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Abstract: Two new Co(II) complexes, [{Co(L)}2{Co(Pic)2(CH3OH)2}] (1) and [{CoL(µ-OAc)}2Co] (2),
where H2L = 2,2′-[Ethylenedioxybis(nitrilomethylidyne)]dinaphthol, were designed, synthesized and
characterized by elemental analysis, FT-IR spectra, UV-Vis spectra, and X-ray crystallography.
Complex 1 consists of two [CoL] and one [Co(Pic)2(CH3OH)2] (Pic = picrate) units and in the [CoL]
unit, the Co(II) atom is tetra-coordinated with a slightly distorted square-planar geometry. In the
[Co(Pic)2(CH3OH)2] unit, the Co(II) atom is hexa-coordinated with a slightly distorted octahedral
geometry. Meanwhile in complex 2, two acetate ions coordinate to three Co(II) atoms through
Co-O-C-O-Co bridges and four µ-naphthoxo oxygen atoms from two [CoL] units also coordinated
to the central Co(II) atom. Thus, complex 2 has two distorted square pyramidal coordination
geometries around the terminal Co(II) atom and an octahedral geometry around the central Co(II)
atom. The supramolecular structures of complex 1 is a 3D-network supramolecular structure
linked by C-H···O hydrogen bonds and π···π stacking interaction, but complex 2 possesses a
self-assembled 2D-layer supramolecular structure linked by C-H···π and π···π stacking interactions.
The structure determinations show that the coordination anions are important factors influencing the
crystalline array.

Keywords: Co(II) complex; Salamo-type ligand; synthesis; crystal structure; supramolecular
interaction; anion effects

1. Introduction

Salen-type compounds or their derivatives have received much attention not only because of
their versatile architectures and topologies tuned by metal ions and organic ligands [1–5], but also due
to their properties for potential applications in various areas, such as catalysis [6], bioscience [7–10],
host-guest chemistry [11–14], electrochemistry [15,16], magnetism [17–21], optical properties [22–28],
and molecular recognition [22,23,29,30]. More and more research programs have focused on
the syntheses of Salamo-type complexes by the structural motifs of substituent groups in recent
years [31–33], because the Salamo compounds are more stable than the Salen compounds [34].
The Salamo-type N2O2 ligands can easily coordinate with several different types of transition metal
ions in a tetradentate fashion to obtain stable mononuclear, multinuclear and hetero-polynuclear
complexes which have novel structures and excellent capabilities [35–37], such as, recognition of metal
cations, used as stereochemical catalysts, and to serve as optoelectronic materials.

There are many important factors, such as the metal ions, ligands, counter anions or coordination
anions, temperatures, pH values, and solvents [38–45], which always have a major influence on the
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construction of the coordination compounds. Among the groups that can be coordinated with metal
ions, apart from ligands, the coordination anion is one of the direct and obvious factors. In order
to further study the influencing factors on complex structures in the process of constructing metal
complexes with the Salamo ligands, we designed and synthesized a Salamo ligands H2L (Scheme 1)
and its two novel Co(II) complexes. The structures and spectral properties were studied. The results
presented herein indicate that the coordination anions have a significant influence on the structures of
the resulting complexes.
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Scheme 1. Chemical structure of the ligand H2L.

2. Experimental

2.1. Reagents and Physical Measurements

Commercially available 2-hydroxynaphthaldehyde was purchased from Aladdin Chemistry
(Aladdin, Shanghai, China), and other solvents from Tianjin Chemical Reagent Factory (Tianjin, China)
were analytical grade, which were used without further purification. C, H, and N analyses
were performed with a GmbH VariuoEL V3.00 automatic elemental analyzer. 1H NMR spectra
were measured at room temperature in CDCl3 solution on a Bruker 400 instrument recording
at 400 MHz frequency. FT-IR spectra were recorded on a VERTEX70 FT-IR spectrophotometer,
with samples prepared as KBr (400–4000 cm−1) and CsI (100–500 cm−1) pellets. UV-Vis absorption
spectra were determined on a Shimadzu UV-2550 spectrometer (Shimadzu, Tokyo, Japan). X-ray single
crystal structures were obtained on a Rapid Auto Version 3.0 Rigaku RAXIS-RAPID detector.
The melting points were determined by a micromelting point apparatus produced by BEIJING TAIKE
INSTRUMENT CO., LTD. (Beijing, China).

2.2. Synthesis of H2L

The compound 1,2-bis(aminooxy)ethane was synthesized by a similar method to that reported
previously [46,47] and 2,2’-[ethylenedioxybis(nitrilo-methylidyne)]dinaphthol (H2L) was synthesized
according to an analogous method reported previously in the literature [48,49]. A methanolic
solution (20 mL) of 1,2-bis(aminooxy)ethane (92.1 mg, 1.0 mmol) was added to a solution of
2-hydroxynaphthaldehyde (349.5 mg, 2.02 mmol) in ethanol (20 mL) and the mixture was stirred
at 55 ◦C for 4 h. Then the solvent was removed under reduced pressure and the residue was
recrystallized from ethanol to give the ligand H2L (897.5 mg, 56.5%). M.p. 157–158 ◦C. Anal.
Calcd for C24H20N2O4 (%): C, 71.99; H, 5.03; N, 7.00. Found: C, 71.81; H, 5.02; N, 6.85.
1H NMR (400 MHz, CDCl3, ppm) δ = 4.59 (s, 4H, CH2-O, CH2-O), 7.19 (d, J = 8.8 Hz, 2H, Ar-H),
7.25 (s, 2H, Ar-H), 7.35 (t, J = 3.6 Hz, 2H, Ar-H), 7.50 (t, J = 4.2 Hz, 2H, Ar-H), 7.78 (d, J = 8.8 Hz, 2H,
Ar-H), 7.94 (d, J = 8.4 Hz 2H, Ar-H), 9.22 (s, 2H, N=CH), 10.93 (s, 2H, ArO-H).

2.3. Synthesis of Complex 1

A pale-pink methanol solution (2 mL) of cobalt(II) picrate hexahydrate (6.14 mg, 0.01 mmol)
was added dropwise to a colorless methanol solution (2 mL) of H2L (4.00 mg, 0.010 mmol ) at room
temperature. The mixing solution turned yellow immediately and the filtrate was allowed to stand at
room temperature for about three weeks. Brown prismatic single crystals suitable for X-ray structural
determination were obtained by slow evaporation from ethanol solution. (Yield: 39% based on
Co(Pic)2·6H2O). Anal. calcd. for C62H48Co3N10O24 (%): C, 49.85; H, 3.24; N, 9.38. Found: C, 49.97;
H, 3.52; N, 9.21.
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2.4. Synthesis of Complex 2

Complex 2 was prepared by a similar procedure as complex 1 except for replacing cobalt(II) picrate
hexahydrate with cobalt(II) acetate tetrahydrate. (Yield: 32% based on Co(OAc)2·4H2O). Anal. calcd.
for C52H42Co3N4O12 (%): C, 57.21; H, 3.88; N, 5.13. Found: C, 57.34; H, 3.93; N, 5.17.

2.5. Crystal Structure Determinations of Complexes 1 and 2

The single crystals of complexes 1 and 2 with dimensions of 0.27 × 0.25 × 0.22 mm and
0.17 × 0.09 × 0.07 mm were placed on a Bruker Smart 1000 diffractometer equipped with an Apex
CCD area detector. The diffraction data were collected using a graphite monochromatic Cu Kα

radiation (λ = 1.54178 Å) and Mo Kα radiation (λ = 0.71073 Å), respectively. Empirical absorption
correction was applied to the data using the SADABS program. The structure was solved by direct
methods and refined by the full-matrix least squares method on F2 using the SHELXL program.
All non-hydrogen atoms were refined anisotropically. All the hydrogen atoms were generated
geometrically and refined isotropically using the riding model. Details of the crystal parameters,
data collection and refinements for complexes 1 and 2 are summarized in Table 1. The complete
crystallographic data was deposited as a CIF file in the Cambridge Structural Database (CCDC Nos.
1522381 and 1522382 for complexes 1 and 2) and are available freely upon request citing the deposition
number from the web site: www.ccdc.cam.ac.uk/data_request/cif.

Table 1. Crystal data and structure refinement for complexes 1 and 2.

Complex 1 2

CCDC 1522381 1522382
Molecular formula C62H48Co3N10O24 C52H42Co3N4O12
Molecular weight 1493.89 1091.69

T/K 296(2) 293(2)
Wavelength (Å) 1.54178 0.71073
Crystal system Monoclinic Triclinic

Space group P2(1)/n P-1
a/Å 15.0756(5) 8.9123(7)
b/Å 10.7672(3) 11.9798(9)
c/Å 18.6410(7) 12.2170(7)
α/(◦) 90 111.581(6)
β/(◦) 96.886(2) 97.655(6)
γ/(◦) 90 92.885(6)
V/Å3 3004.02(17) 1195.13(14)

Z 2 1
Dc/(gcm−3) 1.652 1.517
µ/(mm−1) 7.246 1.098

F (000) 1526 559
Crystal size (mm) 0.27 × 0.25 × 0.22 0.17 × 0.09 × 0.07

θ range for data collection (◦) 3.57 to 64.96 3.6740 to 28.4740
h/k/l (max, min) −17, 17/−11, 12/−21, 21 −11, 11/−16, 13/−14, 15

Reflections collected 18107 9426
Independent reflections 5095/0.0569 4687/0.0305
Completeness to θ (%) 99.7 99.7

Data/restraints/parameters 5095/0/389 4687/0/323
GOF on F2 1.032 0.908

Final R1, wR2 [I > 2σ(I)] R1 = 0.0593, wR2 = 0.1043 R1 = 0.0446, wR2 = 0.1326
R1, wR2 indices (all data) R1 = 0.0904, wR2 = 0.1331 R1 = 0.0579, wR2 = 0.1435

Largest differences peak and hole/eÅ−3 −0.793, 0.740 −0.334 and 0.410

www.ccdc.cam.ac.uk/data_request/cif
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3. Results and Discussion

The complexes 1 and 2 were prepared by reaction of ligand H2L with cobalt(II) picrate hexahydrate
and cobalt(II) acetate tetrahydrate in ethanol, respectively. All compounds are stable in air. They are
soluble in polar aprotic solvents such as DMF, DMSO, and MeCN, slightly soluble in water, ethanol,
ethylacetate, and chloroform, and insoluble in Et2O and petroleum ether. The elemental analyses show
their different compositions.

3.1. IR Spectra

The IR spectra of H2L and its corresponding complexes 1 and 2 exhibit various bands in the
400–4000 cm−1 region (Figure 1). The most important IR bands are listed in Table 2. In general,
the O-H stretching frequency of most compounds is usually expected in the 3300–3800 cm−1 region,
but this frequency of the free ligand H2L is displaced to 3437 cm−1 because of the intramolecular
hydrogen bond O-H···N=C interaction. The free ligand exhibits characteristic C=N stretching bands
at 1631 cm−1, while those of complexes 1 and 2 were observed at 1603 and 1611 cm−1, respectively.
The C=N stretching frequencies are all shifted to lower frequencies by 28 cm−1 and 20 cm−1 upon
complexation, indicating a decrease in the C=N bond order due to the coordinated bond of the Co(II)
atom with the imino nitrogen lone pair [50]. The Ar–O stretching frequency appears as a strong band at
1284 cm−1 for H2L and at 1234 cm−1 for complex 2. Meanwhile, a bending vibration of phenolic alcohol
in H2L at 1182 cm−1, which disappears in the complexes, indicated the phenol hydroxy groups of
H2L were protonated and the oxygen atom coordinated to the Co(II) ions [13,15]. The Ar-O stretching
frequency was shifted to a lower frequency, indicating that a Co-O bond had been formed between the
Co(II) ion and phenolic oxygen atom of the ligand.
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Figure 1. IR spectra of H2L and the Co(II) complexes 1 and 2.

Table 2. The most important IR bands of the ligand H2L and complexes 1 and 2 (cm−1).

Compound ν(O-H) ν(C=N) ν(Ar-O) ν(Co-N) ν(Co-O) ν(C=C) Benzene Ring Skeleton

H2L 3442 1631 1284 — — 1572 1472 1422
Complex 1 3422 1603 1223 452 431 1548 1467 1436
Complex 2 3425 1611 1234 446 422 1534 1458 1429

The far-infrared spectra of complexes 1 and 2 were also obtained in the region 500–100 cm−1 in
order to identify frequencies due to the Co–O and Co–N bonds. The FT-IR spectra of the complexes 1
and 2 showed ν(Co–N) and ν(Co–O) vibration absorption frequencies possibly at 452, 446 cm−1 and
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431, 422 cm−1, respectively. But as pointed out by Percy and Thornton [51], the metal–oxygen and
metal–nitrogen frequency assignments are at times very difficult.

3.2. UV-Vis Spectra

The UV-Vis absorption spectra of H2L and its corresponding complexes 1 and 2 in
5.0 × 10−5 mol·L−1 DMF solution are shown in Figure 2. The electronic absorption spectrum of
the free ligand H2L consists of two relatively intense bands at 230 nm, 316 nm and one weak band at
357 nm, the first absorptions observed at 230 nm and 316 nm can be signed to the π-π* transition of the
benzene rings, while the absorption peak at 357 nm was attributed to the intra-ligand π-π* transition
of the oxime group [52]. The complexes 1 and 2 show almost identical UV–Vis absorption spectra.
The absorption bands around 313 nm are only marginally red-shifted (4–6 nm) in the spectra of the
complexes. Upon coordination of the ligands, the absorption bands at about 357 nm disappeared and
the new bands at 256 nm appeared in the UV-Vis spectra of the complexes 1 and 2, which indicates
that the oxime nitrogen atoms are involved in coordination to Co(II) atoms [53]. In addition, the other
new absorption peak is observed at ca. 391 nm in Co(II) complexes, which is attributed to the M→L
charge-transfer transition. This is characteristic of the transition metal complexes with Salen-type
ligands [54,55].
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Figure 2. UV-Vis absorption spectra of H2L and the Co(II) complexes 1 and 2 in dilute DMF solution at
room temperature (c = 5 × 10−5 mol/L).

3.3. Crystal Structure of Complexes 1 and 2

The crystal structures of complexes 1 and 2 with an atom numbering scheme is exhibited in
Figures 3 and 4. The selected bond lengths and angles of complexes 1 and 2 are in Table 3. The complex
1 crystallizes in the monoclinic system and P2(1)/n space group and Z = 1. The complex 1 consist of two
[CoL] and one [Co(Pic)2(CH3OH)2] molecules, and in [CoL] molecule, the Co1 atom is tetra-coordinated
by two phenoxy O and two oxime N atoms from one ligand anion L2−. The O1, O2, N1, N2 atoms from
the same ligand anion consist of the square plane with the dihedral angle of N1-N2-O1and O1-O2-N1
of 2.30◦, and the Co(II) atom deviates from the plane 0.069 Å. The Co–O/N bond distances in the
square plane are in the range of 1.917(2) to 2.013(2) Å. Therefore, the local coordination geometry
around the Co1 center can be described as a distorted square-planar as shown in Figure 3b.
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The [Co(Pic)2(CH3OH)2] molecule is rigorously centrosymmetric, and contains one Co(II) center,
two Pic− and two coordinated methanol molecules. The Co(II) atom is hexa-coordinated by two
phenoxy O and two nitro O atoms from two Pic−, and the other two O atoms from two coordinated
methanol molecules to form an octahedral geometry as shown in Figure 3b. The O6, O11, O6i, and O11i

atoms constitute the equatorial plane with the dihedral angle of O6-O6i-O11 and O11-O11i-O6 of 0.00◦,
and the Co(II) atom strays from the plane 0.00 Å. The Co-O/N bond distances in the equatorial plane are
in the range of 1.904(2) to 2.335(2) Å. The axial positions are occupied by O12 and O12i from methanol
molecules with bond lengths of 1.993 Å. The trans-coordination angles of O12-Co2-O12i, O6i-Co2-O6,
O11i-Co2-O11 are all 180.0◦, whereas the cis-coordination angles of O12-Co2-O6, O11-Co2-O6,
O12-Co2-O11 are 82.92(6)◦, 81.33(7)◦, 89.82(7)◦, respectively. Therefore, the local coordination geometry
around the Co2 center can be described as a slightly distorted octahedron.

According to the above, this complex is very interesting from the structural point of view.
First, complex 1 with the picrate anion contains in the crystal structurethe tetracoordinate molecule
[Co(L)] with a distorted square planar coordination geometry. This geometry is rather rare for the
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Co(II) complexes, especially when the abundance of this topology is compared with the tetrahedral
and distorted tetrahedral geometries. Second, in the CSD only five other examples of Co(II) complexes
with coordinated picrate anions can be found. Two of them, the nitro oxygen atoms of the picrate anion
were not involved in coordination with Co(II) ions and in the other three Co(II) complexes [56–58],
the coordination mode of picric anions is consistent with the coordination pattern reported in
this paper. The Co-O(NO2) bond lengths in complex 1 is 2.335 Å, which is within the range of
previously published Co(II) complexes involving coordinated picrate anion with that of 2.459 Å,
2.190 Å, 2.110 Å, and 2.149 Å [57–59], respectively.

Table 3. Selected bond distances (Å) and angles (◦) for complexes 1 and 2.

1

Co1-O1 1.917(2) Co1-O2 1.936(2) Co1-N1 2.013(2)
Co1-N2 1.933(2) Co2-O11 1.904(2) Co2-O12 1.993(2)
Co2-O6 2.335(2) Co2-O11i 1.904(2) Co2-O12i 1.993(2)
Co2-O6i 2.335(2)

O1-Co1-N2 172.74(7) O1-Co1-O2 85.48(7) N2-Co1-O2 87.76(7)
O1-Co1-N1 86.78(7) N2-Co1-N1 99.72(8) O2-Co1-N1 170.84(8)

O11i-Co2-O11 180.0 O11i-Co2-O12i 89.82(7) O11-Co2-O12i 90.18(7)
O11i-Co2-O12 90.18(7) O11-Co2-O12 89.82(7) O12i-Co2-O12 180.0
O11i-Co2-O6i 81.33(7) O11-Co2-O6i 98.67(7) O12i-Co2-O6i 82.92(6)
O12-Co2-O6i 97.08(6) O11i-Co2-O6 98.67(7) O11-Co2-O6 81.33(7)
O12i-Co2-O6 97.08(6) O12-Co2-O6 82.92(6) O6i-Co2-O6 180.0

2

Co2-O6 2.037(2) Co2-O4 2.170(2) Co2-O1 2.143(2)
Co2-O6i 2.037(2) Co2-O4i 2.170(2) Co2-O1i 2.143(2)
Co1-O4 1.977(2) Co1-O5 1.980(2) Co1-O1 2.060(2)
Co1-N1 2.020(3) Co1-N2 2.045(3)

O4-Co1-O5 103.11(1) O4-Co1-O1 82.05(8) O4-Co1-N1 144.54(1)
O4-Co1-N2 87.49(9) O5-Co1-O1 94.72(10) O5-Co1-N1 111.18(1)
O5-Co1-N2 101.21(1) N1-Co1-O1 86.34(9) N1-Co1-N2 94.33(1)
N2-Co1-O1 162.59(1) O6-Co2-O4 90.42(9) O6-Co2-O1 89.82(9)
O6-Co2-O6i 180.0 O6-Co2-O4i 89.58(9) O6-Co2-O1i 90.18(9)
O6i-Co2-O1 90.18(9) O6i-Co2-O4 89.58(9) O6i-Co2-O4i 90.42(9)
O6i-Co2-O1i 89.82(9) O4i-Co2-O4 180.0 O1-Co2-O4i 104.19(8)
O1i-Co2-O4i 75.81(8) O1-Co2-O4 75.82(8) O1i-Co2-O4 104.19(8)
O1-Co2-O1i 180.0

Symmetry code: i 1 − x, 1 − y, −z.

The complex 2 crystallizes in the triclinic system and P-1 space group, Z = 2. The symmetric
[{CoL(µ-OAc)}2Co] unit consists of three Co(II) atoms, two ligand anion L2− units, and two coordinated
acetate ions. The terminal Co(II) atom (Co1 and Co1i) is penta-coordinated by two nitrogen atoms
(N1 and N2), two oxygen atoms (O1 and O4) in the N2O2 moiety of the L2− unit, and one oxygen
atom (O5) from the bridging acetate anion. Crystallographic data τ = 0.13 suggests a slightly distorted
tetragonal pyramid coordination arrangement for the complex 2 [59]. However, the coordination
geometry of the hexa-coordinated central Co2 atom deviates slightly from an ideal octahedron. The Co2
atom has an O2O2 donor set from four µ-phenoxo oxygen atoms (O1, O4, O1i, O4i) from two [CoL]
chelates. Meanwhile, each of the two acetate anions bridges the terminal Co1 and central Co2 atoms in a
syn-syn fashion. Hence the central Co2 atom finally has an O2O2O2 donor set, in which the coordination
sphere is completed by µ-phenoxo oxygen atoms (O1, O4, O1i, O4i) from two [CoL] chelates, and both
of oxygen atoms O6 and O6i from the ligating acetate ions which adopt a familiar µ-O-C-O fashion,
and constitute a slightly distorted octahedral geometry. The Co2-O bond distances are in the range of
2.037(2) to 2.170(2) Å, the coordinated angles of O1-Co2-O1i, O4-Co2-O4i, and O6-Co2-O6i are all 180◦.
Therefore, the local coordination geometry around the central Co2 atom can be described as deviating
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slightly from the ideal octahedron as shown in Figure 4b. The trinuclear structure is stabilized by the
two µ-acetato ligands bridging Co2-Co1 and Co2-Co1i with shorter separations of Co···Co (3.065 Å),
which neutralize the whole charge of complex 2.

3.4. Supramolecular Interaction of Complexes 1 and 2

It should be noted that important intermolecular hydrogen bonding interactions exist between
the molecules in complex 1 as listed in Table 4. Firstly, intermolecular hydrogen bonds between the
coordinated methanol molecules of [Co(Pic)2(CH3OH)2] unit and oxygen atoms of the µ-naphthoxo
group in the ligand anion L2− of [CoL] unit, O12-H12C···O1, are formed between the [CoL] and
[Co(Pic)2(CH3OH)2] units which link the neighboring one [Co(Pic)2(CH3OH)2] unit and two [CoL]
units into a tri-polymer as shown in Figure 5. In addition, every tri-polymer further links eight other
adjacent tri-polymer units into an infinite 3D–network supramolecular structure by four pairs of
intermolecular C11-H11···O7 and C21-H21···O10 hydrogen bonds (Figure 6) between the two -CH
groups of the ligand anion L2− in [CoL] units and the oxygen atoms of the picric acid anion Pic− in
[Co(Pic)2(CH3OH)2] units, respectively. Furthermore, this linkage is further stabilized by the π···π
stacking between the benzene ring (Table 5 and Figure 7) of the adjacent [CoL] and [Co(Pic)2(CH3OH)2]
units. Consequently, with the help of O-H···O and C-H···O hydrogen bonds, π···π stacking interactions,
the crystal structure of 1 shows an assembly 3D supramolecular network structure (Figure 8) introduced
by a coordinated picrate.

Table 4. The main hydrogen bonds [Å,◦] for complex 1.

D-H···A d(D-H) d(H···A) d(D···A) ∠∠∠D-H···A Symmetry Code

O12-H12C···O1 0.85 1.78 2.554(2) 150 x, y, −1 + z
C11-H11···O7 0.93 2.48 3.383(4) 165 1/2 + x, 1/2 − y, 1/2 + z
C21-H21···O10 0.93 2.57 3.463(2) 161 3/2 − x, −1/2 + y, 3/2 − z

Table 5. Putative π-π stacking interactions [Å] for complex 1.

Ring (I) Ring (J) d(Cg-Cg) d(Cg(I)-perp) d(Cg(J)-perp) Slippage

Cg5 Cg1 3.6242(13) 3.4264(9) 3.5081(9) 0.910
Cg1 Cg6 3.6684(13) −3.5593(9) 3.6439(9) 0.4232
Cg6 Cg4 3.6866(14) −3.3947(9) 3.5010(11) 1.155
Cg4 Cg7 3.7938(16) −3.4919(11) −3.6100(12) 1.167
Cg5 Cg6 3.6941(13) −3.2919(9) −3.3612(9) 1.533

Cg1, Cg4, Cg5, Cg6, and Cg7 are the centroids of benzene ring C25-C30, C1-C6, C1-C6-C10, C15-C20, and C19-C24
of complex 1, respectively.
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In the crystal structure of 2, a pair of intramolecular C13-H13A···O5 hydrogen bonds are formed
between the oxygen (O5) atom of the coordinated acetate anion and the –C13H13A group of the
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O-alkyl chain of L2− unit as shown in Figure 9. The hydrogen bond data are given in Table 6. Complex
2 is stabilized by intermolecular C6-H6···πcentroid(C19-C24) interactions between the -CH group of the
benzene ring and the aromatic rings of L2− unit linking the neighboring molecules into a 1D infinite
chain parallel to the c axis (Figure 10). Synchronously, this linkage is further stabilized by a pair of
intermolecular πcentroid(C15-C19,C24)-πcentroid(C19-C24) stacking interactions between the aromatic rings to
form the other 1D infinite chain along b axis (Figure 11 and Table 7). Then these two 1D chains interlink
with each other resulting in the crystal packing of 2 showing a 2D-layer supramolecular structure
parallel to the bc-planes (Figure 12).
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Table 6. The main hydrogen bonds [Å,◦] for complex 2.

D-H···A d(D-H) d(H···A) d(D···A) ∠∠∠D-H···A Symmetry Operation

C13-H13A···O5 0.97 2.31 3.233(4) 160 x, y, z
C6-H6···Cg2 3.753 3.119 2.93(2) 167 1 + x, y, 1 + z

Cg2 is the centroid of benzene ring C19-C24 of complex 2.
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Table 7. Putative π-π stacking interactions [Å] for complex 2.

Ring (I) Ring (J) Cg-Cg Cg(I)-perp Cg(J)-perp Slippage

Cg1 Cg2 3.703(2) 3.4883(14) 3.5153(16) 1.163

Cg1 and Cg2 are the centroids of benzene ring C15-C19, C24, and C19-C24 of complex 2, respectively.
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3.5. Anion Effects

Obviously, coordination anions play an important part in the formation of the above different
structures of Co(II) complexes. From the structure description, the free ligand H2L presents very
different coordination modes when different anions are involved in the coordination with Co(II)
atoms. Complexes 1 and 2 were prepared in exactly the same way from a mixture of ligand H2L
with Co(Pic)2·6H2O and Co(OAc)2·4H2O in methanol solution, respectively, but the big structural
differences in 1 and 2 suggest that the coordination anions indeed affect the ultimate structures of
the assemblies: when the Pic− is involved in the coordination with Co(II) atoms, the mononuclear
[CoL] unit, and the [Co(Pic)2(CH3OH)2] unit in the Co(II) complex 1 with distorted square-planar and
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slightly distorted octahedron coordination polyhedron formed, respectively. Meanwhile, the OAc−

involved in the coordination with Co(II) atoms resulted in a trinuclear structure with the acetate ions
coordinated to three Co(II) atoms through Co-O-C-O-Co bridges, possessing two distorted square
pyramidal and an octahedral geometry around the central Co(II) atom. As a unique structure of the
tetradentate coordination environment of N2O2, Salamo-type ligands have very good coordination
ability. However, for some of the transition metals, the coordination still has some limitations, thus
counter anions can easily coordinate with metal ions. In this article, the Pic− in complex 1 has a larger
volume which has a hard coordination with metal ions. While, the OAc− in 2 has less steric hindrance
than 1, it can easily coordinate to metal ions acting as a second ligand.

4. Conclusions

In summary, we successfully assembled and well characterized two novel Co(II) complexes
of Salamo-type ligands. The results presented herein indicate that the coordination anions have a
remarkable influence on the structures, coordination geometries, and supramolecular structures of
the resulting complexes: when the Pic− is involved in the coordination with Co(II) atoms, a stable
Co(II) complex contains the mononuclear [CoL] unit and the [Co(Pic)2(CH3OH)2] unit with a 3D
supramolecular network structure linked by C-H···O hydrogen bonds and π···π stacking interaction.
Meanwhile OAc− involved in the Co(II) complex resulted in a trinuclear structure with a 2D-layer
supramolecular structure linked by C-H···π and π···π stacking interactions. These results may provide
us with an interesting insight into how the assembly of Co(II) coordination compounds is affected by
the coordination anions.
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