Trinuclear Co(II) and Mononuclear Ni(II) Salamo-Type Bisoxime Coordination Compounds

Xiao-Yan Li, Quan-Peng Kang, Ling-Zhi Liu, Jian-Chun Ma and Wen-Kui Dong *

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; L1401569787@163.com (X.-Y.L.); KQpeng2580@163.com (Q.-P.K.); llz1009663202@126.com (L.-Z.L.); majc204@126.com (J.-C.M.)
* Correspondence: dongwk@126.com; Tel.: +86-931-4938-703

Received: 19 December 2017; Accepted: 15 January 2018; Published: 17 January 2018

Abstract: One trinuclear Co(II) coordination compound [{CoL\(_1\)(OAc)(CH\(_3\)COCH\(_3\))}\(_2\)Co] (1) and one unprecedented mononuclear Ni(II) coordination compound [Ni(L\(_2\))\(_2\)] (2), constructed from a Salamo-type ligand H\(_2\)L\(_1\) were synthesized and characterized by elemental analyses, IR, UV-vis spectra, and single crystal X-ray diffraction analyses. The results show that the Co(II) atoms have no significant distortion in CoO\(_6\) or CoO\(_4\)N\(_2\) octahedrons in coordination compound 1. Interestingly, in coordination compound 2, the desired tri- or mono-nuclear Salamo-type Ni(II) coordination compound was not obtained, but an unprecedented Ni(II) coordination compound [Ni(L\(_2\))\(_2\)] was synthesized, the Ni1 atom having no significant distortion in the NiO\(_2\)N\(_2\) planar quadrilateral geometry. Furthermore, the antimicrobial activities of coordination compound 1 and previously reported coordination compound [{CoL\(_1\)(OAc)(MeOH)}\(_2\)Co]·2MeOH (3) are discussed.

Keywords: Salamo-type bisoxime; Co(II) and Ni(II) coordination compounds; fluorescence property; antimicrobial property

1. Introduction

N\(_2\)O\(_2\)-type chelating ligands and their metal coordination compounds have achieved considerable attention in inorganic chemistry over several decades [1–3], especially in the area of their potential application in catalysts [4,5], biological fields [6–10], electrochemical conducts [11], ion recognitions [12–16], supramolecular architecture [17–20], as well as magnetic [21–24] and luminescence [25,26] materials. Recently, a new N\(_2\)O\(_2\)-type analogue, the Salamo ligand was developed [27–32]. Interestingly, other works have contributed to researching mono-, multi-, homo- or heteromultinuclear metal coordination compounds having Salamo-type ligands or their derivatives [33–35].

Herein, we designed and synthesized two Co(II) and Ni(II) coordination compounds: [{CoL\(_1\)(OAc)(CH\(_3\)COCH\(_3\))}\(_2\)Co] (1) and [Ni(L\(_2\))\(_2\)] (2). Furthermore, a previously reported coordination compound [{CoL\(_1\)(OAc)(MeOH)}\(_2\)Co]·2MeOH (3) was synthesized [36]. Compared with the previously reported coordination compounds [36–49], coordination compounds 1 and 3 with a similar structure are both symmetrically trinuclear. The content of these previous works is mainly based on the study of solvent effect and fluorescence properties. In this paper, not merely the fluorescence properties were studied but also the most important discovery was to find coordination compounds 1 and 3 have good antimicrobial activities. This study provides a new idea for the application of such Salamo-type coordination compounds. Interestingly, catalysis of Ni(II) ions gives rise to unexpected cleavage of two N–O and two C–C bonds in H\(_2\)L\(_1\) and an unprecedented mono-nuclear Ni(II) coordination compound has been discovered; this catalytic phenomenon of Ni(II) ions is a first for the previously reported Salamo Ni(II) coordination compounds.
2. Experimental

2.1. Materials and Methods

5-Chlorosalicylaldehyde (98%) was purchased from Alfa Aesar (New York, NY, USA) and was used without further purification. 1,3-Dibromopropylene, other reagents and solvents were analytical grade reagents from Tianjin Chemical Reagent Factory.

Carbon, hydrogen, and nitrogen analyses were obtained using a GmbH VarioEL V3.00 automatic elemental analysis instrument (Berlin, Germany). Elemental analyses for Co(II) or Ni(II) were detected with an IRIS ER/S-WP-1 ICP atomic emission spectrometer (Berlin, Germany). Melting points were obtained by the use of a microscopic melting point apparatus made by Beijing Taike Instrument Company Limited (Beijing, China) and were uncorrected. IR spectra (400–4000 cm\(^{-1}\)) were recorded on a Vertex 70 FT-IR spectrophotometer (Bruker, Billerica, MA, USA), with samples prepared as KBr pellets. UV-vis absorption spectra were recorded on a Shimadzu UV-3900 spectrometer (Shimadzu, Japan).

2.2. Synthesis of \(\text{H}_2\text{L}^1\)

The ligand 4,4′-dichloro-2,2′-[(propane-1,3-diylidioxy)bis(nitrilomethylidyne)]diphenol (\(\text{H}_2\text{L}^1\)) was synthesized in accordance with a similar method reported earlier [44,48,50]. (Scheme 1) Yield: 75.8%. m.p. 164–166 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)), \(\delta 2.14 (t, J = 6.0 \text{ Hz}, 2\text{H}, \text{CH}_2), 4.31 (t, J = 6.0 \text{ Hz}, 4\text{H}, \text{CH}_2), 6.85 (d, J = 8.0 \text{ Hz}, 2\text{H}, \text{ArH}), 7.25 (s, 2\text{H}, \text{ArH}), 7.33 (d, J = 8.0 \text{ Hz}, 2\text{H}, \text{ArH}), 8.09 (s, 2\text{H}, \text{CH=N}), 9.80 (s, 2\text{H}, \text{OH})\). IR (KBr, cm\(^{-1}\)): 3101 [\(\nu\)(O-H)], 1606 [\(\nu\)(C=N)], 1263 [\(\nu\)(Ar-O)]. UV-Vis (CH\(_3\)OH), \(\lambda_{\text{max}}\) (nm) (\(\epsilon_{\text{max}}\)): 220, 265 and 323 nm (2.5 \(\times\) 10\(^{-5}\) M). Anal. Calcd. for C\(_{17}\)H\(_{16}\)Cl\(_2\)N\(_2\)O\(_4\) (%): C 53.02; H 4.11; N 7.45. Found: C 53.28; H 4.21; N 7.31.

\[\begin{align*}
\text{Cl} & \quad \text{Cl} \\
\left(\begin{array}{c}
\text{O} \\
\text{O} \\
\text{N} \\
\text{N} \\
\end{array}\right) & \quad \left(\begin{array}{c}
\text{N} \\
\text{N} \\
\text{O} \\
\text{O} \\
\end{array}\right) \\
\text{Cl} & \quad \text{Cl}
\end{align*} \]

Scheme 1. Synthetic route to \(\text{H}_2\text{L}^1\).

2.3. Syntheses of Coordination Compounds 1, 2, and 3

Tri- and mono-nuclear coordination compounds 1, 2, and 3 were synthesized via the reaction of Co(OAc)\(_2\) and Ni(OAc)\(_2\) with \(\text{H}_2\text{L}^1\), respectively (Scheme 2).
2.3.1. Synthesis of Coordination Compound 1

To an isopropanol solution (2 mL) of cobalt(II) acetate tetrahydrate (3.72 mg, 0.015 mmol), a solution of H$_2$L$_1$ (3.83 mg, 0.010 mmol) in acetone (3 mL) was added dropwise, the mixed solution color changed to brown instantly, and stirring was continued for 20 min. With the gradual diffusion of solvent, several brown block single crystals were obtained after two weeks on slow evaporation of the solution in open atmosphere. Several green block crystals suitable for X-ray crystallography were collected and then filtered and washed with n-hexane.

2.3.2. Synthesis of Coordination Compound 2

To a solution (3 mL) of nickel(II) acetate tetrahydrate (5.07 mg, 0.015 mmol) in methanol was added dropwise H$_2$L$_1$ (3.83 mg, 0.010 mmol) in acetone (2 mL) and then stirred for 20 min. With the gradual diffusion of solvent, several green block single crystals were obtained after two weeks on slow evaporation of the solution in open atmosphere. Several green block crystals suitable for X-ray crystallography were collected and then filtered and washed with n-hexane.

2.3.3. Synthesis of Coordination Compound 3

Coordination compound 3 was synthesized according to the same method reported earlier [36]. Coordination compound 1, light brown blocks. Yield, 3.05 mg (51.9%). IR (KBr, cm$^{-1}$): 1616 [\nu(N-C)], 1205 [\nu(Ar-O)]. UV–Vis (CH$_3$OH), λ_{max} (nm) (ϵ_{max}): 230 and 367 nm (2.5 × 10$^{-5}$ M). Anal. Calcd. for C$_{44}$H$_{46}$Cl$_4$Co$_3$N$_4$O$_{14}$ (%): C, 45.04; H, 3.95; N, 4.77; Co, 15.07. Found: C, 45.10; H, 4.18; N, 4.59; Co, 15.09.

Coordination compound 2, light green blocks. Yield, 2.75 mg (60.3%). IR (KBr, cm$^{-1}$): 1626 [\nu(C=N)], 1254 [\nu(Ar-O)]. UV–Vis (CH$_3$OH), λ_{max} (nm) (ϵ_{max}): 232 and 364 nm (2.5 × 10$^{-5}$ M). Anal. Calcd. for C$_{18}$H$_{18}$Cl$_2$N$_2$NiO$_4$ (%): C, 47.42; H, 3.98; N, 6.14; Ni, 12.87. Found: C, 47.46; H, 4.05; N, 6.07; Ni, 12.81.

2.4. Crystal Structures of Coordination Compounds 1 and 2

A crystal diffractometer provides a monochromatic beam of Mo Kα radiation (0.71073 Å) produced from a sealed Mo X-ray tube using a graphite monochromator and was used for obtaining crystal
data for coordination compounds 1 and 2 at 293(2) and 294.29(10) K, respectively. The LP factor and semi-empirical absorption were applied using the SADABS program. The structures of coordination compounds 1 and 2 were solved by direct methods (SHELXS-2014) [51], and H atoms were included at the calculated positions and constrained to ride on their parent atoms. All the non-hydrogen atoms were refined anisotropically using a full-matrix least-squares procedure on \(F^2 \) with SHELXL-2014 [52].

Crystallographic data and experimental parameters relevant to the structure determinations are given in Table 1.

<table>
<thead>
<tr>
<th>Table 1. Crystallographic data and refinement parameters for coordination compounds 1 and 2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordination Compound</td>
</tr>
<tr>
<td>Formula</td>
</tr>
<tr>
<td>Formula weight</td>
</tr>
<tr>
<td>Temperature (K)</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
</tr>
<tr>
<td>Crystal system</td>
</tr>
<tr>
<td>Space group</td>
</tr>
<tr>
<td>a (Å)</td>
</tr>
<tr>
<td>b (Å)</td>
</tr>
<tr>
<td>c (Å)</td>
</tr>
<tr>
<td>(\alpha (^\circ))</td>
</tr>
<tr>
<td>(\beta (^\circ))</td>
</tr>
<tr>
<td>(\gamma (^\circ))</td>
</tr>
<tr>
<td>V (Å(^3))</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>(D_{\text{calc}}) (g cm(^{-3}))</td>
</tr>
<tr>
<td>(\mu) (mm(^{-1}))</td>
</tr>
<tr>
<td>(F(000))</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
</tr>
<tr>
<td>(\theta) Range (°)</td>
</tr>
<tr>
<td>Refractions collected</td>
</tr>
<tr>
<td>Independent reflections</td>
</tr>
<tr>
<td>Rint</td>
</tr>
<tr>
<td>Completeness to (\theta)</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
</tr>
<tr>
<td>GOF</td>
</tr>
<tr>
<td>Final (R_1), (wR_2) indices</td>
</tr>
<tr>
<td>R1 (^6), wR2 (^6) indices (all data)</td>
</tr>
<tr>
<td>Largest differences peak and hold (e Å(^{-3}))</td>
</tr>
</tbody>
</table>

\(^6\) \(R_1 = \Sigma ||F_o|| – |F_c|| / \Sigma |F_o|| \). \(^6\) \(wR_2 = (\Sigma w(F_o^2 – F_c^2)^2 / \Sigma (w(F_o^2)^2))^{1/2} \).

Crystallographic data were deposited with the Cambridge Crystallographic Data Centre as supplementary publication, No. CCDC 1812269, 1812270 and 1812268 for coordination compounds 1, 2, and 3. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (Telephone: (44) 01223 762910; Fax: +44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk). These data can also be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html.

3. Results and Discussion

3.1. IR Spectra

The IR spectra of \(H_2L_1 \) and coordination compounds 1 and 2 show various absorption bands (Figure 1). A characteristic band of C=N stretching vibrations of the free ligand \(H_2L_1 \) appears at 1606 cm\(^{-1}\), which is shifted to 1616 and 1626 cm\(^{-1}\) in the spectra of coordination compounds 1 and 2.
respectively [53–55]. This indicates that the Co(II) and Ni(II) atoms are coordinated with azomethine nitrogen atoms of deprotonated (L1)2− and (L2)− units [56,57]. An Ar–O stretching band emerges at 1263 cm−1 in the IR spectrum of the free ligand H2L1, while those of coordination compounds 1 and 2 appear at 1205 and 1254 cm−1, respectively. The Ar–O stretching bands are shifted to lower frequencies, which can be evidence of the coordination of phenolic oxygen atoms to the Co(II) and Ni(II) atoms [58,59]. The free ligand H2L1 shows an expected absorption band at 3101 cm−1 and a sharp absorption band emerges at 3361 cm−1 in coordination compound 2, which indicates that the phenolic groups of the ligand have been deprotonated in the case of coordination compound 1 [60,61], while the N-H bond exists in coordination compound 2.

![Infrared spectra of H2L1 and its coordination compounds](image)

Figure 1. Infrared spectra of H2L1 and its coordination compounds 1 and 2.

3.2. UV-Vis Spectra

UV-vis spectra of H2L1 and coordination compounds 1 and 2 are presented in Figure 2. The absorption spectrum of H2L1 exhibits three absorption peaks at ca. 220, 265, and 323 nm, the former two peaks could be attributed to the π-π* type transitions of the benzene rings, the later peak at 323 nm is assigned to the π-π* transitions of the C=N bonds and conjugated aromatic chromophore [62,63]. Compared to the absorption peaks of the free ligand H2L1, the first absorption peaks are observed at 230 and 235 nm in coordination compounds 1 and 2, respectively. These peaks are bathochromically shifted, indicating coordination of the (L1)2− and (L2)− moieties with the Co(II) and Ni(II) atoms. The other two peaks at ca. 265 and 323 nm have disappeared in coordination compounds 1 and 2. Meanwhile, new peaks emerge at ca. 367 and 364 nm in coordination compounds 1 and 2, respectively, which belong to the n-π* charge transfer transitions from the lone-pair electrons of the N atoms of C=N groups [64,65].

3.3. Description of the Crystal Structures

Selected bond lengths and angles for coordination compounds 1 and 2 are listed in Table 2, respectively. The corresponding hydrogen bonds of coordination compound 1 are summarized in Table 3.
Figure 2. UV-vis spectra of H$_2$L1 and coordination compounds 1 and 2 in methanol (c = 2.5 × 10$^{-5}$ M).

Table 2. Selected bond lengths (Å) and angles (°) of coordination compounds 1 and 2.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Lengths</th>
<th>Bond</th>
<th>Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co1-O1</td>
<td>2.0948(17)</td>
<td>Co1-O2</td>
<td>2.1438(16)</td>
</tr>
<tr>
<td>Co1-O5</td>
<td>2.0884(17)</td>
<td>Co1-O1$^{#1}$</td>
<td>2.0948(17)</td>
</tr>
<tr>
<td>Co1-O2$^{#1}$</td>
<td>2.1437(16)</td>
<td>Co1-O5$^{#1}$</td>
<td>2.0884(17)</td>
</tr>
<tr>
<td>Co2-O1</td>
<td>2.0756(16)</td>
<td>Co2-O2</td>
<td>2.0177(17)</td>
</tr>
<tr>
<td>Co2-O6</td>
<td>2.0224(19)</td>
<td>Co2-O7</td>
<td>2.276(2)</td>
</tr>
<tr>
<td>Co2-N1</td>
<td>2.109(2)</td>
<td>Co2-N2</td>
<td>2.208(2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond</th>
<th>Angles</th>
<th>Bond</th>
<th>Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1-Co1-O2</td>
<td>76.14(6)</td>
<td>O5-Co1-O1</td>
<td>88.26(7)</td>
</tr>
<tr>
<td>O1-Co1-O1$^{#1}$</td>
<td>180.0</td>
<td>O1-Co1-O2$^{#1}$</td>
<td>103.86(6)</td>
</tr>
<tr>
<td>O5$^{#1}$-Co1-O1</td>
<td>91.74(7)</td>
<td>O5-Co1-O2$^{#1}$</td>
<td>180.0</td>
</tr>
<tr>
<td>O1$^{#1}$-Co1-O2</td>
<td>103.86(6)</td>
<td>O2-Co1-O2$^{#1}$</td>
<td>180.0</td>
</tr>
<tr>
<td>O5$^{#1}$-Co1-O2</td>
<td>92.63(7)</td>
<td>O5-Co1-O1$^{#1}$</td>
<td>91.74(7)</td>
</tr>
<tr>
<td>O5-Co1-O2$^{#1}$</td>
<td>92.63(7)</td>
<td>O5$^{#1}$-Co1-O5</td>
<td>180.0</td>
</tr>
<tr>
<td>O1$^{#1}$-Co1-O2$^{#1}$</td>
<td>76.14(6)</td>
<td>O5$^{#1}$-Co1-O1$^{#1}$</td>
<td>88.26(7)</td>
</tr>
<tr>
<td>O5$^{#1}$-Co1-O2$^{#1}$</td>
<td>87.37(7)</td>
<td>O2-Co2-O1</td>
<td>79.36(7)</td>
</tr>
<tr>
<td>O6-Co2-O1</td>
<td>91.68(7)</td>
<td>O1-Co2-O7</td>
<td>99.74(8)</td>
</tr>
<tr>
<td>O1-Co2-N1</td>
<td>84.64(7)</td>
<td>O1-Co2-N2</td>
<td>164.08(8)</td>
</tr>
<tr>
<td>O2-Co2-O6</td>
<td>99.88(8)</td>
<td>O2-Co2-O7</td>
<td>86.31(7)</td>
</tr>
<tr>
<td>O2-Co2-N1</td>
<td>160.21(8)</td>
<td>O2-Co2-N2</td>
<td>84.77(7)</td>
</tr>
<tr>
<td>O6-Co2-O7</td>
<td>167.88(7)</td>
<td>O6-Co2-N1</td>
<td>92.09(8)</td>
</tr>
<tr>
<td>O6-Co2-N2</td>
<td>89.78(9)</td>
<td>N1-Co2-O7</td>
<td>85.00(8)</td>
</tr>
<tr>
<td>N2-Co2-O7</td>
<td>80.36(8)</td>
<td>N1-Co2-N2</td>
<td>111.15(8)</td>
</tr>
</tbody>
</table>

Coordination Compound 2

<table>
<thead>
<tr>
<th>Bond</th>
<th>Lengths</th>
<th>Bond</th>
<th>Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni1-O1</td>
<td>1.914(3)</td>
<td>Ni1-N1</td>
<td>1.914(4)</td>
</tr>
<tr>
<td>Ni1-O1$^{#2}$</td>
<td>1.914(3)</td>
<td>Ni1-N1$^{#2}$</td>
<td>1.914(4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond</th>
<th>Angles</th>
<th>Bond</th>
<th>Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1-Ni1-N1</td>
<td>92.15(15)</td>
<td>O1$^{#2}$-Ni1-O1</td>
<td>180.0</td>
</tr>
<tr>
<td>O1-Ni1-N1$^{#2}$</td>
<td>87.85(15)</td>
<td>O1$^{#2}$-Ni1-N1</td>
<td>87.85(15)</td>
</tr>
<tr>
<td>N1-Ni1-N1$^{#2}$</td>
<td>180.0</td>
<td>O1$^{#2}$-Ni1-N1$^{#2}$</td>
<td>92.15(15)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms: $^{#1}$-x + 1, -y + 1, -z; $^{#2}$-x + 1/2, -y + 1/2, -z.
Table 3. Hydrogen bonding interactions (Å, °) of coordination compound 1.

<table>
<thead>
<tr>
<th>D–H⋯A</th>
<th>D–H</th>
<th>H⋯A</th>
<th>D⋯A</th>
<th>D–H⋯A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordination compound 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2–H2⋯O2</td>
<td>0.93</td>
<td>2.58</td>
<td>3.281</td>
<td>133</td>
</tr>
<tr>
<td>C8–H8B⋯O7</td>
<td>0.97</td>
<td>2.53</td>
<td>3.425</td>
<td>153</td>
</tr>
<tr>
<td>C10–H10B⋯O3</td>
<td>0.97</td>
<td>2.54</td>
<td>2.931</td>
<td>104</td>
</tr>
<tr>
<td>C10–H10B⋯O6</td>
<td>0.97</td>
<td>2.45</td>
<td>3.329</td>
<td>150</td>
</tr>
<tr>
<td>C16–H16⋯O3</td>
<td>0.93</td>
<td>2.48</td>
<td>3.207</td>
<td>135</td>
</tr>
<tr>
<td>C20–H20C⋯O5</td>
<td>0.96</td>
<td>2.49</td>
<td>3.358</td>
<td>151</td>
</tr>
</tbody>
</table>

3.3.1. Crystal Structure of Coordination Compound 1

The unit cell of coordination compound 1 is composed of three Co(II) atoms, two completely deprotonated \((L^1)^2^- \) units, two \(\mu_2 \)-acetate ions, and two coordinated acetone molecules. (Figure 3) A symmetrical trinuclear Co(II) coordination compound is formed, with the Co1 atom occupying the center of symmetry \((1/2, 1/2, 1/2)\) and the other two Co(II) atoms (Co2, Co2\(^{#1}\), symmetry code \(#1\): \(-x + 1, -y + 1, -z\)) to be related by this center of symmetry. The two \((L^1)^2^- \), two \(\mu_2 \)-acetate ions and the two coordinated acetone molecules are also centrosymmetry related. The Co(II) atoms have no significant distortion in CoO\(_6\) or CoO\(_4\)N\(_2\) octahedrons. The two terminal Co(II) atom (Co2 or Co2\(^{#1}\)) is hexa-coordinated with donor N\(_2\)O\(_2\) atoms (N1, N2, O1, O2 or N1\(^{#1}\), N2\(^{#1}\), O1\(^{#1}\), O2\(^{#1}\)), one \(\mu_2 \)-phenoxy oxygen atom (O2 or O2\(^{#1}\)) and the other oxygen atom (O7 or O7\(^{#1}\)) comes from the coordinated acetone molecule, respectively. One axial bond of Co2-O7 is 2.276(2) Å, is longer than the bond of Co2-O6 (2.0224(19) Å). It shows that the acetate ions involved in the coordination are more stable than the coordinated acetone molecules [66]. The dihedral angle between the planes of N1-Co2-O1 and N2-Co2-O4 is 4.23(5)°, reveals the Co(II) atom (Co2 or Co2\(^{#1}\)) with significant distortion in the CoO\(_4\)N\(_2\) octahedron [67]. Meanwhile, the central Co1 atom is completed by four phenoxy oxygen atoms (O1, O5, O1\(^{#1}\), and O5\(^{#1}\)) of two deprotonated \((L^1)^2^- \) units, two oxygen atoms (O2 and O2\(^{#1}\)) from the bridging \(\mu_2 \)-acetate ions, and the axial bond Co1-O5 (2.0884(16) Å) is also shorter by 0.0064(01) Å than the Co1-O1 bond (2.0948(17) Å) and by 0.05540 Å than the Co1-O2 bond (2.1438(16) Å). Although the Co(II) atoms are all hexa-coordinated, the coordination sphere of the Co1 atom consists of six oxygen atoms, and that of the Co2 (or Co2\(^{#1}\)) atom includes two nitrogen and four oxygen atoms.

![Figure 3. (a) Molecular structure and atom numberings of coordination compound 1 with 30% probability displacement ellipsoids (hydrogen atoms are omitted for clarity); (b) Coordination polyhedra for Co(II) atoms of coordination compound 1.](image-url)
In coordination compound 1, six pairs of intramolecular hydrogen bond (C2–H2···O2, C8–H8B···O7, C10–H10B···O3, C10–H10B···O6, C16–H16···O5 and C20–H20C···O5) [68] interactions involving one phenoxo oxygen, one coordinated acetone, two acetate ions, and alkoxy O atoms in each molecule (Figure 4) and the weak hydrogen bonds existing in the coordination compound 1 are described in graph sets (Figure 5) [69], A pair of π···π interactions (Cg1···Cg2 (Cg1=C1-C2-C3-C4-C5-C6 and Cg2=C12-C13-C14-C15-C16-C17)) (Figure 6) were formed [70].

Figure 4. View of the intra-molecular hydrogen bonds of coordination compound 1.

Figure 5. (a) Graph set assignments for coordination compound 1; (b) partial enlarged drawing of hydrogen bonds.

S5 and S6

N(5) and S(6)

S(6), S(8) and S(6)

S(6)
3.3.2. Crystal Structure of Coordination Compound 2

The crystal structure of coordination compound 2 is given in Figure 7. The crystal structure demonstrates that coordination compound 2 crystallizes in the monoclinic system, space group $P2_1/c$. A mononuclear Ni(II) coordination compound is formed, with a Ni1 atom occupying the center of symmetry (1/2, 1/2, 1/2) is related by this center of symmetry. The two $(L^2)_{2}^{2-}$ (symmetry code $#2$): $-x + 1/2, -y + 1/2, -z$) is related by this center of symmetry. Obviously, the desired tri- or mono-nuclear Ni(II) coordination compound was not obtained (Scheme 2). The coordination compounding of the ligand H_2L_1 with Ni(II) acetate is unstable, giving a new NO bidentate ligand (H_2L_2). The formation of the new ligand may be due to the catalysis of Ni(II) ions resulting in unexpected cleavage of two N-O and two C-C bonds in H_2L_1. In the C=N bond, the electronegativity of the N atom is higher than the C atom, so the electron cloud density of C atom is lower. At the same time, due to the high electronegativity of the Cl atom, the electron cloud density of the C atom in the C=N bond will be further reduced in this conjugated system, and is positively charged. The electronegativity of the O atom in the O–C–C bond is high, and will attack the C atom in the C=N bond and form the new ligand H_2L_1. Finally, an unprecedented mono-nuclear Ni(II) coordination compound is obtained.

This phenomenon is observed in the formation of Salamo-type Cu(II) coordination compounds [71]. However, the catalytic phenomenon of Ni(II) ions is a first in the previously reported Salamo Ni(II) coordination compounds. In coordination compound 2, the Ni1 atom has no significant distortion in the NiO$_2$N$_2$ planar quadrilateral geometry. It is noteworthy that the angles of N1–Ni1–N1$^{#3}$ and O1–Ni1–O1$^{#3}$ are all 180.0° in coordination compound 2 [72].

3.4. Fluorescence Properties

The fluorescence properties of H_2L_1 and coordination compounds 1 and 2 were investigated (Figure 8). The H_2L_1 demonstrates an intense emission peak at ca. 508 nm upon excitation at 328 nm. Coordination compounds 1 and 2 demonstrate weak photoluminescence with maximum emission peaks at ca. 516 and 510 nm upon excitation at 386 nm, respectively, and the absorption peaks are bathochromically-shifted, which could be attributed to LMCT (ligand-to-metal charge transfer) [73,74].
Compared with H$_2$L$_1$, the emission intensity of coordination compound 2 is reduced, which indicates that the Ni(II) ions possess the property of fluorescent quenching.

![Molecular structure and atom numberings of coordination compound 2](image1)

Figure 7. (a) Molecular structure and atom numberings of coordination compound 2 with 30% probability displacement ellipsoids (hydrogen atoms are omitted for clarity); (b) Coordination polyhedra for Ni(II) atoms of coordination compound 2.

![Emission spectra](image2)

Figure 8. Emission spectra of H$_2$L$_1$ ($\lambda_{ex} = 328$ nm) and its coordination compounds 1 and 2 ($\lambda_{ex} = 386$ nm) in CH$_3$OH ($2.5 \times 10^{-5} \text{ M}$).

3.5. Antimicrobial Activities

The antimicrobial activities of H$_2$L$_1$, cobalt acetate and its coordination compounds 1 and 3 were tested against Escherichia coli as Gram-negative bacteria and Staphylococcus aureus as Gram-positive bacteria by a disk diffusion test. With sterile disks impregnated with purified H$_2$L$_1$, cobalt acetate, coordination compounds 1 and 3 were applied to lysogeny broth agar (LB) plates (2% agar). The bacteria inoculum was spread on the surface of the plate, while the impregnated disks were placed near the edge of the plate at a constant distance from the disk for all assays. After eight hours of incubation at 37 °C, the growth-inhibitory influence and diameters of the inhibition zones were mensurated. The discs measuring 5 mm in diameter were dissolved in dimethyl sulfoxide (DMSO) and soaked in concentrations of 0.35, 0.7, 1.4, 2.8 and 5.0 mg mL$^{-1}$. The results were compared to Ampicillin as reference standard with different concentrations. The diameter of inhibition zones of
H$_2$L1, cobalt acetate and coordination compounds 1 and 3 are shown in Figure 9, the two coordination compounds show more enhanced antimicrobial activities than H$_2$L1 and cobalt acetate under the same conditions. H$_2$L1 and cobalt acetate also have weak biological activity [75,76]. As shown in Figure 9, chelation decreases the polarity of the metal atom mainly because of the partial share of the positive charge of the Co(II) atom with donor groups and possible delocalization of π-electrons within the whole chelating ring. Further, it enhances the lipophilic character of the central atom. These observations are analogical to earlier reports of biological activities of related Schiff base coordination compounds [77].

![Figure 9](image_url)

Figure 9. The diameter of inhibition zones of *E. coli* (a) and *S. aureus* (b) at different concentrations.

4. Conclusions

One trinuclear Co(II) coordination compound 1 and one unprecedented mononuclear Ni(II) coordination compound 2 were formulated and synthesized. The results show that the Co(II) atoms have no significant distortion in CoO$_6$ or CoO$_4$N$_2$ octahedrons in coordination compound 1.
Catalysis of Ni(II) ions gives rise to unexpected cleavage of two N–O and two C–C bonds in H2L1, the coordination compound of the ligand H2L1 with Ni(II) acetate is unstable, giving a new NO bidentate ligand (H2L2). The desired tri- or mono-nuclear Salamo Ni(II) coordination compound was not obtained, a novel mono-nuclear Ni(II) coordination compound [Ni(L2)2] was however obtained. Interestingly, in coordination compound 2, the NiII atom has no significant distortion in the NiO2N2 planar quadrilateral geometry. The fluorescence behavior of H2L1 and its coordination compounds 1 and 2 were investigated, compared with the ligand H2L1: the emission intensity of coordination compound 2 decreases obviously, which indicates that the Ni(II) ions possess the quality of fluorescent quenching. Antimicrobial experiments show that coordination compounds 1 and 3 demonstrate more enhanced antimicrobial activities than Salamo bisoxime ligand H2L1 under the same conditions and the ligand possesses a weak biological activity.

Acknowledgments: This work was supported by the National Natural Science Foundation of China (21761018) and the Program for the Excellent Team of Scientific Research in Lanzhou Jiaotong University (201706), which is gratefully acknowledged.

Author Contributions: Wen-Kui Dong and Quan-Peng Kang conceived and designed the experiments; Ling-Zhi Liu performed the experiments; Jian-Chun Ma analyzed the data; Wen-Kui Dong contributed reagents/materials/analysis tools; Xiao-Yan Li wrote the paper.

Conflicts of Interest: The authors declare no competing financial interests.

References

30. Gao, L.; Wang, F.; Zhao, Q.; Zhang, Y.; Dong, W.K. Mononuclear Zn(II) and trinuclear Ni(II) complexes derived from a coumarin-containing N₂O₂ ligand: Syntheses, crystal structures and fluorescence properties. *Polyhedron* 2018, 139, 7–16. [CrossRef]

32. Wang, L.; Li, X.Y.; Zhao, Q.; Li, L.H.; Dong, W.K. Fluorescence properties of heterotrinuclear Zn(II)-M(II) (M=Ca, Sr and Ba) bis(salamo)-type complexes. *RSC Adv.* 2017, 7, 48730–48737. [CrossRef]

68. Tao, C.H.; Ma, J.C.; Zhu, L.C.; Zhang, Y.; Dong, W.K. Heterobimetallic 3d-4f Zn(II)–Ln(III) (Ln=Sm, Eu, Tb and Dy) complexes with a N₂O₂ bisoxime chelate ligand and a simple auxiliary ligand Py: Syntheses, structures and luminescence properties. *Polyhedron* 2017, 128, 38–45. [CrossRef]
69. Bernstein, J.; Davis, R.E.; Shimoni, L.; Chang, N.L. Patterns in hydrogen bonding: Functionality and graph

70. Kruszynski, R.; Sieranski, T. Can stacking interactions exist beyond the commonly accepted limits?
Cryst. Growth Des. 2016, 16, 587–595. [CrossRef]

71. Chen, L.; Dong, W.K.; Zhang, H.; Zhang, Y.; Sun, Y.X. Structural variation and luminescence properties of tri-
and dinuclear CuII and ZnII complexes constructed from a naphthalenediyl-based bis(Salamo)-type ligand.
Cryst. Growth Des. 2017, 17, 3636–3648. [CrossRef]

72. Chai, L.Q.; Liu, G.; Zhang, Y.L.; Huang, J.J.; Tong, J.F. Synthesis, crystal structure, fluorescence,
electrochemical property, and SOD-like activity of an unexpected nickel(II) complex with a quinazoline-type
ligand. J. Coord. Chem. 2013, 66, 3926–3938. [CrossRef]

73. Dong, Y.J.; Dong, X.Y.; Dong, W.K.; Zhang, Y.; Zhang, L.S. Three asymmetric Salamo-type copper(II) and
cobalt(II) complexes: Syntheses, structures, fluorescent properties. Polyhedron 2017, 123, 305–315. [CrossRef]

74. Song, X.Q.; Peng, Y.J.; Chen, G.Q.; Wang, X.R.; Liu, P.P.; Xu, W.Y. Substituted group-directed assembly
of Zn(II) coordination complexes based on two new structural related pyrazolone based Salen ligands:

studies of a binuclear ytterbium(III) complex with bis(N-salicylidene)-3-oxapentane-1,5-diamine. Res. Chem. Intermed.
2015, 41, 3375–3388. [CrossRef]

DNA-binding properties, and antioxidant activities of a homodinuclear erbium(III) complex with a

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).