Supplementary Materials: Incorporating the thiazolo[5,4-d]thiazole-unit into a coordination polymer with interdigitated structure

Simon Millan, Gamall Makhloufi, Christoph Janiak*

(a)

(b)

Figure S1. Section of the packing diagram of 2,5-di(4-pyridyl)thiazolo[5,4-d]thiazole (Dptztz), showing (a) the complementary $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$ hydrogen bonds and (b) the $\pi-\pi$ interactions, thereby giving a supramolecular layer in the $a b$ plane.
The next layer in the c direction is tilted by about 70°.
Details of C1-H1 $\cdots \mathrm{N} 1$ hydrogen bond: H1 $\cdots \mathrm{N} 12.55 \AA, \mathrm{C} 1 \cdots \mathrm{~N} 13.410(2) \AA$ A, $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{~N} 11^{\circ}$; details of $\pi-\pi$ interaction: Dihedral angle between planes $0.03(8)^{\circ}$, angle $\mathrm{Cg}(1)-->\operatorname{Cg}(\mathrm{J})$ and normal to plane I 18.7°, distance between ring centroids $3.7164(10) \AA$, perpendicular distance of $\mathrm{Cg}(\mathrm{I})$ on ring J $3.5206(7) \AA$, slippage $=$ distance between $\mathrm{Cg}(\mathrm{I})$ and perpendicular projection of $\mathrm{Cg}(\mathrm{J})$ on ring I 1.191 Å.

Zn
S
C
O
C
C
H

Figure S2. Asymmetric unit of [Zn(1,3-BDC)Dptztz]•DMF showing the ring-flip disorder of the thiazolothiazol moiety. The thiazolothiazol moiety was refined with a disorder model corresponding to a ring flip, which exchanges the S and N orientation, using PART n commands.
The occupation factors of the S and N atoms were refined to about 0.904 for the A atoms and 0.096 for the B atoms. Thus, the disorder is relatively minor with only about 9.6% of the S and N atoms in the flipped position. The major occupation sites of the disordered tztz-moiety are labelled with A , the minor ones with B. The methyl groups of the DMF molecule are disordered over two positions, they were refined independently concerning their occupation factors. This disorder does not give a perfect oriented $\mathrm{Me}_{2} \mathrm{~N}$ group but we decided to keep the slightly disordered DMF molecule instead of removing its contribution with SQUEEZE.

Figure S3. $\pi-\pi$ and $\mathrm{CH}-\pi$ interactions between the 2D layers in [$\mathrm{Zn}(1,3-\mathrm{BDC}) \mathrm{Dptztz}$]. See Table S1 for the supramolecular distances and angles.

Table S1. Distances [\AA] and angles [${ }^{\circ}$] for the shortest $\pi-\pi$ and $\mathrm{CH}-\pi$ supramolecular interactions between the 2D layers in [$\mathrm{Zn}(1,3-\mathrm{BDC}) \mathrm{Dptztz}]$.

$\pi-\pi$ interaction	$\mathrm{d}[\mathrm{Cg} 1 \cdots \mathrm{Cg} 2]$	α	β	γ	$\mathrm{d}\left[\mathrm{Cg} 1 \cdots \mathrm{P}_{2}\right]$	$\mathrm{d}\left[\mathrm{Cg} 2 \cdots \mathrm{P}_{1}\right]$	d
$\mathrm{Cg} 1 \cdots \mathrm{Cg}^{\mathrm{v}}(1,3-\mathrm{BDC})$	$3.654(1)$	0.0	20.5	20.5	3.421	3.421	1.28
$\mathrm{CH}-\pi$ interaction	d ATM	dpLN	dCNT	γ	$\llcorner(\mathrm{C}-\mathrm{H} \cdots \mathrm{Cg} 3)$	$\mathrm{d}[\mathrm{Cg} 3 \cdots \mathrm{C} 2]$	$\llcorner(\mathrm{C}-\mathrm{H} \cdots \mathrm{Cg} 3)$
$\mathrm{C}(2)-\mathrm{H}(2) \cdots \mathrm{Cg}^{\mathrm{vi}}$	2.81	2.64	2.68	9.75	153	$3.554(13)$	66

Cg : ring centroid; α : dihedral angle between planes, β : angle $\mathrm{Cg}(\mathrm{I})-->\mathrm{Cg}(\mathrm{J})$ or $\mathrm{C}-\mathrm{H}$ and normal to plane P ; $\mathrm{Cg} \cdots \mathrm{P}$: perpendicular distance of Cg on ring plane P ; d: slippage $=$ distance between $\mathrm{Cg}(\mathrm{I})$ and perpendicular projection of $\mathrm{Cg}(\mathrm{J})$ on ring I ; datm: distance from H to the closest sp^{2} carbon; dpln: distance from H to the aromatic plane; dcnt: distance from H to the centroid; symmetry transformations: $v=1-x, 1-y, 1-z ; v i=x, y, 1+z$.

Figure S4. Heat of adsorption curve of MIL-53-Cr (figure taken from Ferey et al. [1]).

References

1. Bourrelly, S.; Llewellyn, P.L.; Serre, C.; Millange, F.; Loiseau, T.; Férey, G. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J. Am. Chem. Soc. 2005, 127, 13519-13521.
