement with previous ones found in other oxyapatite-type silicates [22–24,28].
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Table 1. Refined structural parameters for the as-grown PSO crystal according to P63/m model.

Atom Site Site Occ. x y z

Pr1 4f 0.849 1/3 2/3 0.0014
Pr2 6h 1.0 0.0124 0.2400 1/4
Si 6h 1.0 0.3935 0.3702 1/4
O1 6h 1.0 0.3165 0.4693 1/4
O2 6h 1.0 0.5813 0.4818 1/4
O3 12i 1.0 0.3432 0.2570 0.0735
O4 2a 1.0 0 0 1/4

Hexagonal, space group P63/m; a = b = 9.61229(3) Å, c = 7.06561(2) Å, Rwp = 6.52%.

3.2. Optical Transmission

The absorption spectrum of as-grown crystal PSO in the near UV–visible spectral region is
given in Figure 3, in contrast to the commercial TGG crystal. As can be seen, the absorbance of
TGG continuously increases in the visible spectral region till the beginning of the 7F6→5D3, 5D2

Tb3+ absorption bands below 390 nm, which seriously restricts the application of TGG FIs in the
UV–visible spectral region. In comparison with TGG, PSO crystal presents a smaller dispersion,
a higher transparency in the near UV–visible spectral region, and a shorter cutoff at 265 nm, which
enables the use of PSO single crystals also at spectral region where TGG crystals could not be employed.
However, a strong absorption band, attributed to the energy level transition 3H4→1S0 reduces the
transparency below 270 nm. In addition, PSO presents two absorption bands in the 430–497 nm and
the 570–612 nm wavelength regions, which are mainly related to the energy level transitions 3H4→3PJ

and 3H4→1D2 of Pr3+ in the oxyapatite structure, and responsible for the typical light green coloration
of PSO crystal.
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TGG crystal.

3.3. Paramagnetic Behavior

The temperature-dependence of the magnetic susceptibility (χM) for as-grown PSO crystal
measured over the temperature range from 2 to 300 K are exhibited in Figure 4. Paramagnetic
behavior was observed in the experimental temperature range, that is, no magnetic interaction was
found down to 2.0 K. The reciprocal magnetic susceptibility as a function of the temperature is shown
in the inset of Figure 4, and the solid line indicated a Curie–Weiss behavior above 70 K. The deviation
from the Curie-Weiss law below 70 K may related to the influence of the crystal field on the magnetic
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ions Pr3+ in the PSO compound [33,34]. A fit of the χM
−1 − T curve to the Curie–Weiss law from 200

to 300 K gives the effective magnetic moment (µeff) of PSO to be 3.54(3) µB, which is in good agreement
with the theoretical effective magnetic moment for a free Pr3+ ion, i.e., µcal = 3.58 µB [35].Crystals 2017, 7, 229  5 of 8 

 

 
Figure 4. Temperature-dependence of the magnetic susceptibility for as-grown crystal PSO. The inset 
shows the reciprocal magnetic susceptibility vs. temperature curve. The solid line is the Curie–Weiss 
fitting. 

3.4. Magneto-Optical Performance 

The magneto-optical response of as-grown PSO single crystal along the crystallographic c-axis 
at room temperature is exhibited in Figure 5 as a function of the wavelength. It is seen that, although 
PSO crystal just has a slightly larger Faraday rotation angle than that of the commercial TGG crystal 
in the visible spectral region, the Verdet constant increment of PSO in the near UV spectral region is 
very remarkable: VPSO varies from 511 to 1590 rad T−1 m−1 between 400 and 300 nm. 

 
Figure 5. Verdet constant of as-grown PSO crystal vs. wavelength λ. TGG was tested as reference, 
and the experimental data were fitted by an equation A/(λ2 − λ02), with λ0 and A constants. 

On the basis of FR standard theory, which considers a single electronic transition frequency, the 
Verdet constants (V), are proportional to the inverse of the wavelength square (λ2) and to the 
concentration of magnetic rare-earth ions (NRE) as follows 

=
−2 2

0

EV
λ λ

 (1) 

where λ0 corresponds to the wavelength of RE3+ ions 4f-4f5d transition, and the factor E includes all 
the proportionality factor, e.g., the Lande splitting factor, the concentration of magnetic ions NRE, and 
the transition probability [36]. Fitting the experimental data to Equation (1) yields E and λ0, listed in 

Figure 4. Temperature-dependence of the magnetic susceptibility for as-grown crystal PSO.
The inset shows the reciprocal magnetic susceptibility vs. temperature curve. The solid line is the
Curie–Weiss fitting.

3.4. Magneto-Optical Performance

The magneto-optical response of as-grown PSO single crystal along the crystallographic c-axis at
room temperature is exhibited in Figure 5 as a function of the wavelength. It is seen that, although
PSO crystal just has a slightly larger Faraday rotation angle than that of the commercial TGG crystal in
the visible spectral region, the Verdet constant increment of PSO in the near UV spectral region is very
remarkable: VPSO varies from 511 to 1590 rad T−1 m−1 between 400 and 300 nm.
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On the basis of FR standard theory, which considers a single electronic transition frequency,
the Verdet constants (V), are proportional to the inverse of the wavelength square (λ2) and to the
concentration of magnetic rare-earth ions (NRE) as follows

V =
E

λ2 − λ2
0

(1)

where λ0 corresponds to the wavelength of RE3+ ions 4f -4f 5d transition, and the factor E includes all
the proportionality factor, e.g., the Lande splitting factor, the concentration of magnetic ions NRE, and
the transition probability [36]. Fitting the experimental data to Equation (1) yields E and λ0, listed
in Table 2. As magneto-optic effect of PSO crystal comes mainly from Pr ions, we can assume that
the concentration of magnetic ions and Pr ions is approximately the same. The concentration of Pr
ions can be obtained according to the refined structural parameters of PSO. As shown in Table 2, the
transition wavelengths of Pr3+ in PSO is slightly smaller than that of Tb3+ in TGG at 239 and 260 nm,
respectively. Moreover, the rotation efficiency of Tb3+ in TGG clearly overcomes that of Pr3+ in PSO, i.e.,
(E/NTb)TGG > (E/NPr)PSO. Hence, it can be deduced that the larger Verdet constant observed in PSO is
merely owing to a higher concentration of the MO active RE3+ ions. Moreover, in comparison with
PrF3, PSO crystal not only presents a larger transition wavelength, i.e., (λ0)PSO > (λ0)PrF3, but also a
higher rotation efficiency, i.e., (E/NPr)PSO >> (E/NPr)PrF3, which makes it have a larger Verdet constant
than that of PrF3 [2].

Table 2. The fitted results of PSO, TGG, and PrF3 single crystals according to Equation (1), and the
respective RE3+ ion concentrations NRE in the crystals.

Crystal λ0 (nm) E (107 rad nm2 T–1 m–1) NRE (1021 ions cm–3)

PSO 239 5.2755 16.71
TGG 260 4.2595 12.74

PrF3 [2] 184 4.5965 19.10

4. Conclusions

In summary, the performance of oxyapatite-type PSO crystals for magneto-optical applications
in the near UV–visible spectral region was investigated. Crack free PSO single crystals with high
optical-quality and large size were successfully fabricated by the Cz-method. The Rietveld refinement
indicates that the as-grown PSO crystallizes in P63/m, with oxyapatite structure. As expected, PSO
crystal exhibits paramagnetic behavior down to 2 K and presents a higher transparency in the near
UV–visible spectral region, as well as a shorter cutoff at 265 nm. In comparison with Pr-based crystal
PrF3 and commercially available TGG, we demonstrate that the as-grown PSO crystal yields a larger
FR which rapidly increases towards the cutoff. Presented results therefore indicate that PSO crystals
are promising magneto-optical crystal in particular for potential magneto-optical applications in the
near UV–visible spectral region.
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