Supplementary information:

Solvent Effects on the Spin-Transition in a Series of Fe(II) Dinuclear Triple Helicate Compounds

Alexander R. Craze, ${ }^{\text {a }}$ Mohan M. Bhadbhade, ${ }^{\text {b }}$ Cameron J. Kepert, ${ }^{c}$ Leonard F. Lindoy, ${ }^{\text {c }}$ Christopher E. Marjo ${ }^{\text {b }}$ and Feng Li*a
${ }^{\text {a }}$ School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, Australia.
${ }^{\text {b }}$ Mark Wainwright Analytical Centre, University of New South Wales, Kensington, Australia.
${ }^{\text {c }}$ School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.

Dr Feng Li
School of Science and Health
Western Sydney University
Locked Bag 1797, Penrith NSW 2751, Australia
Tel: +61 296859987
Fax: +61296859915
E-mail: feng.li@westernsydney.edu.au

Contents

Single-crystal X-ray Diffraction 3
Powder X-ray
Diffraction 12
Thermal Gravimetric
Analysis 15

Single-Crystal X-ray diffraction:

Table S1. Crystal data and structure refinement for 1 at 298 K:

Empirical formula	$\mathrm{C}_{63} \mathrm{H}_{54} \mathrm{~B}_{4} \mathrm{~F}_{16} \mathrm{Fe}_{2} \mathrm{~N}_{18}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{1.25}$
Formula weight	1572.49
Temperature/K	298(2)
Crystal system	triclinic
Space group	P-1
a/Å	13.018(3)
b/Å	14.202(3)
c/Å	21.191(4)
$\alpha /{ }^{\circ}$	73.79(3)
$\beta /{ }^{\circ}$	79.44(3)
$V^{\prime}{ }^{\circ}$	77.23(3)
Volume/Å ${ }^{3}$	3638.1(15)
Z	2
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.435
μ / mm^{-1}	0.495
$\mathrm{F}(000)$	1601.0
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ} 2.018$ to 49.998	
Index ranges	$-15 \leq h \leq 15,-16 \leq k \leq 16,-25 \leq 1 \leq 25$
Reflections collected	42752
Independent reflections	11357 [$\left.\mathrm{intr}=0.0373, \mathrm{R}_{\text {sigma }}=0.0325\right]$
Data/restraints/parameters	11357/291/1141
Goodness-of-fit on F^{2}	1.064
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0717, \mathrm{wR}_{2}=0.1966$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0880, w \mathrm{R}_{2}=0.2121$
Largest diff. peak/hole / e \AA^{-3}	0.61/-0.69

Experimental

A suitable crystal was selected and run on beamline MX1 of the Australian Synchrotron. The crystal was kept at 298(2) K during data collection. Using Olex2 [1], the structure was solved with the SheIXT [2] structure solution program using Intrinsic Phasing and refined with the ShelXL [3] refinement package using Least Squares minimisation.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of 1 at 298 K :
Crystal Data for $\mathrm{C}_{63} \mathrm{H}_{54} \mathrm{~B}_{4} \mathrm{~F}_{16} \mathrm{Fe}_{2} \mathrm{~N}_{18}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{1.25}(M=1572.49 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=13.018(3) \AA$ A $, b=14.202(3) \AA, c=21.191(4) \AA, \alpha=73.79(3)^{\circ}, b=79.44(3)^{\circ}, v=$ $77.23(3)^{\circ}, V=3638.1(15) \AA^{3}, Z=2, T=298(2) K, \mu(\mathrm{MoK} \mathrm{\alpha})=0.495 \mathrm{~mm}^{-1}, D c a l c=1.435 \mathrm{~g} / \mathrm{cm}^{3}$, 42752 reflections measured $\left(2.018^{\circ} \leq 2 \theta \leq 49.998^{\circ}\right), 11357$ unique ($R_{\text {int }}=0.0373$, $R_{\text {sigma }}=$ 0.0325) which were used in all calculations. The final R_{1} was $0.0717(I>2 \sigma(I))$ and $w R_{2}$ was 0.2121 (all data).

Refinement model description
Number of restraints - 291, number of constraints - unknown.
Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups, All C(H,H) groups, All N(H) groups
At 1.5 times of:
All C(H,H,H) groups
2. Restrained distances C3-N2
1.137 with sigma of 0.01

C3-C4
1.456 with sigma of 0.01

C4-N2
2.593 with sigma of 0.02

C2-C5
1.456 with sigma of 0.01 N1C-C2
1.15 with sigma of 0.02

C5-C2
1.4 with sigma of 0.02

F3-F4 $\approx \mathrm{F} 4-\mathrm{F} 1 \approx \mathrm{~F} 3-\mathrm{F} 1$
with sigma of 0.04
$\mathrm{B} 1-\mathrm{F} 2 \approx \mathrm{~B} 1-\mathrm{F} 7 \approx \mathrm{~B} 1-\mathrm{F} 8 \approx \mathrm{~B} 1-\mathrm{F} 9$
with sigma of 0.02
F2-F7 \approx F7-F8 $\approx F 8-F 9 \approx F 9-F 2 \approx F 7-F 9 \approx F 2-F 8$
with sigma of 0.04
F01Q-B02S \approx F01R-B02S
with sigma of 0.02
F02D-B02S \approx F02E-B02S
with sigma of 0.02
F02L-B02S \approx F02M-B02S
with sigma of 0.02
B02S-F5 \approx B02S-F4AA
with sigma of 0.02
F00R-B02Q $\approx F 00 S-B 02 Q$
with sigma of 0.02
F019-B02Q \approx F0-B02Q
with sigma of 0.02
F02C-B02Q \approx F5AA-B02Q
with sigma of 0.02

```
    B02Q-F02U \approx B02Q-F02V
    with sigma of 0.02
    C2-C5 \approx C0AA-C1AA
    with sigma of 0.02
    C4-C3 \approx C5-C2 \approx C1AA-C0AA
    with sigma of 0.02
    F01Q-F02D \approx F01Q-F5 \approx F02D-F02L \approx F02L-F5
    with sigma of 0.04
    B02S-F01Q \approx B02S-F02D \approx B02S-F02L \approx B02S-F5
    with sigma of 0.02
    F01Q-F02D \approxF01Q-F5 \approx F02D-F02L \approx F02L-F5 \approxF02M-F02E \approx
F02M-F01R \approx F02E-F4AA
    \approxF02E-F01R \approx F4AA-F01R
    with sigma of 0.04
    B02S-F01Q \approx B02S-F02D \approx B02S-F02L \approx B02S-F5 \approx B02S-F02M \approx
B02S-F02E \approx B02S-
    F4AA \approx B02S-F01R
    with sigma of 0.02
3. Rigid bond restraints
    F3, F4, F1, B1, F2, F7, F8, F9, F2AA, F1AA, F3AA, F6, F11
    with sigma for 1-2 distances of 0.01 and sigma for 1-3 distances of 0.01
    F01Q, F02D, F02L, B02S, F5, F02M, F02E, F4AA, F01R
    with sigma for 1-2 distances of 0.01 and sigma for 1-3 distances of 0.01
    F00R, F019, F02C, B02Q, F02U, F5AA, F00S, F0, F02V
    with sigma for 1-2 distances of 0.01 and sigma for 1-3 distances of 0.01
4. Uiso/Uaniso restraints and constraints
F3 \approxF4 \approx F1: within 2A with sigma of 0.04 and sigma for terminal atoms
of 0.08
B1 \approxF2 \approx F7 \approx F8 \approx F9: within 2A with sigma of 0.04 and sigma
for terminal atoms of 0.08
N2 \approx C3 \approx C4: within 2A with sigma of 0.04 and sigma for terminal atoms
of 0.08
C2 \approx C5: within 2A with sigma of 0.04 and sigma for terminal atoms of 0.08
Uanis(F5) = Uanis(F4AA)
5. Rigid body (RIGU) restrains
    F3, F4, F1
    with sigma for 1-2 distances of 0.004 and sigma for 1-3 distances of 0.004
    B1, F2, F7, F8, F9
    with sigma for 1-2 distances of 0.004 and sigma for 1-3 distances of 0.004
    N2, C3, C4
    with sigma for 1-2 distances of 0.004 and sigma for 1-3 distances of 0.004
    C2, C5
    with sigma for 1-2 distances of 0.004 and sigma for 1-3 distances of 0.004
6. Others
    Sof(F02M)=Sof(F02E)=Sof(F4AA )=Sof(F01R)=1-FVAR(1)
    Sof(F01Q)=Sof(F02D)=Sof(F02L)=Sof(F5)=FVAR(1)
    Sof(F5AA)=Sof(F00S)=Sof(F0)=Sof(F02V)=1-FVAR(2)
    Sof(F00R)=Sof(F019)=Sof(F02C)=Sof(F02U)=FVAR(2)
    Fixed Sof: F3(0.33333) F4(0.33333) F1(0.33333) F2(0.33333) F7(0.33333)
    F8(0.33333) F9(0.33333) F2AA(0.33333) F1AA(0.33333) F3AA(0.33333)
F6(0.33333)
    F11(0.33333) N2(0.5) C3(0.5) C4(0.5) H4D(0.5) H4E(0.5) H4F(0.5) C2(0.25)
    C5(0.25) H5A(0.25) H5B(0.25) H5C(0.25) C0AA(0.5) C1AA(0.5) H1AA(0.5)
H1AB(0.5)
    H1AC(0.5) N0AA(0.5) N1C(0.25)
7.a Free rotating group:
    B1(F2,F7,F8,F9), N2(C3,C4)
7.b Secondary CH2 refined with riding coordinates:
    C10A(H10A,H10C), C11B(H11A,H11B), C11C(H11C,H11D)
7.c Aromatic/amide H refined with riding coordinates:
    N10(H10), C4B(H4B), C6B(H6B), C17B(H17B), C9A(H9A), N00S(H00S), C9C(H9C),
```

```
    C17A(H17A), C16B(H16B), N00X(H00X), C10B(H10B), C7B(H7B), C4A(H4A),
C9B(H9B),
    C12A(H12A), C4C(H4C), C8A(H8A), N01A(H01A), N01D(H01D), C18B(H18B),
C13A(H13A),
    C15A(H15A), C16A(H16A), C6A(H6A), C13B(H13B), C10C(H10D), C01U(H01U),
    N01W(H01W), C14B(H14B), C1C(H1C), C2B(H2B), C15C(H15C), C22(H22),
C6C(H6C),
    C17C(H17C), C20A(H20A), C16C(H16C), C21B(H21B), C1A(H1A), C20C(H20C),
    C20B(H20B), C13C(H13C), C12C(H12C), C1B(H1B), C7C(H7C), C2A(H2A),
C19C(H19C)
7.d Idealised Me refined as rotating group:
    C4(H4D,H4E,H4F), C5(H5A,H5B,H5C), C1AA(H1AA,H1AB,H1AC)
```

Discussion of Issues with Crystallographic Data:
Anion and solvent molecules were quite disordered, and for this reason some thermal ellipsoids remain quite large.

One acetonitrile molecule was assigned in two parts of 0.25 and 0.5 occupancy respectively, while the other was assigned 0.5 occupancy.

Table S2. Crystal data and structure refinement for $\mathbf{2}$ at 155 K.

Empirical formula	$\mathrm{C}_{60} \mathrm{H}_{48} \mathrm{~B}_{4} \mathrm{~F}_{16} \mathrm{Fe}_{2} \mathrm{~N}_{18} \mathrm{~S}_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$
Formula weight	1658.39
Temperature/K	155(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.4960(19)
b/Å	16.709(3)
c/Å	23.605(5)
$\alpha /{ }^{\circ}$	95.07(3)
$\beta /{ }^{\circ}$	100.27(3)
$\mathrm{V} /{ }^{\circ}$	92.96(3)
Volume/Å ${ }^{3}$	3662.3(13)
Z	2
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.504
μ / mm^{-1}	0.578
F(000)	1684.0
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ 2.452 to 49.426	
Index ranges	$-11 \leq h \leq 11,-19 \leq k \leq 19,-27 \leq 1 \leq 27$
Reflections collected	39131
Independent reflections	11544 [$\left.\mathrm{inft}=0.0389, \mathrm{R}_{\text {sigma }}=0.0359\right]$
Data/restraints/parameters	11544/225/1062
Goodness-of-fit on F^{2}	1.633
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.1103, \mathrm{wR}_{2}=0.3529$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1215, \mathrm{wR}_{2}=0.3729$
Largest diff. peak/hole / e \AA^{-3}	1.54/-0.98

Experimental

A suitable crystal was selected and run on a Bruker APEX-II CCD diffractometer. The crystal was kept at 155(2) K during data collection. Using Olex2 [1], the structure was solved with the SheIXT [2] structure solution program using Intrinsic Phasing and refined with the SheIXL [3] refinement package using Least Squares minimisation.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of $\mathbf{2}$ at 155 K
Crystal Data for $\left.\mathrm{C}_{60} \mathrm{H}_{48} \mathrm{~B}_{4} \mathrm{~F}_{16} \mathrm{Fe}_{2} \mathrm{~N}_{18} \mathrm{~S}_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{M}=1650.28 \mathrm{~g} / \mathrm{mol}\right)$: triclinic, space group P-1 (no. 2), $a=9.4960(19) \AA$, $b=16.709(3) \AA, c=23.605(5) \AA, \alpha=95.07(3)^{\circ}, b=100.27(3)^{\circ}, v=$ $92.96(3)^{\circ}, V=3662.3(13) \AA^{3}, Z=2, T=155(2) \mathrm{K}, \mu(\mathrm{MoK} \alpha)=0.578 \mathrm{~mm}^{-1}, D c a l c=1.497 \mathrm{~g} / \mathrm{cm}^{3}$, 39131 reflections measured $\left(2.452^{\circ} \leq 2 \theta \leq 49.426^{\circ}\right), 11544$ unique ($R_{\text {int }}=0.0389, R_{\text {sigma }}=$ $0.0359)$ which were used in all calculations. The final R_{1} was $0.1108(1>2 \sigma(1))$ and $w R_{2}$ was 0.3751 (all data).

Refinement model description
Number of restraints - 225, number of constraints - unknown.

Details:

1. Fixed Uiso
```
At 1.2 times of
    All C(H) groups, All N(H) groups
At 1.5 times of:
    All C(H,H,H) groups
```

2. Restrained distances
F1-B2
1.40225 with sigma of 0.01
F0AA-B2
1.40225 with sigma of 0.02
F0AA-F1
2.28987 with sigma of 0.02
F13-B10 = F1AA-B10
1.4 with sigma of 0.02
F1AA-F13
2.28987 with sigma of 0.02
F1AA-F6
2.28987 with sigma of 0.02
F6-F13
2.28987 with sigma of 0.02
F3-B10
1.4 with sigma of 0.02
F3-F13
2.28987 with sigma of 0.02
F3-F1AA
2.28987 with sigma of 0.02
F3-F6
2.28987 with sigma of 0.02
F3AA-F5AA
2.28987 with sigma of 0.02
F3AA-F2AA
2.28987 with sigma of 0.02
F3AA-F4AA
2.28987 with sigma of 0.02
F2AA-F5AA
2.28987 with sigma of 0.02
F2AA-F4AA
2.28987 with sigma of 0.02
F4AA-F5AA
2.28987 with sigma of 0.02
F3AA-B0AA
1.4 with sigma of 0.02
```
    F5AA-B0AA = F4AA-B0AA = F2AA-B0AA
    1.4 with sigma of 0.02
    F7AA-B0AA
    1.4 with sigma of 0.02
    F8AA-B0AA
    1.4 with sigma of 0.02
    B0AA-F2AA = B0AA-F3AA = B0AA-F4AA = B0AA-F5AA = B0AA-F6AA = B0AA-F7AA =
B0AA-
    F2 = B0AA-F8AA
    1.4 with sigma of 0.02
    N1-C20
    1.2 with sigma of 0.02
3. Rigid body (RIGU) restrains
    F02Q, F00R, F010, F029, B02Y
    with sigma for 1-2 distances of 0.004 and sigma for 1-3 distances of 0.004
    F1, F5, F4, F0AA
    with sigma for 1-2 distances of 0.004 and sigma for 1-3 distances of 0.004
    F8AA, F2AA, B0AA, F3AA, F6AA, F4AA, F2, F7AA, F5AA
    with sigma for 1-2 distances of 0.004 and sigma for 1-3 distances of 0.004
    C20
    with sigma for 1-2 distances of 0.004 and sigma for 1-3 distances of 0.004
    C1
    with sigma for 1-2 distances of 0.004 and sigma for 1-3 distances of 0.004
    F1, B2, F4, F5, F6, B10, F3, F0AA, F1AA, F13
    with sigma for 1-2 distances of 0.004 and sigma for 1-3 distances of 0.004
    F009, F006, B020, F007, F00B
    with sigma for 1-2 distances of 0.004 and sigma for 1-3 distances of 0.004
4. Others
    Fixed Sof: B2(0.75) F4(0.5) F5(0.5) F1(0.5) F0AA(0.5) F1AA(0.5) F6(0.5)
    B10(0.25) F13(0.5) F3(0.5) F2AA(0.75) F3AA(0.75) F4AA(0.75) F5AA(0.25)
    F6AA(0.75) F7AA(0.25) F2(0.25) F8AA(0.25)
5.a Free rotating group:
    B2(F4,F5)
5.b Aromatic/amide H refined with riding coordinates:
    N00G(H00G), N00J(H00J), C00L(H00L), N27(H27), C00S(H00S), N00T(H00T),
    C013(H013), C014(H014), C015(H015), C016(H016), C017(H017), C01A(H01A),
    C01B(H01B), C01C(H01C), C01D(H01D), C01E(H01E), C01F(H01F), N01G(H01G),
    N01I(H01I), C01K(H01K), C01L(H01L), C01N(H01N), C010(H010), C01P(H01P),
    C01Q(H01Q), C01R(H01R), C01S(H01S), C01T(H01T), C01U(H01U), C01V(H01V),
    C01W(H01W), C01X(H01X), C01Y(H01Y), C01Z(H01Z), C023(H023), C025(H025),
    C29(H29), C027(H027), C028(H028), C02A(H02A), C02E(H02E), C02H(H02H),
    C02I(H02I), C02J(H02J), C02K(H02K), C02L(H02L), C02N(H02N), C02P(H02P)
5.c Idealised Me refined as rotating group:
    C02V(H02B,H02C,H02D), C1(H1A,H1B,H1C)
```

Discussion of Issues with crystallographic data:

Large R1, wR2 and GoF values were obtained, although the wR2 and GoF are more severe. Disorder in $\mathrm{BF}_{4}{ }^{-}$counter ions and the acetonitrile molecule containing C 1 in particular may be responsible for these high values.

Table S3. Crystal data and structure refinement for $\mathbf{3}$ at 298 K .

Empirical formula	$\mathrm{C}_{60} \mathrm{H}_{48} \mathrm{~B}_{4} \mathrm{~F}_{16} \mathrm{Fe}_{2} \mathrm{~N}_{18} \mathrm{O}_{3} .\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{1.5}$
Formula weight	1589.68
Temperature/K	298(2)
Crystal system	monoclinic
Space group	C2/c
a/Å	20.420(4)
b/Å	19.394(4)
c/Å	20.836(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	107.68(3)
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	7862(3)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.343
μ / mm^{-1}	0.461
F(000)	3228.0
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ} 2.966$ to 46.494	
Index ranges	$-20 \leq h \leq 20,-19 \leq k \leq 19,-20 \leq 1 \leq 20$
Reflections collected	33555
Independent reflections	$4808\left[\mathrm{R}_{\text {int }}=0.0735, \mathrm{R}_{\text {sigma }}=0.0385\right]$
Data/restraints/parameters	4808/0/506
Goodness-of-fit on F^{2}	1.068
Final R indexes [$1>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0804, \mathrm{wR}_{2}=0.2429$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1043, w \mathrm{R}_{2}=0.2640$

Experimental
A suitable crystal was selected and run on a Bruker APEX-II CCD diffractometer. The crystal was kept at 298 K during data collection. Using Olex2 [1], the structure was solved with the SheIXT [2] structure solution program using Intrinsic Phasing and refined with the SheIXL [3] refinement package using Least Squares minimisation.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of $\mathbf{3}$ at 298 K

Crystal Data for $\mathrm{C}_{60} \mathrm{H}_{48} \mathrm{~B}_{4} \mathrm{~F}_{16} \mathrm{Fe}_{2} \mathrm{~N}_{18} \mathrm{O}_{3} .\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{1.5}(M=1589.68 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group C2/c (no. 15), $a=20.420(4) \AA, b=19.394(4) \AA$ A $, c=20.836(4) ~ \AA, ~ b=107.68(3)^{\circ}, V=$ $7862(3) \AA^{3}, Z=4, T=298(2) K, \mu(M o K \alpha)=0.461 \mathrm{~mm}^{-1}$, Dcalc $=1.343 \mathrm{~g} / \mathrm{cm}^{3}, 33555$ reflections measured ($2.966^{\circ} \leq 2 \theta \leq 46.494^{\circ}$), 4808 unique ($R_{\text {int }}=0.0735, R_{\text {sigma }}=0.0385$) which were used in all calculations. The final R_{1} was $0.0804(I>2 \sigma(I))$ and $w R_{2}$ was 0.2640 (all data).

Refinement model description
Number of restraints - 0 , number of constraints - unknown.
Details:

1. Fixed Uiso

At 1.2 times of:
All C(H) groups, All N(H) groups
At 1.5 times of:
All C(H,H,H) groups
2. Others

Fixed Sof: C1(0.5) H1C(0.5) H1D(0.5) H1E(0.5) C2AA(0.5) N2(0.5) N1AA(0.25)
C0AA (0.25) H0AA(0.25) $\mathrm{H} 0 \mathrm{AB}(0.25) \mathrm{H} 0 \mathrm{AC}(0.25) \mathrm{C} 3(0.25)$
3.a Aromatic/amide H refined with riding coordinates:

N2A(H2A), N5A(H5A), N2B(H2B), C1A(H1A), C2A(H2AA), C4A(H4A), C6A(H6A), C7A(H7A), C9A(H9A), C10A(H10A), C12A(H12A), C13A(H13A), C15A(H15A), C16A(H16A), C17A(H17A), C19A(H19A), C20A(H20A), C1B(H1B), C2B(H2BA), C4B(H4B), C6B(H6B), C7B(H7B), C9B(H9B), C10B(H10B)
3.b Idealised Me refined as rotating group: C1(H1C, H1D, H1E), C0AA(H0AA, H0AB, H0AC)

Discussion of Issues with crystallographic data:
The acetonitrile molecule containing N1AA was modelled with a site occupancy of 0.25 and was, as a result of such a small degree of electron density, unable to be modelled anisotropically and was accordingly modelled isotropically.

Due to the Australian synchrotron being a single circle instrument, completeness fell of steeply at resolutions between 0.8 and $0.85 \AA$. A balance was thus attempted to be made between the resolution and the completeness, using a SHEL command to remove some high angle data that was greatly affecting the completeness values. As such, the d min is slightly high and the completeness slightly low.

The wR2 value of 26.4 is also slightly high, possibly a result of the larger thermal ellipsoids observed during the room temperature measurement.

Powder X-ray Diffraction:

Figure S1. PXRD pattern of 1, with the 298 K PXRD pattern in black on top and simulated spectrum from 298 K SCXRD data in red on the bottom.

Figure S2. PXRD pattern of 2, with the 298 K PXRD pattern in black on top and simulated spectrum from 155 K SCXRD data in red on the bottom. No 298 K SCXRD structure could be obtained.

Figure S3. PXRD pattern of 3, with the 298 K PXRD pattern in black on top and simulated spectrum from 298 K SCXRD data in red on the bottom.

Thermal Gravimetric Analysis (TGA):

Figure S4. TGA analysis of filtered samples of $\mathbf{1}$.

Figure S5. TGA analysis of filtered samples of $\mathbf{2}$.

Figure S6. TGA analysis of filtered samples of 3.

