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Abstract: The localization properties of the wave functions of vibrations in two-dimensional (2D)
crystals are studied numerically for square and hexagonal lattices within the framework of an
algebraic model. The wave functions of 2D lattices have remarkable localization properties, especially
at the van Hove singularities (vHs). Finite-size sheets with a hexagonal lattice (graphene-like
materials), in addition, exhibit at zero energy a localization of the wave functions at zigzag edges,
so-called edge states. The striped structure of the wave functions at a vHs is particularly noteworthy.
We have investigated its stability and that of the edge states with respect to perturbations in the
lattice structure, and the effect of the boundary shape on the localization properties. We find that
the stripes disappear instantaneously at the vHs in a square lattice when turning on the perturbation,
whereas they broaden but persist at the vHss in a hexagonal lattice. For one of them, they eventually
merge into edge states with increasing coupling, which, in contrast to the zero-energy edge states,
are localized at armchair edges. The results are corroborated based on participation ratios, obtained
under various conditions.

Keywords: algebraic models; graphene-like materials; striped structures; photonic crystals

1. Introduction

The isolation of graphene [1], a monoatomic layer of carbon atoms arranged in a honeycomb
(hexagonal) lattice, has stimulated recently considerable interest in two-dimensional (2D) structures.
Most of the interest has come from the extraordinary electronic band structure [2,3] of graphene.
It stems solely from the symmetry properties of the honeycomb lattice, which is formed by two
interpenetrating triangular lattices [4]. Another important feature of graphene is its soft structure.
Graphene shares many properties of soft membranes [5] due to the fact that it has out-of-plane
vibrational modes [6–8] that are not found in 3D crystals. These modes, also called flexural modes [2],
play a crucial role in many applications. In addition, if one of the dimensions is shrunk to zero, one can
have graphene ribbons, or carbon nanotubes [9] obtained by rolling graphene along a given direction
and reconnecting the carbon bonds. These structures are one-dimensional (1D). Finally, the carbon
atoms can be arranged spherically to form fullerene molecules [10]. These are zero-dimensional (0D)
structures with discrete energy states. They can be obtained from graphene by wrapping the sheet into
a sphere [11].

Crystals 2017, 7, 246; doi:10.3390/cryst7080246 www.mdpi.com/journal/crystals

http://www.mdpi.com/journal/crystals
http://www.mdpi.com
https://orcid.org/0000-0002-8251-6531
https://orcid.org/0000-0002-2735-7531
http://dx.doi.org/10.3390/cryst7080246
http://www.mdpi.com/journal/crystals


Crystals 2017, 7, 246 2 of 17

Recently [12], we have introduced an algebraic approach to lattice systems particularly well suited
to study 2D lattices, which is a generalization of that to molecules (0D) [13] applied in [14] and to linear
lattices [15]. It was used in [12] to calculate energy dispersion relations (EDR) and the density of states
(DOS) of flexural one-dimensional (1d) out-of-plane vibrations, both analytically and numerically.
The numerical simulations were done on linear lattices with n sites and on square and hexagonal
lattices with n×m sites. In this article, we study unusual localization properties of the wave functions
of the hexagonal lattice (graphene), which are not present in other types of 2D lattices. The wave
functions are obtained by means of the algebraic model.

One peculiarity of graphene sheets is the existence of zero-energy electronic states that are
nonvanishing only at the sheet boundary and accordingly are called edge states. Such states were
predicted to be localized at clean zigzag edges [16–19], or more generally, at parts of the boundary
where the particle-hole sublattice symmetry is not broken [20]. Previous studies focused on these edge
states [21]. They occur in the energy region where the dispersion relation of graphene is linear [2,3]. The
band structure, however, becomes more complex with increasing energy and eventually the dispersion
relation becomes quadratic [22]. The transition takes place at the van Hove singularities in the DOS,
which generally occur in two-dimensional crystals with a periodic structure [23]. There, the wave
functions exhibit a further peculiar feature both in square and in hexagonal lattices, namely striped
flexural modes, which, when frozen, produce the so-called ripples. Various edge geometries and edge
states have been studied experimentally in graphene [24–27]. Furthermore, van Hove singularities
have been observed in measurements [28–32]. In the vicinity of a van Hove singularity, the DOS
diverges logarithmically. Accordingly, arbitrarily weak distortions in the graphene structure might
produce large effects in the electronic properties. Similarly, edge states might be affected by distortions
of the edge structure, which, actually, were detected in the experiments. We present results on the
robustness of the localization exhibited by the wave functions at zero energy [21] and at the van Hove
singularities with respect to perturbations in the lattice structure and to the choice of the boundary
shape. In addition, the connection with soft membranes will become apparent when analyzing the
wave functions.

The algebraic method can be used both for bosons and fermions (electrons). The structure of the
equations is identical and depends only on the symmetry of the unit cell of the lattice, D6h for the
honeycomb lattice. The problem of out-of-plane vibrations of the lattice is therefore formally identical
to that of the electronic band structure of the lattice, except for the replacement of boson operators
with fermion operators. The only difference is that, while for bosons, we can put any number at each
site, for fermions, we can put only one at each site (or two if spin is taken into account). This analogy
will be also briefly mentioned.

First, we briefly outline the main features of the algebraic model in Section 2. The associated
algebraic Hamiltonian, actually, has a structure similar to that of the corresponding tight-binding
Hamiltonian [2]. In Sections 3 and 4, we review the salient features of the wave functions of finite-size
square and hexagonal lattices, respectively. Finally, we investigate in Section 5 the unusual localization
properties of the wave functions in terms of participation ratios. Here, we consider hexagonal lattices
of rectangular and of Africa shape. Classical billiards of corresponding shapes exhibit integrable and
chaotic dynamics, respectively. In References [33,34], the spectral properties of artificial graphene
billiards of these shapes were studied experimentally and shown to depend on the properties of the
classical dynamics. Similarly, we will demonstrate that the choice of a hexagonal lattice with the shape
of the billiard with chaotic dynamics leads to stronger localization of the edge states and the states in
the vicinity of the van Hove singularities than that with integrable dynamics.

2. Algebraic Model

The algebraic model of crystal vibrations, denoted in short here AMC, has been introduced in
detail in Reference [12]. Therefore, we will review only briefly its main ideas. The AMC consists
in inserting an algebra g at each site i and coupling the algebra at site i with that at site j. The
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model is a generalization of the algebraic approach to molecules (0D) [13]. For one-dimensional
(1d) vibrations, the algebra is g ≡ u(2), for two-dimensional (2d) vibrations, it is g ≡ u(3), and for
three-dimensional (3d) vibrations, it is g ≡ u(4). One-dimensional vibrations have been studied both
in molecules (0D) [14], and in polymers (1D) [15,35,36]. Applications to 2D lattices were introduced
in [12], where both harmonic and anharmonic vibrations were studied.

The u(2) algebra at each site can be realized with two boson operators b, s [37]. The elements of
u(2) are

u(2) + Ĵ+ = b†s, Ĵ− = s†b, Ĵz =
1
2
(
b†b− s†s

)
,

N̂ =
(
b†b + s†s

)
.

(1)

For harmonic vibrations, we need to consider only the Heisenberg–Weyl algebra

hw(2) + b†, b, b†b, 1, (2)

obtained from Equation (1) by the process of contraction [38].
The algebraic Hamiltonian of the lattice takes then the general form

H = ε ∑n
i=1 b†

i bi +
U
2 ∑n

i=1 b†
i bi
(
b†

i bi − 1
)
+ V ∑n

i 6=j b†
i bib†

j bj

+ ∑n
i 6=j λij

(
b†

i bj + b†
j bi

)
,

(3)

where the sum goes over the n lattice sites. The last term is also called “hopping” or “exchange”
Majorana operator M̂ij because it was introduced by Majorana in 1937 [39] in the context of
nuclear physics. Within the algebraic theory of molecules [13], it was introduced in 1991 [14].
This Hamiltonian is identical to that of the Bose–Hubbard model [40], except that, for applications
in crystal vibrations, ε is large and positive, and U, V are small, U, V ≈ 0. In this article, we take
U = V = 0 and consider the simplified form

H = ε ∑n
i=1 b†

i bi − λ(I) ∑〈i,j〉
(

b†
i bj + b†

j bi

)
− λ(I I) ∑〈〈i,j〉〉

(
b†

i bj + b†
j bi

)
+ ..., (4)

where we have expanded the Majorana interaction into one between nearest neighbors with interaction
coefficient λ(I), and one between next-to-nearest neighbors with coefficient λ(I I), etc. The coefficients
λ(I), λ(I I), ... are symmetry adapted to reflect the symmetry of the unit cell. Our sign convention for
these coefficients is that of Reference [12], and they are assumed to be positive.

In a previous publication [12], we have studied the energy eigenvalues of the Hamiltonian
Equation (4) and, from those, we have obtained the EDR and the DOS for linear (1D), square and
hexagonal (2D) lattices, with symmetry C∞v, D4h, and D6h, respectively. In this article, we study the
corresponding eigenfunctions. In particular, we consider here the fundamental vibrations of the lattice,
obtained by diagonalizing the Hamiltonian Equation (4) in the n-dimensional basis

|1i〉 ≡ |0, 0, ..., 1i, ..., 0, 0〉 , (5)

where |1i〉 denotes the state with one quantum of vibration (phonon) at location i. The wave functions
in this basis, called the local basis, are written as

|ψν〉 = ∑
i

c(ν)i |1i〉 , i = 1, ..., n ν = 1, ..., n. (6)

3. Square Lattice

The symmetry adaptation of this lattice, Figure 1, was discussed in [12]. The basis vectors ai and
bi generating the lattice and the reciprocal lattice, respectively, are given as

a1 = a(1, 0), a2 = a(0, 1), b1 =
2π

a
(1, 0) b2 =

2π

a
(0, 1) . (7)
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Figure 1. The unit cell (left) and the supercell (right) of a square lattice.

Within a unit cell, with symmetry D4h, we have two types of interactions, nearest-neighbor, λ(I),
and next-to-nearest neighbor, λ(I I). The coordinates of the four nearest neighbors of the atom at lattice
site i in Figure 1 are given as

δ1

a
= −a1,

δ3

a
= a2,

δ5

a
= a1,

δ7

a
= −a2, (8)

those of the next-to-nearest neighbors by

δ2

a
= −a1 + a2,

δ4

a
= a1 + a2,

δ6

a
= a1 − a2,

δ8

a
= −a1 − a2. (9)

The EDR including both interactions is given by [9]

E(k) = ε− λ(I) ∑odd j eik·δj − λ(I I) ∑even j eik·δj

= ε− λ(I)2 [cos 2πk1a + cos 2πk2a]

− λ(I I)2 [cos 2π(k1 + k2)a + cos 2π(k1 − k2)a] .

(10)

Here, k1 and k2 are the components of k in the reciprocal lattice basis, k = k1b1 + k2b2, and the
sign convention for λ(I), λ(I I) is that of [12,41]. Accordingly, in terms of the components kx and ky,
the EDR is given by [12,41,42]

E
(
kx, ky

)
= ε − λ(I)2

(
cos kxa + cos kya

)
− λ(I I)4 cos kxa cos kya,

0 ≤ kxa, kya ≤ π .

(11)

In Figure 2, we show the corresponding energy surface (left) and the plot of isofrequency contours
(right) in the quasimomentum plane (kx, ky).

Figure 2. Band structure of a square lattice: the energy surface (left) and the isofrequency contours
(right) in the (kx, ky) quasimomentum plane.

The DOS is obtained from Equation (11) by integration,

g(E) =
a2

π2

∫ π/2

0
dkx

∫ π/2

0
dkyδ(E− E(k)), (12)
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where δ() is Dirac’s δ-function. For λ(I I)/λ(I) ≤ 1/2 it is given by [12]

g
(
Ẽ
)

=
4K(k2

1)

π2
√
(1+2λ(I I)/λ(I))

2−8(λ(I I)/λ(I))Ẽ
,

k2
1 = 4(1−Ẽ)Ẽ

(1+2λ(I I)/λ(I))
2−8(λ(I I)/λ(I))Ẽ

,

0 < Ẽ < 1,

(13)

where Ẽ = E/8λ(I) + 1/2 and K(k2
1) is a complete elliptic integral of the first kind. For λ(I I) = 0,

i.e., only nearest-neighbor interactions, the DOS takes the simple form

g(Ẽ) =
4K(k2

1)

π2 , k2
1 = 4(1− Ẽ)Ẽ. (14)

Both in Equations (13) and (14), the DOS has a logarithmic singularity, called a van Hove
singularity [23] (vHs). The upper panels in Figure 3 show the DOS for six different values of λ(I I)/λ(I)

with λ(I) = 1 fixed for a finite-size square shaped square lattice with n1 × n2 = 42× 42 sites and
Dirichlet boundary conditions. Equation (11) provides the EDR of an infinitely extended square lattice.
For a finite-size sheet, the values of (k1, k2) and (kx, ky) are discretized, depending on the shape of the
sheet. Numerically, the determination of the eigenvalues and wave functions of a lattice with N atoms

involves the diagonalization of an N-dimensional matrix. The eigenvector component c(κ,κ′)
i,i′ , with

(i, i′) and (κ, κ′) denoting the discretized coordinates (x, y) and quasimomenta (kx, ky), respectively,
yields the amplitude of the wave function associated with the eigenvalue at the corresponding lattice
site [43].

Figure 3. Density of states ρ(E) (upper panels) and the corresponding participation ratios PRloc(E)
for all eigenstates of the fundamental vibration of a 42× 42 square lattice with square shape and with
Dirichlet boundary conditions. They are shown for six values of the relative second-neighbor hopping
interaction strength with respect to that for nearest-neighbor hopping, λ(I I)/λ(I). Red (dark gray)
marks highlight the most localized at the vHs. The detailed λ(I I)/λ(I)-dependence of the PRloc for
these two states will be the focus of Section 5.

We also determined the quasimomenta corresponding to the eigenstates. For this, we computed
the momentum distributions, which were obtained from the Fourier transform of the wave functions
ψn(x, y),

ψ̃n(kx, ky) =
∫

Ω
dxdyψn(x, y)e−i(kx x+kyy) . (15)

It is peaked at the quasimomenta (kx, ky) associated with the state ψn(x, y).
We display examples for these wave functions and the associated momentum distributions in

Figure 4. We consider to this end the case of a square shaped lattice with nx = ny = 42 sites, which was
cut out parallel to the basis vectors a1,2 from an infinitely extended square lattice. The total number of
states is here nx × ny = 1764. In Figure 4, we show the squared wave functions, i.e., the intensities∣∣∣c(κ,κ′)

i,i′

∣∣∣2, obtained numerically by diagonalizing the Hamiltonian Equation (4). At the lower band edge,
shown in the first row of Figure 4, the wave functions represent vibrations of the lattice as a membrane.
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Around the vHs at ν = 882, shown in the second row of Figure 4, we have the occurrence of some
unusual features consisting of stripes, particularly evident for the wave function ν = 880. This spatial
localization will be discussed further in Section 5. At the upper the band edge the wave functions
represent again membrane-like vibrations of the lattice. These wave functions, with the index counted
from the upper band edge down, differ from those counted from the lower band edge up only in the
signs of their components. The figures also include momentum distributions. They are peaked around
the minimum and the maximum of the EDR for eigenvalues close to the band edges, and along the
equipotential contour connecting the saddle points of the EDR around the van Hove singularities.

Figure 4. Square lattice with n1 × n2 = 42× 42 sites. Squared wave functions (two upper rows) and
momentum distributions (two lower rows) of states ν = 16− 20 at the lower band edge (first and third
row, respectively) and ν = 877− 881 around the van Hove singularity at ν ' 882 (second and fourth
row, respectively).

The results in Figure 4 are for a square lattice with square-shape and Dirichlet boundary
conditions. Similar studies have been done for square lattices with a rectangular shape of the boundary.
Furthermore, we considered square and rectangular shaped sheets, which were cut out of a square
lattice not along the rows of the square lattice but along diagonal lines, i.e., along next-to-nearest
neighbor atoms. For a square-shaped boundary, the wave function patterns are similar to those shown
in Figure 4 at the band edges. This is in accordance with the findings of Reference [33], that, at the
band edges, the spectral properties of a lattice only depend on the shape of the sheet. At the van Hove
singularities, we again observe the occurrence of stripes in the wave function patterns; however, here
they are parallel to the sides of the sheet, not to the diagonal as in Figure 4. In conclusion, the striped
structure of the wave functions observed at the van Hove singularities persists independently of the
shape of the sheet.

4. Hexagonal Lattice

The spectral properties of the hexagonal lattice are of particular interest in applications to
graphene [2] and artificial graphene [22,33,44]. The symmetry adaptation of this lattice, Figure 5,
was discussed in [12]. The unit cell can also be viewed as composed of two triangular subcells A and B.
The basis vectors ai and bi generating each triangular lattice and the reciprocal lattice, respectively, are
given as

a1 =
a
2
(3,
√

3), a2 =
a
2
(3,−

√
3), (16a)

b1 =
2π

3a
(1,
√

3), b2 =
2π

3a
(1,−

√
3), (16b)
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with a denoting the distance between neighboring atoms. Within the unit cell, with symmetry D6h,
we have three types of interactions, nearest neighbor, λ(I), next-to-nearest neighbor, λ(I I), and third
neighbor, λ(I I I). The interaction λ(I I) couples atoms within the same subcell, while λ(I) and λ(I I I)

couple atoms in subcell A with those in subcell B. The coordinates of the three nearest neighbors of the
atom at lattice site i in Figure 5 are given as

δ1 = −1
3
(a1 + a2), δ5 = a1 + δ1, δ9 = a2 + δ1 . (17)

3

2

1

12

11 x

y

5

9

4

6

8

7
i

AB

2

4

3

1

5

6

Figure 5. The unit cell (left) and the supercell (right) of a hexagonal lattice. The cells exhibit armchair
edges in the x-direction and along rows with angle 2π/3 with respect to the x-axis and zigzag edges in
the y-direction and along rows with angle π/3 with respect to the x-axis.

Since the hexagonal lattice is composed of two interpenetrating triangular lattices, one has to
diagonalize a 2× 2 matrix ∣∣∣∣∣ HAA − E HAB

HBA HBB − E

∣∣∣∣∣ = 0, (18)

in order to obtain the EDR for an infinite-size hexagonal lattice [4]. Taking into account only
nearest-neighbor interactions, the off-diagonal elements are given as

HAB = λ(I) ∑j=1,5,9 eik·δj

= eik·δ1
(
1 + eik·a1 + eik·a2

)
HBA = H?

AB.

(19)

Choosing HAA = HBB = 0, the diagonalization of Equation (18) yields for the EDR in terms of
the components k1 and k2 of k in the reciprocal lattice basis

E (k1, k2) = ∓λ(I)
√

3 + 2 [cos 2πak1 + cos 2πak2 + cos 2πa(k1 − k2)], (20)

and with k1 =
(

3kx +
√

3ky

)
/4π, k2 =

(
3kx −

√
3ky

)
/4π in the (kx, ky) plane

E
(
kx, ky

)
= ∓λ(I)

√
3 + u(kx, ky),

u(kx, ky) = 2 cos
√

3aky + 4 cos
√

3
2 aky cos 3

2 akx.
(21)

The EDR including the next-to-nearest neighbor interactions is given by [2,12]

E
(
kx, ky

)
= ∓λ(I)

√
3 + u(kx, ky)− λ(I I)u(kx, ky) . (22)

Figure 6, left panel, shows the two sheets of the energy surface, Equation (21), of an infinite size
hexagonal lattice, in the quasimomentum plane (kx, ky), where kxa and kya are varied within the first
Brillouin zone. The energy surfaces touch each other conically at the corners of the first Brillouin zone.
The right panel shows the corresponding plot of isofrequency contours in the quasimomentum
plane (kx, ky).
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Figure 6. Band structure of a hexagonal lattice: the two-fold energy surface (left) and the isofrequency
contours (right) in the (kx, ky) quasimomentum plane.

The DOS associated with Equations (20) and (21) can be written in explicit analytic form [45] in
terms of an elliptic integral

g(ω) = 9
π2

√
1−2ω

3 K

(√
ω(2−3ω)3

(1−2ω)

)
,

0 < ω < 1
3 ,

g(ω) = 9
π2

(1−2ω)√
3ω(2−3ω)3 K

(√
(1−2ω)

ω(2−3ω)3

)
,

1
3 ≤ ω ≤ 1

2 ,

(23a)

where ω =
(
Ẽ + 1

)
/2, Ẽ = E/3λ(I), −1 < Ẽ < 1. This function has two van Hove singularities

(vHs±) at Ẽ = ±1/3 and a Dirac point (DP) at Ẽ = 0. Equations (21) and (22) provide the EDR
of an infinite-size hexagonal lattice. We are interested in wave function properties of finite sheets.
The corresponding quasimomentum components (kx, ky) take discrete values (κ, κ′), which depend
on the shape of the sheet. Furthermore, for finite-size lattices, the DOS has an additional peak at
E = 0. The upper panels in Figure 7 show the DOS of a hexagonal lattice with Africa shape [22,34]
and Dirichlet boundary conditions for six different values of λ(I I)/λ(I) with λ(I) = 1 fixed and
λ(I I I) = −λ(I I)/2. The peak at E ' 0 is attributed to the edge states that are localized along the
zigzag edges in the lattice structure. Note that the positions of the van Hove singularities vHs± and
also of the DP are slightly shifted with increasing λ(I I)/λ(I) as expected from tight-binding model
calculations [46].

For the general case of a sheet with N sites, the energies and wave functions can be obtained by
diagonalizing an N-dimensional matrix. We show in Figure 8 the wave functions of a hexagonal lattice
with rectangular shape with N = 1656 sites and Dirichlet boundary conditions, including both space
and momentum distributions. The zigzag edges are parallel to the longer sides of the rectangle and the
lattice consists of in total 24 rows of 34 and 35 lattice sites, respectively. At the lower band edge, see
the first row of Figure 8, the wave functions represent vibrations of the lattice as a membrane, similarly
as in the square lattice. Around the vHs−, shown in the second row of Figure 8, the wave functions
exhibit a striking structure consisting of stripes along interior zigzag lines. This behavior, already seen
in the square lattice, is even more pronounced here. Around the DP, see the third row of Figure 8, we
observe the above mentioned edge states. Their wave functions are concentrated at the zigzag edges
of the lattice, and are vanishingly small everywhere else. The situation repeats at the vHs+, with clear
stripes, and at the upper band edge, with membrane-like vibrations. The only difference between the
wave functions at the lower and upper band edges is the sign of wave-function components at the

sites of the lattice, c(κ,κ′)
i,i′ . The fourth to sixth rows in Figure 8 show the corresponding momentum

distributions. Near the lower band edge (fourth row), they are peaked around the Γ point of the EDR,
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on equienergy lines of the M points close to the vHs (see fifth row) and around the K points in the
vicinity of the DP (sixth row).

Figure 7. As in Figure 3, but for a hexagonal lattice with Africa shape consisting of 1979 sites. Red
squares highlight the most localized states at the Dirac point (DP), the lower van Hove singularity
vHs−, at the upper one (vHs+) and at the upper band edge. The detailed λ(I I)/λ(I)-dependence with
λ(I) = 1 fixed and λ(I I I) = −λ(I I)/2 of the PRloc for these four states will be the focus of Section 5.
The results are similar for the hexagonal lattice with rectangular shape, and therefore are not shown.

Figure 8. Hexagonal lattice with rectangular shape with 1656 sites (24 rows of 34 and 35 sites,
respectively) and zigzag edges parallel to the longer sides. Squared wave functions (three upper
rows) and momentum distributions (three lower rows) of states ν = 11− 16 at the lower band edge
(first and fourth row, respectively), of ν = 619− 623 around the lower van Hove singularity vHs− at
ν ' 619 (second and fifth row, respectively) and of states ν = 824− 828 around the DP at ν = 828
(third and sixth row, respectively).

The results in Figure 8 are for a rectangular shape of the lattice. In view of the remarkable
properties of the wave functions at the van Hove singularities, we have also investigated the wave
functions for more complicated shapes, in particular the Africa shape [22,34,47–49]. We show in
Figure 9 again the wave functions at the lower band edge (first row), the vHs− (second row), and the
DP (third row) for Dirichlet boundary conditions. For such shapes, we also observe the extraordinary
features described in the paragraphs above. In addition, at both van Hove singularities, the stripes
appear along all three equivalent zigzag directions. Two of these, inclined at angles ±2π/3 to the
horizontal axis, were not seen in the rectangular shape due to boundary effects. In addition, the
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momentum distributions are extended to the whole hexagonal equienergy contour corresponding to
the vHs, in contrast to the rectangular shape, fifth row in Figure 8.

Figure 9. Hexagonal lattice with Africa shape with 1979 sites. Squared wave functions (three upper
rows) and momentum distributions (three lower rows) of states ν = 6− 10 at the lower band edge
(first and fourth row, respectively), of ν = 736− 740 around the lower van Hove singularity vHs− / at
ν ' 738 (second and fifth row, respectively) and of states ν = 996− 1000 around the DP at ν = 990
(third and sixth row, respectively).

5. Localization Properties

We illustrated in the previous sections that the wave functions of the square and hexagonal lattice
are localized into stripes at the van Hove singularities and for the latter in addition at the zigzag edges
around the DP. In this section, we quantify the localization in terms of participation ratios [50,51] in

the local basis, defined for 2D lattices through the wave function components c(κ,κ′)
i,i′ at sites (i, i′) with

(κ, κ′) denoting the discretized quasimomenta (kx, ky) as

PRloc
(κ,κ′) =

1

∑ii′
∣∣∣c(κ,κ′)

i,i′

∣∣∣4 . (24)

Similar results are obtained for the Shannon entropy [52]. Note that, in order to reproduce the
DOS of real graphene, nonzero second- and third-neighbor interactions had to be introduced [9,53].
Accordingly, we are particularly interested here in how localization is influenced by (i) the addition
of second- and third-neighbor interactions, and (ii) noise affecting the hopping coefficients λ(I), λ(I I)

and λ(I I I). For this, we keep λ(I) = 1 fixed and vary λ(I I) and λ(I I I). Since, in general, in a square
lattice λ(I I I) � λ(I), we can neglect it in the study of their localization properties. In hexagonal
lattices, on the other hand, λ(I I I) ' −λ(I I)/2 [33], so, in the corresponding studies, we simply chose
λ(I I I) = −λ(I I)/2 and λ(I) and λ(I I) with opposite sign [54].
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Figure 3 shows the DOS (upper panels) and the corresponding participation ratio of the
fundamental vibration of a square lattice with Dirichlet boundary conditions and square shape for
six different values of λ(I I)/λ(I). Here, the values of the hopping coefficients λ(I), λ(I I) are the same
for each lattice site. We see from this figure that around the vHs-energy E ≈ 0, states of increased
localization persist even for large values of the relative strength λ(I I)/λ(I) ≤ 1.0 of the second-neighbor
interactions, identified by small values of PRloc around the singularity. However, a close inspection
reveals that the minimum PRloc jumps abruptly from PRloc ≈ 76 at λ(I I) = 0 to a value saturated
at PRloc ≈ 410, for an infinitesimally small value λ(I I)/λ(I) > 0, as checked numerically down to
λ(I I)/λ(I) = 10−10. The corresponding striped eigenstate for λ(I I) = 0 is nonvanishing only along one
of the diagomals and the two neighboring ones. For λ(I I) > 0, it spreads into states resembling the
eigenstates of a lattice with pure second-neighbor interaction, i.e., λ(I I) 6= 0, λ(I) = 0 (not shown here),
in which the vibration involves only one half of the lattice sites. This is reflected in the fact that the
saturation value of PRloc at the vHs for λ(I I)/λ(I) > 0 equals one half of the value corresponding to
the ground state, which is PRg.s.

loc ≈ 822, indicating that the wave function components are nonzero
on one half of the sites. Accordingly, stripes are not present in the square lattice for λ(I I)/λ(I) > 0
independently of the shape of the boundary.

Figure 7 shows the participation ratios of the fundamental vibrations of the hexagonal lattice
with an Africa shape. The corresponding results for a rectangular shape are not shown because they
are qualitatively similar to those for the Africa shape. As stated above, we included third-nearest
neighbor interactions in this case where we chose λ(I I I) = −λ(I I)/2. Similarly to the situation in the
square lattice discussed above, this figure indicates remarkable localization properties. In particular,
the minimum value of PRloc at the DP (EDP = 3/2λ(I I)) is practically independent of |λ(I I)/λ(I)|,
underlining the robustness of the edge states. However, the minimum values of PRloc near the
lower and the upper van Hove singularities (EvHs± = ±λ(I) + λ(I I)) show a jump at small values of
|λ(I I)/λ(I)| . 0.001, from PRloc ≈ 124 to PRloc ≈ 238 for the Africa shape and from PRloc ≈ 140 to
PRloc ≈ 500 for the rectangular one. These values for PRloc already indicate that the localization as
compared to the ground state, where PRloc equals half the number of sites, is stronger in the former case
than in the latter. In contrast to the square lattice, the peculiar striped states persist for the van Hove
singularities even though they are broader above |λ(I I)/λ(I)| ' 0.001 as indicated by the respective
participation ratio. Above |λ(I I)/λ(I)| ' 0.2, a third peak appears in the DOS near the upper band
edge. There, at the vHs+, the stripes disappear with increasing |λ(I I)/λ(I)| and the wave functions
become more and more localized at the armchair edges, that is, e.g., in the hexagonal lattice with
rectangular shaped at the shorter sides. This is illustrated in the upper rows of Figures 10 and 11.

Figure 10. Wave functions in the hexagonal lattice with rectangular shape with 1656 sites (24 rows of
34 and 35 sites, respectively) with minimal participation ratios at the vHs− (left column), the vHs+

(middle column) and at the peak in the density of states (right column) emerging at the upper band
edge for |λ(I I)/λ(I)| & 0.25. They are shown for |λ(I I)/λ(I)| = 0.2. At the vHs−, the wave function is
localized along interior zigzag edges, whereas, for the upper one vHs+, it is strongly localized at the
armchair edges. The upper row shows wave functions for the noiseless case, the lower one with noise.
Localization is considerably enhanced in the latter case.
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Figure 11. The same as in Figure 10 for the Africa-shaped hexagonal lattice with 1979 sites.

Examples are shown for wave functions at minimal values of the participation ratio close to the
vHs−, the vHs+ and the peak in the DOS appearing above |λ(I I)/λ(I)| ' 0.2 for |λ(I I)/λ(I)| = 0.25.
In both cases, the wave functions are localized in broadened stripes along interior zigzag edges at the
vHs−, strongly localized at armchair edges at the vHs+ and within the lattice at the third peak in the
DOS. Note that this feature at the vHs+ is opposite to that near the DP, where the wave functions are
localized at the zigzag edges. This persistence of the striped structure at vHs− and its disappearance
at the vHs+ and the simultaneous increase of the localization at the armchair edges is reflected in the
corresponding participation ratios.

Substantially different behaviors between the square and the hexagonal lattices are observed
under the influence of noise. We introduce the noise by generating individual hopping coefficients
λ
(n)
ij , n = I, I I, I I I at each site i, j in the general Hamiltonian of Equation (3) randomly with a uniform

distribution, yielding λ
(n)
ij = λ(n)(1 + δ

(n)
ij ), where we again set λ(I I I) = −λ(I I)/2. Here, λ(n) denotes

the average value across the whole lattice and |δ(n)ij | denotes the noise strength with respect to λ(n) at
site (i, j).

In Figure 12, we show the evolution of the participation ratios of the vHs-states compared to that
of the ground states (g.s.) of the square lattice as a function of λ(I I)/λ(I) without noise (left) and with
noise of relative strength |δ(n)ij | ≤ 10−2 (right). Note that the state with PRloc ≈ 76 in the noiseless

case at λ(I I) = 0 is due to the formation of stripes in the wave function structure (see Section 5).
Evidently, noise leads to an enhancement of localization at the vHs for λ(I I)/λ(I) . 0.03. For λ(I I) = 0,
the wave function is nonvanishingly only along one of the diagonals, as reflected in the corresponding
participation ratio, PRloc ≈ 51. With increasing λ(I I)/λ(I), the eigenstate at the vHs delocalizes not
abruptly, but smoothly until it saturates at PRloc ≈ 411 for λ(I I)/λ(I) & 0.03.

Figure 12. Evolution of the participation ratio PRloc(E) for the ground state (g.s.) and the most localized
state at the van Hove singularity (vHs) in a 42× 42 square lattice as a function of λ(I I)/λ(I). The case
of no noise (left), corresponding to situations shown in Figure 3, is compared to weak noise affecting

λ(I) and λ(I I), with relative strength |δ(n)ij | ≤ 10−2 (right).
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Similarly to the square, the noise in the hexagonal lattice acts against, and surpasses, the effect of
delocalization caused by the second- and third-neighbor interaction, as can be seen in Figures 13 and 14.
Compared to the noiseless situation with an abrupt jump for |λ(I I)/λ(I)| > 0 (left panels), in the noisy
case, increasing |λ(I I)/λ(I)| induces instead a gradual rise in PRloc (right panels). In contrast to the
square lattice, the localization of the striped states at the vHs− is enhanced in the noiseless case even for
|λ(I I)/λ(I)| & 0.03, where saturation of the participation ratio takes place. The minimal participation
ratio at the vHs+ gradually decreases with increasing |λ(I I)/λ(I)| for the rectangular shape both with
and without noise until it saturates at around |λ(I I)/λ(I)| ' 0.24 similar to that at the third peak
appearing in the DOS above |λ(I I)/λ(I)| ' 0.2. The localization of the latter is considerably enhanced
when turning on the noise. Similar results are obtained for the Africa shape; however, there the
minimal participation ratio at the vHs+ starts to decrease only at |λ(I I)/λ(I)| ' 0.2, simultaneously
with the occurrence of the third peak in the DOS at the upper band edge.

Figure 13. Evolution of the participation ratio PRloc(E) for the ground state (g.s.) and the most localized
states at the van Hove singularities vHs− (squares) and vHs+ (triangles up), the DP (disks) and at
the peak emerging in the DOS at the upper band edge (UBE) for λ & 0.20 (triangles down) in the
hexagonal lattice with 1656 sites (24 rows of 34 and 35 sites, respectively) as a function of λ(I I)/λ(I)

with λ(I I I) = −λ(I I)/2. The case of no noise (left), corresponding to situations shown in Figure 3,

is compared to weak noise affecting λ(I), λ(I I) and λ(I I I), with relative strength |δ(n)ij | ≤ 10−2 (right).

Localization is enhanced when introducing noise up to about |λ(I I)/λ(I)| . 0.03, where the value of
PRloc(E) saturates for the vHs− at the same values as in the noiseless case, whereas it starts to decrease
again at the vHs+ and saturates when the third peak appears in the DOS.

Figure 14. The same as in Figure 13 for the Africa-shaped hexagonal lattice with 1979 sites. Localization
is considerably enhanced as compared to the hexagonal lattice with rectangular shape. The participation
ratio PRloc(E) is reduced to about one quarter of that for the ground state for both cases. In stark
contrast to the square lattice (cf. Figure 12), the noise surpasses the delocalizing effect of λ(I I,l I I) for
values of |λ(I I)/λ(I)| . 0.016 and localization is enhanced with respect to the noiseless case up to
slightly above that value. The localization of the wave functions with minimal PRloc(E) at the vHs+

and at the upper band edge (UBE) is considerably enhanced when introducing noise.

In all, the localization is stronger in the hexagonal lattice with the shape of a classically chaotic
Africa billiard than in that with the shape of a rectangle with classically integrable dynamics. From
these observations, we may conclude that both the introduction of noise and the choice of the shape
of a billiard with classically chaotic dynamics enhance the localization at the peaks in the DOS. The
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comparison of the wave functions in the upper and lower rows of Figures 10 and 11 clearly corroborates
this behavior.

Finally, in order to illustrate the main object of study of this article, i.e., the striped structure
in the wave functions, we show in Figure 15, the smoothed probability density |c(κ,κ′)(x, y)|2
corresponding to such vibrations at the van Hove singularities of hexagonal lattices with rectangular
(left) and Africa-shaped (right) boundaries. This figure shows clearly the ripples of flexural modes in
graphene-like materials.

Figure 15. Selected striped wave functions (intensity |c(κ,κ′)(x, y)|2 shown) of the honeycomb lattices
with rectangular (left) and Africa (right) shapes.

We also note that physically relevant values of |λ(I I)/λ(I)| are 1/27 ' 0.04 for a Lennard–Jones
potential, ≈ 1/22 for artificial graphene [12] and ≈ 0.22 for graphene [53], thus we expect that the
effects discussed above can be realized experimentally. Although we do not report it, these localization
properties persist also for other shapes of the boundary, like sectors from a circle [55].

In our previous papers [12,22], a connection was made between van Hove singularities and
excited state quantum phase transitions (ESQPT) whose definition is given in [56,57]. In relation to this
connection, we note that the localization properties of the U(2)⊗U(2)⊗ ...⊗U(2) model described
here appear to be the same as those of U(n) models, described in [58]. The explicit relation between
van Hove singularities (and their associated striped wave functions) and ESQPT will be discussed in a
forthcoming publication.

6. Discussion

In this paper, the wave functions of square and hexagonal lattices (2D) have been studied.
The wave functions in 2D show remarkable properties at the van Hove singularities and at the Dirac
point. Particularly interesting are the properties at the van Hove singularities consisting of stripes.

In case of pure nearest-neighbor interactions, the striped states occur at van Hove singularities in
both the square and the honeycomb lattices. However, while in the square lattice, the striped states
disappear rapidly, when turning on second-nearest neighbor coupling λ(I I), and/or noise, in the
hexagonal lattice, the stripes—oriented parallel to the zigzag edges—persist to realistic values of
|λ(I I)/λ(I)| and become even more localized under the influence of weak noise. The orientations of
the stripes in finite hexagonal systems depend on the shape of the boundary, as we have demonstrated
by the rectangular and Africa shapes with regular and chaotic spectral properties, respectively.
Localization may be enhanced by either introducing noise or chaoticity or, even better, both. The results
of Section 5 explicitly show that graphene shares many properties of soft membranes [5] (Figure 8).

7. Conclusions

Although here we have concentrated on systems with Dirichlet boundary conditions and 1d
vibrations, the AMC [12] is quite general and can be used also for systems with cyclic boundary
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conditions. These are of interest in graphene ribbons [9] and carbon nanotubes (1D systems), and
finally in fullerene [10] (0D). The AMC can also be extended to 2d vibrations both in 1D and 2D
systems. This is done by inserting at each site the algebra g ≡ u(3) instead of g ≡ u(2).

In addition, we mention that, since the Hamiltonian (3) is formally identical for bosons and
fermions — the only difference being that for boson systems, we can put any number at each site,
while, for fermion systems, we can put only one (or two if spin is included)—the same properties of the
wave functions discussed here will appear in the equivalent fermion case, i.e., in the electronic band
structure of graphene. Finally, because of its generality, the AMC can be used for other two-dimensional
materials beyond graphene by adapting the boson operators of Section 2 to the appropriate symmetry
of the lattice.
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