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Abstract: Van der Waals heterostructure is formed by two-dimensional materials, which applications
have become hot topics and received intensive exploration for fabricating without lattice mismatch.
With the sustained decrease in dimensions of field effect transistors, van der Waals heterostructure
plays an important role in improving the performance of devices because of its prominent electronic
and optoelectronic behavior. In this review, we discuss the process of assembling van der Waals
heterostructures and thoroughly illustrate the applications based on van der Waals heterostructures.
We also present recent innovation in field effect transistors and van der Waals stacks, and offer
an outlook of the development in improving the performance of devices based on van der
Waals heterostructures.
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1. Introduction

In the past few decades, graphene, which exhibits extraordinary electronic and optoelectronic
properties in exploring low-dimensional materials, has become the most advanced research in the
field of two-dimensional layered material (2DLM) science, solid-state physics and engineering [1–3].
Because graphene originally has excellent parameters, such as mechanical stiffness, strength and
elasticity, very high electrical and thermal conductivity, graphene-based transistor preforms better
than conventional Si-based transistors [1] in fabricating high-frequency transistors with the possible
cut-off frequency fT = 1THz at a channel length of about 100 nm [4] and photodetectors with a wide
spectral from ultraviolet to infrared [1]. Therefore, the discovery of graphene creates a new generation
of electronic devices with atomically thin geometry and unprecedented combination of speed and
flexibility. Except for the advantages and merits of graphene-based transistor mentioned above,
there are some shortcomings, such as the unique zero bandgap, hindering the graphene’s application
in electronic industry [3]. To overcome the defect brought by graphene device, this extensive library of
2DLMs, such as graphene, phosphorene, hexagonal boron nitride and transition metal dichalcogenide
mentioned in this article with selected properties opens up the possibility of heterogeneous integration
at the atomic scale, creating novel hybrid structures that display totally new physics and enable unique
functionality [5]. Because 2DLMs have various bandgap, the different material shows different property.
For example, black phosphorus shows the characteristic of conductor; molybdenum disulfide (MoS2)
and tungsten selenide (WSe2) are semiconductors; and boron nitride (BN) performs as insulator.
2DLMs with various properties make it possible to form special combination of heterogeneous
integration at atom scale, such as van der Waals heterostructures (vdWHs).

In general, heterostructures formed by 2DLM monolayers are assembled by covalent bond force
within layers and stacked together by van der Waals force between layers. Thus, there is no free
dangling bond between 2DLM layers. In contrast to typical nanostructures persecuted by dangling
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bond and trap state on the surfaces [6], monolayer are free of these disadvantages (Figure 1a,b) and
exhibit extraordinary electronic and optoelectronic properties. Additionally, without free dangling
bonds, the interface between neighbor 2DLM layers are assembled by van der Waals forces, which is
much weaker than chemical bond force. Therefore, the van der Waals heterostructure can be easily
isolated by exfoliation with the help of taps [7]. Although some highly disparate materials have a
great lattice mismatch in creating heterostructure, those can be assembled together by van der Waals
force. This allows diverse 2DLMs to construct various van der Waals heterostructures (vdWHs) with
completely novel properties and functions.
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many highly performed devices, such as photodetectors with highly optical response [10] and 
transistors with high speed and flexibility [12]. In recent years, most efforts have been taken to form 
2D–2D integration vdWHs by vertically stacking various 2DLMs; for example, Dean fabricated a 
graphene–BN heterostructure transistor which Hall mobility reached ~25,000 cm2·V−1·s−1 at high 
density [13], and Withers stacked metallic graphene, insulating hexagonal boron nitride and various 
semiconducting monolayers into complex but carefully designed sequences, which exhibited an 
extrinsic quantum efficiency of nearly 10% and the emission can be tuned over a wide range of 
frequencies by appropriately choosing and combining 2D semiconductors [14]. 2D–2D vdWHs with 
diverse 2DLMs make it possible to accurately control and modulate the transport of charge carriers, 
excitons and photons within the atomic surface, and greatly promote the new generation of unique 
devices. Apart from 2D–2D vdWHs, 2DLMs can also be integrated with 3D bulk materials to form 
2D–3D structures [8,15] (Figure 1f–h), which attract some interest. Hot electron transistors based on 
2D–3D heterojunctions have been reported [16]. Gate tunable p-n junctions based on 2D–3D 

Figure 1. Two-dimensional layered materials and van der Waals heterostructures: (a,b) materials with
and without dangling bond; (c) anisotropic transport behavior of phosphorene in different direction;
(d–f) monolayer graphene, hexagonal boron nitride and transition metal dichalcogenides, graphene
shows semimetal characteristic, hexagonal boron nitride behaves as insulator and transition metal
dichalcogenides act as semiconductor; (g–i) van der Waals heterostructure formed with free dangling
bond materials; (g) 0D (particles or quantum dots) and 2D layered materials stack; (h) 1D (nanowires)
and 2D layered materials stack; and (i) 2D layered materials and 3D bulk materials stack. (a–e) are
reproduced with permission from Nature Publishing Group, Ref [6,8].

The early study in vdWHs focus on the combination of 2DLMs with 0D (for example,
plasmonic nanoparticles and quantum dots) and 1D (for example, nanowires and nanoribbons)
nanostructures [9–12]. These novel 0D–2D (Figure 1f) and 1D–2D (Figure 1g) vdWHs structures have
fabricated many highly performed devices, such as photodetectors with highly optical response [10]
and transistors with high speed and flexibility [12]. In recent years, most efforts have been taken to
form 2D–2D integration vdWHs by vertically stacking various 2DLMs; for example, Dean fabricated
a graphene–BN heterostructure transistor which Hall mobility reached ~25,000 cm2·V−1·s−1 at high
density [13], and Withers stacked metallic graphene, insulating hexagonal boron nitride and various
semiconducting monolayers into complex but carefully designed sequences, which exhibited an
extrinsic quantum efficiency of nearly 10% and the emission can be tuned over a wide range of
frequencies by appropriately choosing and combining 2D semiconductors [14]. 2D–2D vdWHs with
diverse 2DLMs make it possible to accurately control and modulate the transport of charge carriers,
excitons and photons within the atomic surface, and greatly promote the new generation of unique
devices. Apart from 2D–2D vdWHs, 2DLMs can also be integrated with 3D bulk materials to form
2D–3D structures [8,15] (Figure 1f–h), which attract some interest. Hot electron transistors based
on 2D–3D heterojunctions have been reported [16]. Gate tunable p-n junctions based on 2D–3D
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heterojunctions have been reported [17,18]. Heterojunction formed with MoS2 and p type Ge can
fabricate high performance tunneling field transistor [18].

Recently, most vdWHs are formed by mechanically stacking different monolayers together.
Although this method allows great flexibility, it is slow and inconvenient. Thus, some simple and
high-quality techniques are being developed, for example, large-area 2DLMs grown by chemical vapor
deposition (CVD) and direct growth of heterostructure by CVD or physical epitaxy, which improves
the growth quality of monolayers and the properties of heterostructure exhibited [19–21].

In this review, we mainly concentrate on the integration, properties, application and technology
of vdWHs. First, we give a brief introduction of typical materials, which got highly unprecedented
attention in the field of materials science and solid-state physics in the past few years, and discuss
the electronical properties about them. Then, we focus on the applications of field effect transistors
based on vdWHs, including elevating mobility, decreasing the contract resistance and conventional
transistors like tunneling field effect transistor. Except for traditional FETs, we investigated some
late-model structure, namely the vertical thin film transistor. Finally, we analyze the process of
mechanically and chemically stacking van der Waals heterostructures. Meanwhile, we discuss the
process of fabricating the field effect transistors (FETs) by van der Waals stacking methods.

2. Two Dimensional Materials

Two-dimensional materials, which constitute van der Waals heterostructures (vdWHs), have been
explored to exhibit entirely different characteristics (Figure 2a), including conductors, semimetals,
semiconductors, and insulators. Large group of two-dimensional materials provide various band gap
and different electronic and optical performance, which offers the theoretical possibility of different
device application requirement. With different 2D materials to form heterostructure, not only novel
properties can be observed but also highly reliable nano-device can be achieved as well.
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Figure 2. Different 2D layered materials and electronic properties. (a) Classified 2D layered materials
based on different conductive characteristic. Monolayers proved to be stable in air condition are
marked as blue. Those probably stable in air are shaded green. Those monolayers stable in inert
atmosphere are shaded pink. Grey shading shows that monolayer can be successfully exfoliated from
bulk materials. Reproduced with permission from Nature Publishing Group, Ref [22] (b) Band gaps
of 2D layered materials compared with Dirac point. Reproduced with the permission from IEEE in
Ref [23].
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2.1. Graphene

With a honeycomb lattice structure assembled by strong covalent bond force, crystal structure
shown in Figure 1d, graphene only has a single atomic carbon layer, which can be manufactured via
mechanically exfoliating from bulk graphite. Due to bulk graphite has weak interlayer connection
formed by van der Waals force, the large-area monolayer graphene can be easily and successfully
exfoliated from bulk material with the help of a scotch tape. Owing to the unique lattice structure
and atom combination, graphene has zero band gap which means charge carriers move in a ultrahigh
speed about 25,000 cm2·V−1·s−1 at room temperature [24]. In other words, with high conductivity in
2DLMs family, graphene behaves like metal, which is the significant component of forming vdWHs.
Transistors with graphene electrodes will have a lower contact resistance compared to transistors
without graphene electrodes [25]. In flash memory devices, graphene also acts as charge trap layers [26].
Due to the single-atom thickness and specific density of state (DOS), it exhibits partial optical and
electrostatic transparency under tunable work function. For possessing this characteristic, graphene
serves as contact material integrated with other two-dimensional semiconductors in vdHW transistors,
which achieves an appropriate contact resistance and admirable electrical performance [27].

Bilayer graphene, which is constituted of two atomic carbon-layers stacked by van der Waals
interaction under specific direction, does not exhibit the same properties as monolayer graphene.
That is because the interaction between two neighboring layers provides extra van der Waals electric
field, which inducts bilayer’s bandgap [28] and forms four pseudospin flavors [29]. Although bilayer
graphene has a band gap up to 250 mV under gate controlling, it is still smaller than other 2DLM
like transition metal dichalcogenide, and even bulk Si (the band gap is about 1.2 eV). Even though
monolayer graphene has zero band gap, it can be used in other ways such as graphene electrode
in transistor, charge trap layer in flash memory and metal–graphene interfaces which can provide
photo-generated carriers in photodetectors [30,31]. Moreover, bilayer graphene transistors also have a
degradation of the carrier mobility compared with monolayer graphene [2].

2.2. Transition Metal Dichalcogenide

Transition metal dichalcogenide (TMDC) is the group of two-dimensional materials with chemical
form MX2, where M stands for transition metal (molybdenum and tungsten) and X represents for the
chalcogenide (sulfur, selenium or tellurium). The arrangement of atomic layered TMDC is X-M-X form.
The crystal structure is shown in Figure 1f. Considering the same reason that adjacent layers of TMDC
are weakly held together by van der Waals force, monolayers of TMDC can also be directly split from
bulk crystals (regardless of artificiality or natural mineral) by scotch tape, called mechanical exfoliation,
and it can also be fabricated by chemical vapor deposition (CVD) processes [32,33]. From bulk structure
to two-dimensional layered structure, the most frequently studied TMDCs, such as MoS2, MoSe2,
WS2 and WSe2, show various band gaps (Figure 2b) and tunable electronic properties with its volume
changing from bulk material to monolayer [16]. At room temperature, as the thickness of TMDC
decreases from bulk to monolayer, its band gap ranges from 1 eV to 2 eV and carrier mobility reaches
over 100 cm2·V−1·s−1. Owing to the varied bandgap resulting in tunable electrical characteristics,
there are some distinctive properties observed in TMDC, for example, valley Hall effect [34], valley
polarization [35], superconductivity [36] and photoelectric characteristic [37,38]. TMDC’s lack of
dangling bands is another reason that makes it attractive for use in FET channel material. This means
the lattice mismatching is out of consideration during the formation of TMDC–TMDC van der
Waals interconnection.

2.3. Phosphorene

Phosphorene is a monolayer material constituted of phosphorus, with a vertically interlaced
hexagonal lattice that looks like armchairs. Phosphorene’s bandgap varies from 0.33 eV to 1.5 eV
depending on the number of layers stacked [39]. Notably, an individual property is observed
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in few layers of phosphorene, i.e., anisotropic transportation in different phosphorene’s crystal
orientations [40]. Specifically, transporting in the armchair direction (x direction) is much more
efficient than in zigzag direction (Figure 1c). In addition, a p-type semiconductor characteristic
emerges in phosphorene. When the hole mobility exceeds 1000 cm2·V−1·s−1 in certain direction [41],
the phosphorene becomes the significant 2D material for electronic device. Later report shows that the
drain current of FETs based on phosphorene can be modulated to 105, which means the Ion/Ioff ratio
reaches 105 [42]. The tunable bandgap of phosphorene make it possible to react with different spectral
regime from visible to infrared, which can be applied in fabricating multispectral photodetector [43].

The main challenge for phosphorene’s extensive application is the environmental stability,
which means it can be easily oxidized [44]. To prevent the surface oxidization which leads to the
decrease of device performance, some solutions have been adopted, for example, using h-BN [45],
atomic layer of Al2O3 [46,47] and hydrophobic fluoropolymer [48] as encapsulating materials during
process of van der Waals stacking.

2.4. Hexagonal Boron Nitride

Hexagonal boron nitride (h-BN), also called white graphite, has the same lattice structure as
graphite. (Figure 1e) For boron and nitrogen are combined together by the strong covalent sp2

hybridized chemical bond, h-BN exists as insulator with a large bandgap of 6 eV [49]. Mechanical
exfoliation can provide an atomically smooth surface without dangling bond and carrier traps, so a
few layers of h-BN can be used as ultra-flat insulating substrates, the gate dielectrics [50] and ideal
encapsulate material [24] in heterostructure transistors [13]. Besides, ultrathin h-BN can be served as
great tunneling barrier material in tunneling devices [51,52].

2.5. Other Various 2D Materials for vdWHs

In the past few years, novel 2D TMDCs draw a lot of concentration on creating new types of
devices; meanwhile, traditional 2D materials such as MoS2 and WSe2 have been considered once more.
In virtue of doping technology, high-k amorphous titanium suboxide (ATO) is used as an n-type charge
transfer dopant on the monolayer MoS2, which decreases the contact resistance to 180 Ω·µm [53].
Utilizing AlOx, another method of n-type doping in MoS2 is demonstrated, which can also reduce the
contact resistance to 480 Ω·µm [54]. After confirming operational parameters of chemical vapor
deposition, ultrathin MoS2(1−x)Se2x alloy nano-flakes with atomic or few-layer thickness can be
obtained and it have high activity and durability during the hydrogen evolution reaction [55].
These various 2D materials show variable bandgaps, tunable optical and electronic properties [56,57].

3. Techniques

Two-dimensional materials can be assembled or grown directly into heterostructures, where the
monolayers are held together by van der Waals forces. Although variety of 2D materials have been
found, the assembly techniques currently used allow only certain types to build up the heterojunction.
At the same time, the alternative technique, called sequential growth of monolayers, potentially do well
in large scale production. Actually, the growth method has some limitations, such as slow growth and
hard to control, and is still in early stages. Nevertheless, a great number of experiments with van der
Waals heterostructure indicate that 2D materials are versatile and practical for further applications [58].

3.1. Assembly

Direct mechanical assembly is the most commonly used techniques of assembling heterostructures
at present. This techniques was been put forward in 2010 by Dean et al., who demonstrated a very
high level of performance provided by graphene and h-BN [13].

In early works, the technique is only used in preparing a flake of 2D material on a sacrificial
membrane, such as PDMS, aligning and placing it on the substrate, and then remove or dissolve the
membrane (Figure 3A–G). Then, the progress is repeated to deposit the other 2D material on the top of
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the former layer. Because the materials have close contact with the sacrificial layer, which is dissolved
finally, the interface between TMDC and sacrificial layer will be contaminated. However, annealing
can remove this contamination and achieve high interface quality, so the mobility of graphene device
can reach 106 cm2·V−1·s−1 [13].

The other substantially cleaner method has the same principle that van der Waals interaction exist
between layers. After sticking the first layer onto membrane, the second layer is directly stuck on the
first layer, instead of dissolving the membrane (Figure 3G–O). Then, the process is repeated several
times to get expected multilayer. This method leads to cleaner interface over large areas, and higher
electron mobility.
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3.2. Growth Methods

Although the assembly methods can stack the layers and achieve a clean interface, it still has
some disadvantages, for example, the stacking position cannot be accurately controlled, which affects
the device properties [22]. The direct growth of vertical layered heterostructures via chemical vapor
deposition (CVD) is much more promising in terms of being controllable and scalable.

The direct growth of heterostructures can be divided into two parts: (1) sequential CVD growth
of 2D materials layered; and (2) molecular beam epitaxy (MBE). The detailed information is presented
in the following.

3.2.1. CVD

For the CVD system of MoS2 growth, as depicted in Figure 4, two separated furnaces are used
to precisely control temperature applied on both precursors and substrate. Sulfur powder and the
substrate are in the same pipe while different furnaces, where the interaction temperature can be
independently controlled. Twenty milligrams of MoO3 powder, which temperature is dominated
by furnace 2, is loaded between sulfur powder and the substrate and has an independent mini-pipe
(diameter 1 cm). This is to prevent any cross-contamination and reaction between sulfur and MoO3,
resulting in the decrease amount of MoO3 and unstable precursor supply in the vapor phase. Typical
growth temperatures used for sulfur, MoO3, and the substrate are ~180 ◦C, ~300 ◦C, and ~800 ◦C,
respectively. To ensure the sufficient supply of sulfur vapor in the system, it is preheated before
increasing the temperature of MoO3.

This simple but scalable CVD growth approach can realize the direct fabrication of large-area
MoS2/h-BN heterostructures with cleaner interface and better contact, compared with mechanical
transfer method or assembly methods [59].
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3.2.2. MBE

As one of the most commonly used growth methods of heterostructures, CVD has successfully
accomplished several two-dimensional layered materials [60]. Although it is almost theoretically
perfect, the reaction condition of CVD is hard to control at present and the results reported publicly
can only form a few well-defined islands over the entire wafer. Considering the defects, MBE is an
alternative approach for CVD in some ways [61].

As the name suggests, MBE is a kind of physical deposition method that takes place in ultrahigh
vacuum. Figure 5 shows a typical MBE system. The required components are heated into vapor and
sprayed on the substrate through a small hole. At the same time, a controlling molecule beam is used
to scan the substrate line by line, and the molecules or atoms are arranged layer by layer in lattice
structure. The ultra-high vacuum(UHV) environment minimize the contamination of the interface
between substrate and growing flake. Because there are few particles in UHV environment, the ionized
atoms and molecules traveled in nearly collision-free path until hitting the substrate or the chilled
oven walls, where atoms condense immediately, and thus are effectively cleaned up from the reacting
system without extra contamination. Because the components are sprayed onto substrate through a
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small hole, it can be turned off almost instantly and changed into another reactant whenever necessary.
Most importantly, MBE growth can be simplistically described as “spray painting” the substrate crystal
with layers of atoms, changing the composition or impurity in each layer until a desired structure is
obtained [62].

Compared with CVD, MBE can potentially grow products overspread the whole wafer, precisely
control the rate of interaction by means of regulating the rate of spraying and easily change the
reactant as requirement. In this sense, MBE is almost the ideal method of vdWHs fabrication since the
composition can be precisely controlled layer by layer.
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4. FETs Based on Heterostructures Applications

Various 2D materials provide diverse electronic properties from conductors to insulators which
benefits new devices creation. Van der Waals heterostructures exhibit ultrathin thickness and special
properties that give a chance to build transistors at nanoscale size compared to bulk materials.
Thus, novel field effect transistors based on van der Waals heterostructures have developed.

4.1. Decrease the Contact Resistance

Two-dimensional semiconductors (2DSCs), especially TMDCs, have sparked immense interest in
the electronic devices since the MoS2-based transistor was first reported [64]. Source and drain are
often made of Metal-TMD directly contact, which induce a high contact resistance Rc. Even the contact
resistance is larger than Si based transistors. The excessive contact resistance Rc on the source and
drain interface is a great challenge for 2DSCs devices.

The high contact resistance, induced by a high Schottky barrier [65], prevent the charge carriers
moving through the metal-semiconductor contacts. While the typical 2DLMs contact resistance
currently achieved is 100 times higher than Si-based electronics (<20 Ω·µm) [66], there is still much
work to do to decrease the actual contact resistance (Figure 6a). Some strategies have been used to
reduce the contact resistance with the help of graphene/metal heterostructures. Schematics are shown
in Figure 6d–f.
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Figure 6. Contact resistance for different two-dimensional materials: (a) various contact resistance of
materials against quantum limits; Reused with the permission from Nature publishing Group in the
Ref [65] (b) contact resistance with traditional 2H-MoS2 material; (c) contact resistance with 1T-MoS2

and 2H MoS2 as channel material; (d) coplanar contacts of graphene electrodes; (e) staggered contacts
of graphene electrodes; and (f) hybrid contacts of graphene electrodes. (b,c) are reproduced with the
permission from Nature publishing Group in the Ref [67]. (d–f) are adapted with the permission from
Nature publishing Group Ref [5].

In silicon-based transistor, doping is conventionally used in traditional process of decreasing
contact resistance at the source and drain interface, which is not reliable in TMDC-based transistor.
That is because a highly doped silicon-based transistor can provide more carriers to fill valence
band [65]. However, injecting other elements into TMDC seriously damages the covalent
bonds between the atoms and breaks TMDC’s unique lattice structure, thus a great deal of
defects are generated into layers resulting in Fermi-level pinning, which causes undesired contact
resistance [68,69]. Besides TMDC, graphene is another 2DLM drawing extensive concern. The greatest
contribution of graphene is forming van der Waals stacks with metal and 2DLM, which commendably
decreases the contact resistance due to its special band structure. Because graphene is single-element
2DLM, it can be doped similar to silicon. Compared with intrinsic graphene, the highly-doped
graphene decreases the height of Schottky barrier formed by the connection of graphene and metal,
which means the contact resistance is greatly reduced [70]. A typical TMDC-based transistor,
which uses monolayer graphene as metal electrodes, 2DLMs such as tungsten diselenide (WSe2)
as semiconductor channel, and hexagonal boron nitride (h-BN) as gate dielectric, exhibits very high
performance, such as high current on/off ratio, remarkable temperature stability, low contact resistance
and low subthreshold slop [71]. Even though the Schottky barriers is still high (0.22 eV) at the
graphene–WSe2 contact, the on-state current is dominated by tunneling through the barriers which
makes the barriers almost transparent to the charge carriers. After using 3 nm h-BN as gate dielectric
and 1.5 nm WSe2 flake as channel material, the tunneling distance is only 1.6 nm [72]. There are



Crystals 2018, 8, 8 10 of 23

three types of interface of graphene–2DSCs contact: coplanar contacts (Figure 6d), staggered contacts
(Figure 6e) and hybrid contacts (Figure 6f).

The coplanar structure is that the TMD channel materials and source/drain electrodes are on
the same side of graphene. With the bottom graphene contact for 2DSCs transistors, nearly perfect
work function matching lead to a barrier-free contact, which can significantly decrease Rc. MoS2 and
WSe2 transistors using this strategy have been demonstrated [25,70,73,74]. Staggered contacts mean
that TMD channel and source/drain electrodes are on different sides of graphene. With this strategy,
transistors can be less susceptible to lithographic contamination, because the polymer residue did
not touch TMD channel directly. Otherwise the residue will affect the charge transport at the
interface. With this method, high performance MoS2 transistors [75–78] and air stable black phosphorus
transistors [45] have been reported. Metal–graphene hybrid structure as a unique contact to reach
minimized Rc (300 Ω·µm) compared to metal–TMD structure. With graphene inserted as the interlayer
buffer, the carrier injection was enhanced at metal–graphene–TMD channel interfaces. For example,
nickel–etched–graphene electrodes have achieved a relatively low resistance [79]; Ti–graphene–MoS2

stacks can ruduce Rc from 12.1± 1.2 Ω·mm to 3.7± 0.3 Ω·mm to some degree compared with stacking
Ti onto MoS2 directly [80].

When integrating two-dimensional transition metal dichalcogenides with metal, the valence
band shows unusual Fermi level pinning. Compared with chemical doping, which will destroy the
covalent bond of TMDs within layers, the stacking of graphene can create a undamaged van der
Waals contact and a ultraclean interface, which prevents Fermi level pinning [25,75]. There are some
other reports demonstrate a stacking structure formed by MoS2 and graphene to reduce the connect
resistance [73,77,81]. In this structure, graphene and metal are connected together to form electrodes
and molybdenum disulfide (MoS2) is used as channel. The tunability of doping graphene’s work
function can significantly improve the ohmic contact to MoS2 [77].

Besides graphene, other 2DLMs such as MoS2 can also be doped with element to improve
the mobility of charge carriers which leads to low contact resistance, for example, physisorbing
chloride molecule into WS2 or MoS2 [82]. With the method of physisorbed molecules, contact
resistance can be obviously decreased [83]. Other efforts of contacting electrode metal materials
with TMDs create the low Schottky barrier. For example, the connection between molybdenum (Mo)
and MoS2 forms perfect interface, leading to ultralow Schottky barrier about 0.1 eV [84]. Other methods
based on van der Waals heterostructure to decrease Rc have include phase-engineering. With the
organolithium chemical method, MoS2 changes from 1T phase to 2H phase. 2H phase MoS2 behaves as
electronic channel, as shown in Figure 6b. This 1T–2H–1T structure can receive relatively low Rc [67]
(Figure 6c). To create stable homojunction contact of MoTe2, some reports use laser to achieve two
phase interconversion. Stacking semiconducting hexagonal (2H) and metallic monoclinic (1T) MoTe2

together can fabricate an ohmic heterophase homojunction, which is necessary in lowing contact
resistance [67]. Phase engineering, therefore, provide a way of creating lateral heterostructures with
low resistance, but additional work is needed to achieve values comparable to state-of-art materials
and close to the quantum limit.

4.2. Tunneling Field Effect Transistor and Barrister

The principle of tunneling field effect transistors (TFETs) is band-to-band tunneling [85].
The barriers induce by van der Waals gap narrow because the width of van der Waals gap is below
1 nm, which will lead to charge carriers tunneling [86]. For width of barriers narrowing at the
contact interface, the tunneling current between source and drain increases rapidly in silicon-based
transistor. However, vertical tunneling transistor based on vdWHs is different from conventional
TEFTs. In vertical structure, two separate monolayers of graphene serve as electrodes, and ultrathin
dielectric material are stuck between them. Based on gate-voltage tunability of the DOS in graphene,
the height of Schottky barrier reduces and realizes the charge carriers’ transportation.
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Transistors based on that principle use very thin BN (1.4 nm) and MoS2 as vertical transport
barrier, making devices have the switching ratio of ~10,000 at room temperature [87]. Further study of
this type of heterostructure is the resonant tunneling and gate voltage-tunable negative differential
conductance [88]. Other studies have put forward how to achieve the resonant tunneling with the help
of crystallographic orientation alignment of the graphene-BN-graphene heterostructure [89,90].

In addition of graphene, two dimensional TMDs have sharp band edges and ultra-narrow channel
length, which has been the suitable candidates for TFETs. By correctly choosing two 2D layers of
semiconductors to make up a suitable heterojunction (one layer is n-type and the other layer is
p-type), it can achieve both large tunneling current and low subthreshold swing (SS). Subthreshold
swing (SS) shows the current transformation with the change of voltage, when the device works in
subthreshold state. With the proper heterojunction band offsets between the two 2D semiconductor
layers (Figure 7a,b), the tunneling current will be significantly increased because of the band alignments.
TFETs with SnSe2/WSe2 van der Waals heterostructure (Figure 7c) have achieved the SS of 80 mV/dec
at room temperature and ION/IOFF ratio exceeding 106 [91] (Figure 7d). In addition, dual-gated
MoS2/WSe2 van der Waals heterostructures were demonstrated and carrier concentration of MoS2

and WSe2 can be independently controlled by up and down symmetric gates, which achieved a high
efficiency of 80% due to the weak electrostatic barrier through atomic layers [92].
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semiconductor and n-type semiconductor. (b) A schematic illustration of TFETs. The devices consist
of ultrathin p-type layer and n-type layer connected to source and drain, respectively. Vtg is the gate
tunable voltage and Vds is the drain voltage. (c) WSe2/SnSe2 heterostructure based TFET schematic
diagram. (d) Transfer curve of WSe2/SnSe2 TFET with the gate voltage of 0.1 V, 0.3 V, 0.5 V, 0.7 V, 0.9 V.
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4.3. Van der Waals Heterostructure Based Vertical Transistors (VFETs)

With ultrathin structure and suitable band structure, 2DLMs can create totally new devices such
as vertical transistors. Compared with conventional planar field effect transistors, which consist of a
source and a drain plate electrode with a conducting channel located between them, vertical transistors
often use graphene and metal as source and drain electrodes, respectively. In planar transistors
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(Figure 8a), the gate electrical field (E) controls the channel carriers to influx. Thus, the channel current
density (J) is always perpendicular to the gate electrical field (E) (J⊥E). The channel length is decided
by the area of 2DSCs. In other word, the lithographic accuracy which decides the distance of source
and drain would influence the channel length. In particular, the tunable work function and partial
electrostatic transparency make graphene become the appropriate candidate of interconnecting with
semiconductor to fabricate vertical transistors, in which graphene acts as the active contact. In this
fundamentally different geometry, as shown in Figure 8b, the channel carriers transport direction
is parallel to the gate electrical field (J‖E). The channel length is decided by the thickness of 2DSCs
which can be prominently shorter than the planar transistors. With effectively modulating the work
function of graphene by introducing the gate voltage, the Schottky barrier between graphene and
semiconductor changed and result in large current injection, which brings a large on/off ratio that
cannot be achieved in planar transistors.

Different kinds of transistors based on vertical vdWHs have been reported according to its special
device structure. N-channel vertical FET created by sandwiching multilayered MoS2 between graphene
and metal panel (Figure 8c), has the on/off ratio >103 at room temperature [93]. Due to van der Waals
interface between MoS2 and graphene, the Schottky barrier restrains current injection. Introducing
an external electric field can strongly modulate the height of Schottky barrier owing to the small
density of states of graphene [94]. The band structure of graphene/MoS2/metal heterostructure is
shown in Figure 8d. The source/drain voltage (VB) drives current follow vertically into multilayered
MoS2 channel. The carriers transport is dominated by thermionic-emission (TE). The application
of VB changes the Fermi level in graphene due to the capacitive coupling through MoS2. With the
increasing VB, the Fermi level will reach the Dirac point at some point, as shown in the right panel
of Figure 8d [95,96]. Other 2DLMs such as WS2 possessing the same geometrical structure of MoS2

VFETs have been reported, achieving extremely large on-state current [97].
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such as fullerene also draw attention to be assembled with graphene or 2DLMs to create organic 
vertical field effect transistors (OVFETs). In other words, the work function of fullerene (C60) is closed 
to graphene. Thus, the graphene/C60/metal VFET with a measured current on/off ratio up to 105 has been 
reported [98] and the logic inverter based on this structure also has been reported yet [99]. Some types of 
organic or molecular crystals can act as semiconductor. After stacking on graphene to form 2D–3D 
heterojunction, which is an excellent vertical channel for VFETs, new opportunities in developing novel 
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graphene transistors which had the mobility up to 10 cm2·V−1·s−1 have been achieved [100].  
  

Figure 8. Van der Waals vertical stack structure and devices: (a) conventional planar transistor, channel
current exists in planar area; (b) van der Waals vertical stack and channel current follow in vertical
direction; (a,b) are adapted with the permission of Nature Publishing Group in Ref [5] (c) schematic
of metal/MoS2/graphene vertical stack and measurement circuit; Adapted with the permission of
AIP Publishing LLC in Ref [94] (d) band alignment of metal/MoS2/graphene vertical stack with a
constant VG and changing with the increase of VB. Adapted with the permission of American Institute
of Physics Publishing LLC in Ref [95].

As graphene has attracted increasing attention among researchers, other carbon-based materials
such as fullerene also draw attention to be assembled with graphene or 2DLMs to create organic
vertical field effect transistors (OVFETs). In other words, the work function of fullerene (C60) is closed
to graphene. Thus, the graphene/C60/metal VFET with a measured current on/off ratio up to 105
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has been reported [98] and the logic inverter based on this structure also has been reported yet [99].
Some types of organic or molecular crystals can act as semiconductor. After stacking on graphene to
form 2D–3D heterojunction, which is an excellent vertical channel for VFETs, new opportunities in
developing novel OVFETs exist. At the same time, organic transistors such as 2D quasi-freestanding
molecular based graphene transistors which had the mobility up to 10 cm2·V−1·s−1 have been
achieved [100].

4.4. Photodetector and Diodes Based on van der Waals Heterostructure

Based on fine optical characteristic of two-dimensional TMDCs, photovoltaic applications about
van der Waals heterostructure combined with such materials have been explored. The typical
application is the photodetectors made of graphene act as channel material and MoS2 act as light
sensitive material [101]. Under the combination of two kinds of 2D materials which have different
tunable work functions, photoexcited electrons and holes can be accumulated in conductor layers.
Shown in Figure 9a, photoexcited pairs have been observed in the heterostructure of MoS2/WSe2 [102]
and MoSe2/WSe2 [103]. Most photovoltaic devices can be created by combining few layers of TMDCs
with graphene. Using graphene as electrodes and TMDCs sandwiched between two graphene
electrodes, one can create efficient photoexcited carriers inject into graphene electrodes [104,105].
In other words, graphene can form a typical ohmic contacts which will significantly decrease the
resistance and serve as a transparent electrode.

If p-type and n-type 2D semiconductors stack together with van der Waals force, then atomic
layers of p-n junctions can be acquired. Gate tunable diode based on TMDCs have been abundantly
created. Various combinations of 2D semiconductors were used to construct p-n junction for
photodetectors (typical p-n structure and band structure shown in Figure 9b) to realize the excellent
performance of responsivity and detectivity [106–112]. Heterostructures such as MoS2/WSe2 [107],
black phosphorus/MoS2 [109], and MoS2/WS2 [110] p-n junctions are widely used in photodetectors.
GaTe/MoS2 heterostructure received a high photovoltaic performance whose photoresponsivity can
reach 21.83 AW−1 [112].
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4.5. Memory

There are many types of memory devices which include dynamic random access memory
(DRAM), static random access memory (SRAM), resistive random access memory (RRAM) and flash
memory. The memory cells of DRAM and SRAM are based on the one-transistor and one-capacitance
(1T1C) structure and six transistors (6T), respectively. The 1T1C DRAM cell is shown in Figure 10a.
The capacitance charging and discharging controlled by the transistor on-state and off-state. When the
word line voltage reaches the transistor on-state voltage, the current will follow through transistor
and charge the capacitance when the bit line voltage is at high potential. This operation is called
the programming process. When the bit line voltage is at low potential, the charged capacitance
will discharge and the current will follow through the transistor into bit line, which is called erasing
process. When the word line voltage controls transistor at the off-state, the charge carriers will be held
in capacitance. After setting bit line at half of the high potential, the voltage will rise if the capacitance
is charged and will decline if the capacitance is discharged. This is called the reading operation of
DRAM. However, DRAM is a typical volatile memory, which means that the storage performance will
disappear under the power-down state.
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torque have been proposed for information storage. Decreasing the current density to realize the
domain wall motion plays an important role in practical applications [114]. Basically, the external
magnetic field is necessary to control the current-induced magnetization switching direction by spin
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orbit torque [115,116]. Later research has reported that the electric field definitively control the current
induced ferromagnet switching at room temperature with the polarized ferroelectric substrate [117].
Piezo voltage solely controlling the magnetization switching at room temperature without external
magnetic field has been realized, which can largely decrease the energy consumption compared with
the electric current switching magnetization [118]. This concept offers an idea to develop ferroelectric
random access memory, magnetic random access memory and phase change random access memory.

Another block of memory is flash, a kind of non-volatile memory. Flash memory is based on
2D material stacks established on a semiconductor–insulator–metal (SIM) structure (Figure 10b).
MoS2/BN/Graphene heterostructure for use in flash memory has been widely explored [113,119].
Graphene and MoS2 were utilized as charge trapping layers and channel layers and h-BN acted
as a tunnel barrier, respectively. Under a considerable voltage positive bias, the tunneling current
exponentially increases with the decreasing of BN thickness, which will lead to the increasing charge
injection into the trap layer. Thus, the thickness of insulator becomes especially important in SIM
structure. The critical thickness of tunneling barrier is 7 nm. Tunneling current cannot be formed in
the thick layers (>10 nm), while leakage current will exist in the thinner layers (3.5 nm), which will
cause charging process failure [113]. When gate voltage becomes negative in releasing process, charge
carriers trapped in the graphene layer will be transferred into MoS2. Thus, the charge retention and
gate hysteresis that contains a memory window can be observed (Figure 10c). Retention time of
trapping and releasing current shows the endurance of charge trapping flash device (Figure 10d).
Detailed band is structure shown in Figure 11a with the charging and releasing process.

Nonvolatile floating gate flash memory based on black phosphorus/BN/MoS2 stacks have been
reported, where MoS2 behaves as charge trapping layer and black phosphorus acts as channel [120].
Charge trap memory with high k dielectric materials can greatly improve the storage performance.
Few-layer MoS2 channel and three-dimensional Al2O3/HfO2/Al2O3 stack together to form a charge
trap flash memory device, exhibiting an unprecedented gate window of 20 V and a program/erase
current ratio of 104 [121]. Band diagram of program/erase state of device under different top gate bias
(Vtg) is shown in Figure 11d. Positive Vtg carry out the programming process. Electrons tunneling
from MoS2 channel are accumulated in HfO2 charge-trap layer. Negative Vtg carry out the erasing
process. Holes tunnel from MoS2 channel to HfO2 charge-trap layer. The charge-trap layer holds
different charges, causing the threshold shifting. Thus, memory window exists. Besides MoS2 channel
based charge-trap memory, Ambipolar WSe2 channel based charge-trap memory devices have also
been reported [122]. Subsequently, black phosphorus based charge-trap memory devices with a
Al2O3/HfO2/Al2O3 charge trap stack have been demonstrated, where the long data retention with
only 30% charge loss after 10 years were obtained [123]. Beside floating gate memory, novel structure
based on vertically stacked 2D materials (WSe2/h-BN/graphene) has the gate metal stack directly
on the graphene, thus we call it semi-floating gate (SFG) flash memory [124]. The structure is
shown in Figure 11b,c. When a positive voltage is applied on Si, electrons are accumulated in
the WSe2. These electrons tunnel through BN and begin to be accumulated in graphene due to the
different potential between WSe2 and graphene which is considered as programing process. When the
positive bias is removed, electrons are still trapped in graphene due to the potential barriers of
h-BN. When applying a small negative voltage bias on Si, the electrons tunnel through BN and are
injected into WSe2 channel as an erasing process. Similar behaviors can be observed for holes when
a negative voltage is applied on Si. When treated with plasmas, multilayer MoS2 transistors can
serve as nonvolatile, highly durable flash memory with multibit data storage capability. This novel
multibit flash memory is desirable for improving data storage density in order to reach manufacturing
process [125].

Memory have made significant progress due to the multiduty van der Waals heterostructures.
New type of memory devices structure began to spring up. However, effort still needs to be made to
improve the memory performance such as stability, reliability and time of memory operation. 2D van
der Waals heterostructures offer a new route of building novel memory.
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5. Perspective

The inherent absolute advantages of 2D materials—exhibiting free of dangling bond and gate
tunable electronic properties—make them promising candidates for van der Waals stacks, which are
widely used in novel device design. However, the burgeoning van der Waals heterostructures applied
to electronic devices remain in their infancy. Technical improvement still needs to be explored in the
following effort.

Conventional laboratory-stage process of assembling van der Waals stack is mechanical exfoliation
and transfer methods. The shape of exfoliated 2D materials is irregular and the size can only reach
micron order. It is hard to acquire monolayer materials and most are few layers. Large area 2D materials
are still needed in some cases during transfer process. Although with the utilize of chemical vapor
deposition, large-scale synthesizing 2D materials and van der Waals heterostructures is developed,
it still cannot be applied in integrated technique and lacks controllability of the relative orientation, size,
shape and interlayer spacing with increasing vdWH layers. Furthermore, the electrical performance
of chemically synthesized 2DLMs is inferior to their exfoliated counterpart. Thus, there is still much
room to improve the process of assembling van der Waals heterostructure.

FETs based on van der Waals heterostructures have largely focused on attaining high performance
with certain parameter to measure. However, parameters such as low SS at extensive range of gate
voltage biases, which will lead to large on/off ratios with low input voltage biases, have become
important criteria for measuring the performance of the devices. Besides, contact resistance is still a
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big deal for limiting the improvement of devices. There is still plenty of room to lower the contact
resistance, as it is still above theoretical minimum, even larger than Si based transistors. The contact
resistance must be lower by at least an order of magnitude to <100 Ω·µm. In 2D TMDCs, based on
phase engineering, changing semiconductor to metal phases is a promising route of creating an
ohmic contact which can greatly lower the contact resistance. In addition, the majority of TMDCs
are unipolar, n-type or p-type. Controllable and stable doping process is still a major challenge to
overcome the achievement of bipolar—both n-type and p-type—semiconductors or van der Waals
stack of homogenous material, which will enable the next generation of high speed and low power
devices. Direct growth of homogenous 2D semiconductor with stable doping process to form different
types of heterostructures and phase engineering to decrease contact resistance are topics for future
research. Scalable fabrication of van der Waals stacks also need to be explored. Creating new structure
of semiconductor devices based on van der Waals heterostructures still has a long way to go.
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