Supplementary Information

of

Propylene-Selective Thin Zeolitic Imidazolate Framework Membranes on Ceramic Tubes by Microwave Seeding and Solvothermal Secondary Growth

Jingze Sun ¹, Chen Yu ¹ and Hae-Kwon Jeong ^{1,2,*}

- ¹ Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, TX 77843-3122, USA; jingzesun93@gmail.com (J.S.); yuchen_hi@tamu.edu (C.Y.)
- ² Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, TX 77843-3122, USA
- * Correspondence: hjeong7@tamu.edu

Figure S1. Top-view SEM images of pristine tubular support on its inner side (a) and outer side (b).

Figure S2. Schematic illustrations on common reasons for a low-quality seeding layer.

Figure S3. PXRD pattern of powder sample scratched from the inner surface of the tubular membrane and the simulated pattern.

Figure S4. Optical images of loading tubular membranes into the test module (a) and a schematic illustration of its gas connections (b).

Figure S5. Permeance and separation factors of propylene/propane separation for ZIF-8 membrane on ceramic tubular supports.

Year	PI	Permeance of propylene (× 10 ⁻¹⁰ mol s ⁻¹ Pa ⁻¹ m ⁻²)	Permeability Barrer	SF	Thickness (µm)	Membrane Position	Method	Reference
2014		135	355	12	8.8	Internal	Interfacial fluidic processing	[1]
2015	Sankar Nair	220	460	65	7	Internal	Interfacial fluidic processing	[2]
2015		150	355	180	8	Internal	Interfacial fluidic	[3]
2014	Takeo	25	597	59	80	External	Counter-diffusion	[4]
2014		220	2628	10	40	External	Counter-diffusion with interface control by two immisible solvents	[5]
2014	ramaguciii	120	1075	7.2	30	External Counter-diffusion with interface control by two immisible solvents		[6]
2017	Shunsuke Tanaka	100	30	36	1	Internal	ernal Surface Modification with APTES	

Table S1. Typical ZIF-8 tubular membranes targeting propylene/propane separation.

	Synthesis conditions	Selectivity Propylene/propane	Permeance of propylene (× 10 ⁻¹⁰ mol s- ¹ Pa ⁻¹ m ⁻²)
ZIF-8 membrane on new tubular support	30°C, 5 day	52	194.32

 Table S2. ZIF-8 membrane on new (unrecycled) tubes.

Reference

- 1. Brown, A.J.; Brunelli, N.A.; Eum, K.; Rashidi, F.; Johnson, J.; Koros, W.J.; Jones, C.W.; Nair, S. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. *Science* **2014**, *345*, 72-75.
- 2. Eum, K.; Rownaghi, A.; Choi, D.; Bhave, R.R.; Jones, C.W.; Nair, S. Fluidic processing of highperformance zif-8 membranes on polymeric hollow fibers: Mechanistic insights and microstructure control. *Adv. Funct. Mater.* **2016**, *26*, 5011-5018.
- 3. Eum, K.; Ma, C.; Rownaghi, A.; Jones, C.W.; Nair, S. Zif-8 membranes via interfacial microfluidic processing in polymeric hollow fibers: Efficient propylene separation at elevated pressures. *ACS Appl. Mater. Interfaces* **2016**, *8*, 25337-25342.
- 4. Hara, N.; Yoshimune, M.; Negishi, H.; Haraya, K.; Hara, S.; Yamaguchi, T. Diffusive separation of propylene/propane with zif-8 membranes. *J. Membr. Sci.* **2014**, *450*, 215-223.
- 5. Hara, N.; Yoshimune, M.; Negishi, H.; Haraya, K.; Hara, S.; Yamaguchi, T. Effect of temperature on synthesis of zif-8 membranes for propylene/propane separation by counter diffusion method. *J. Jpn. Pet. Inst.* **2015**, *58*, 237-244.
- 6. Hara, N.; Yoshimune, M.; Negishi, H.; Haraya, K.; Hara, S.; Yamaguchi, T. Zif-8 membranes prepared at miscible and immiscible liquid–liquid interfaces. *Microporous and Mesoporous Materials* **2015**, *206*, 75-80.
- 7. Tanaka, S.; Okubo, K.; Kida, K.; Sugita, M.; Takewaki, T. Grain size control of zif-8 membranes by seeding-free aqueous synthesis and their performances in propylene/propane separation. *Journal of Membrane Science* **2017**, *544*, 306-311.