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Abstract: We report the results of an analysis of the functional capabilities of the KTP crystal
and its isomorphs for nonlinear-optical frequency conversion of all types of interactions in the
transparency range of the crystal. The possibility of implementing angle, wavelength (frequency),
and temperature-noncritical phase matching is shown.

Keywords: nonlinear crystals; KTP and isomorphs; frequency conversion; functional capabilities;
temperature-noncritical mode

1. Introduction

Since the first publication of the data on the synthesis of the KTP crystal (potassium titanyl
phosphate, KTiOPO4) [1] and of the results of measuring its characteristics, it became evident that
the crystal would take its rightful place for frequency conversion tasks and has fully justified these
hopes [2–5].

The synthesis of this crystal stimulated the study of the possibility of creating isomorphic
media with a MTiOXO4 structure, where {M = NH4, K, Rb, TI, and Cs} and {X = P and As} [6–17].
A large amount of work has been done, and new crystals have been synthesized including KTA
(potassium titanyl arsenate, KTiOAsO4), RTA (rubidium titanyl arsenate, RbTiOAsO4), RTP (rubidium
titanyl phosphate, RbTiOPO4), and CTA (cesium titanyl arsenate, CsTiOAsO4). Each of them has
their own fields of application. Additionally, it is possible to note the works on the synthesis
and investigation of such crystals as KNaTP (K1−xNaxTiOPO4), KNTA (K1−x(NH4)xTiOAsO4),
KGTP (KTi1−xGaxO1−xPO4(F,OH)x), AKTP (Ag0.85K0.15TiOPO4), NHTP ((NH4)0.5H0.5TiOPO4) [18],
and crystals activated by ions of rare-earth elements [19–21].

For a certain but rather wide range of tasks, these crystals have no alternative. They have a high
effective nonlinearity coefficient (deff), rather large values of all the phase-matching widths, and of
the thermal conductivity coefficient, good optical quality, small absorption, and linear expansion
coefficients, as well as non-hygroscopicity. Besides, they are inexpensive in manufacture. Not very
high value of the damage threshold determines the field of the most effective applications of these
crystals, which includes generation of harmonics and parametric frequency conversion in the near-IR
range. In these crystals, noncritical processes were realized for all parameters, i.e., angles, wavelength,
and temperature. Moreover, the possibility of producing periodically and non-periodically poled
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structures in them at record high values of the nonlinear susceptibility coefficient d33 allowed them
to find wide application for the problems of frequency conversion of low-intensity radiation in the
crystal transparency range [22–25].

In addition to frequency conversion, these crystals are used as modulators and Q-switches [26,27].
Work is underway to design fibers and waveguide structures [28–37], photonic structures [38–40] from
these media. Additionally, these crystals are very promising for the generation of THz radiation [41–45].

To date, a large number of reviews on these crystals have been published. It is impossible to
enumerate all the problems on the generation of radiation at different wavelengths in the KTP crystal
and its isomorphs, which were obtained experimentally. Nevertheless, not all their capabilities are
fully defined. In this paper, we present the results of an analysis of the functional capabilities of the
KTP crystal and its isomorphs for all frequency conversion tasks including generation of harmonics
and sum and difference frequencies, as well as parametric generation in the range of their transparency
(0.4–5.0 µm).

The KTP crystal and its isomorphs belong to mm2 point-group symmetry, with the mutual
orientation of the axes XYZ–abc. A common property of these crystals is that the signs of the nonlinear
susceptibility tensor coefficients dij are identical (in contrast to the crystals of point group 3m), and their
values differ insignificantly. This leads to the fact that the distributions of the effective nonlinearity
coefficients have practically the same form. Figure 1 shows the distributions of the effective nonlinearity
coefficients deff in the KTP crystal for two types of interactions, ssf and fsf = sff (s-slow, f -fast) in
accordance to equations from Reference [46]. The lines of white color show the phase-matching
directions for the second harmonic generation (SHG), i.e., ssf (SHG at λ1 = λ2 = 3.4 µm, for which the
value deff is maximal) and fsf = sff (SHG at λ1 = λ2 = 1.064 µm, as widely used). For a large number of
applications, a cut of the crystal is selected on the phase-matching curve, for which deff has a maximum
value. For the particular cases of ssf type shown in Figure 1, this value of deff is 0.65 pm/V at ϕ = 42◦

and θ = 49.7◦, and for the cases of fsf = sff type we have deff = 3.42 pm/V at ϕ = 23.5◦ and θ = 90◦.
Black points at Figure 1 show these directions. The maximum value deff takes place for the second type
of phase matching, i.e., sff = fsf, which is most widely used in practice.
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1/λ1 + 1/λ2) is uniquely determined, the plots of the dependences for which are given for all the results 
presented below. For each pair of wavelengths λ1 and λ2, a cone of phase-matching directions was 

Figure 1. Distribution of deff(ϕ, θ) and phase-matching directions for SHG in KTP crystal: (a) ssf -,
and (b) sff = fsf types of interactions.

Let us consider the functional possibilities of frequency conversion for all possible processes and
types of phase matching in the crystal transparency range.

2. General Features of Frequency Conversion

The method of analysis of the functional possibilities of the KTP crystal and its isomorphs
proposed in References [47,48] uses the form of presentation for the crystal figure-of-merit
FOM = d2

e f f /(n1n2n3) from the wavelengths λ1 and λ2 for uniaxial [47] and biaxial [48] crystals.
Hereafter, the relation λ1 ≥ λ2 > λ3 is adopted. For all the values of the wavelengths λ1 and λ2, the
value of λ3 (1/λ3 = 1/λ1 + 1/λ2) is uniquely determined, the plots of the dependences for which
are given for all the results presented below. For each pair of wavelengths λ1 and λ2, a cone of
phase-matching directions was calculated. Along these directions, there was one defined for which deff
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has a maximum value. It was used to calculate FOMD (λ1, λ2), each value of which on the distributions
presented below in Figures 2, 4, 6–10, 12–17 has its color from the right-hand palette. Here, the
parameter FOMD (λ1, λ2) corresponds to the maximum value deff on the phase-matching curve, unlike
the other FOM parameter defined below in Section 3. In all the figures of the FOM (λ1, λ2) distributions
the maximum values are shown. The following data (Sellmeier equations for indices of refractions,
dni/dT and dij coefficients) were used for the crystal parameters: KTP [49,50], RTP [51], RTA [52],
KTA [53], and CTA [54,55]. There is one peculiarity here. All this group of crystals is grown by different
technologies [56–63], in different regimes and with different composition of the initial charge. This
leads to the fact that the crystals have different refractive indices. As a result, the phase-matching
angles can differ by a few degrees. The data [49–53] used in the calculations most closely correspond
to the crystals supplied by the majority of manufacturers. Below, we will show the difference between
the results for FOM (λ1, λ2) using various optical and thermo-optical parameters of the KTP crystal.

It is known (see, e.g., [63,64]) that the coefficients of the nonlinear susceptibility tensor dijk are
characterized by dispersion. However, due to the lack of complete data for all crystals, dispersion
was not taken into account in the calculations. We used typical values [46] in the crystal transparency
range. The variation in the values of dijk in this range does not change the general character of
the distributions.

Figure 2 shows the FOMD (λ1, λ2) distributions for the wavelengths λ1 and λ2 for all types of
interactions for the KTP crystal in its transparency range (the boundaries of the range are shown by
external dashed lines). For the used ratio of wavelengths λi, the results appear below the diagonal of
the graph. It is easy to see that for ssf -type interaction the distribution is symmetric with respect to the
diagonal. For sff and fsf types, the results are mutually complementary with respect to the diagonal.
Black color lines correspond to λ3 (1/λ1 + 1/λ2 = 1/λ3).
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of wavelengths at which angular noncritical phase matching takes place. This is most fully obvious 
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Almost throughout the crystal transparency range, phase matching is realized for the first and
second types of interactions. The boundary of the FOMD (λ1, λ2) distribution determines combinations
of wavelengths at which angular noncritical phase matching takes place. This is most fully obvious
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for the sff type of interaction in Figure 2. For all crystals of the KTP group, phase matching with a
change in wavelength appears and disappears along the y axis [65]. In this case, it is noncritical in
angles ϕ and θ. In all the figures, a combination of wavelengths for which phase matching exists
along the x axis is shown by the white line. For SHG, this is realized at λ1 = λ2 = 1.078 µm and λ1 =
λ2 = 3.18 µm. This is also angular noncritical phase matching. For type-II phase matching along the x
axis, the coefficient deff has a maximum value. Thus, at all combinations of wavelengths with phase
matching along the x axis, the maximum conversion efficiency can be obtained.

For this group of crystals, phase matching along the z axis is absent. In the KTP crystal,
the maximum value of the wavelength for the sum frequency generation is possible with type-II
phase matching for SHG at λ1 = λ2 = 3.308 µm, whereas the minimum value of the wavelength
for SHG is observed at λ1 = λ2 = 0.994 µm. The minimum value of the wavelength with ssf - and
fsf -type interactions can be obtained by sum frequency generation (SFG) at the boundary of the
transparency range.

The character of the FOMD (λ1, λ2) distribution for the ssf type in the main part of the wavelength
region of the transparency range is determined by the fact that the terms with different elements of the
tensor dij with opposite signs contribute to the nonlinear polarizability of the medium. For a value of
λ1 at the boundary of the transparency range, a large variance for the angle of the optical axis Vz(λ),
a large difference Vz(λ1)–Vz(λ2), leads to an increase in the values of deff. But even in this region the
maximum value of FOMD (λ1, λ2) for the ssf type is less than that for fsf and sff types, the region of
phase matching for ssf type being maximal.

The presented results allow us to determine the possible tuning range of optical parametric
oscillators. For a given value of λ3, the phase matching region shows the tuning range for λ1 and λ2.
This can all be achieved at a maximum value of deff. It can be seen from the results of Figure 2 that the
largest tuning range can be obtained by changing the phase-matching angle in the xz plane.

The maximum pump wavelength for KTP is 1.7 µm. The largest tuning range can be obtained for
λ3 = 0.8–1.2 µm. In this case, the wavelength range is λ1 = 1.1–4.5 µm. This can all be achieved at a
maximum value of deff in the xy plane, since the value of FOMD (λ1, λ2) is determined for these values.

The method of analysis proposed in References [47,48] allows us to determine combinations
of wavelengths at which the regime of frequency-noncritical phase matching (FNCPM) is realized.
The condition d∆k/dλ = 0 corresponds to it. Figure 3 shows the wavelength dependence of the
phase-matching angle θphm and the coefficient deff in the xz plane for the SHG with the type-II
interaction in the KTP crystal. One can see that these dependences exhibit a consistent variation
of these parameters. In this case, the FNCPM regime can be determined by the equality dθ/dλ = 0.
Consequently, the minimum value of FOMD (λ1, λ2) for the KTP crystal on the straight line representing
SHG (Figure 2) corresponds to the FNCPM regime.
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Similarly, the combination of the wavelengths λ1 and λ2 for FNCPM can be determined for all the
frequency conversion processes, i.e., generation of the third (THG), fourth (FoHG), fifth (FiHG)
harmonics, and SFG (in Figure 4 they are indicated by the red line). In the FNCPM regime,
the minimum values of FOMD(λ1, λ2) along the straight line will correspond to the above frequency
conversion processes. For fsf and sff interactions types in Figure 4, the dashed lines show the
combination of λ1 and λ2 of the FNCPM regime. It should also be noted that FNCPM takes place for
the combinations of the wavelengths λ1 and λ2 on all these lines, which are tangent to the isolines of
the FOMD(λ1, λ2) distributions. The FNCPM regime is realized accurately for the given ratio of the
wavelengths. In addition, it can also be obtained in the vicinity of these values of λ1 and λ2 on the
phase-matching curve [66], but at a smaller value of deff. The dash-dotted line in Figure 4 shows the
combinations of the wavelengths for the FNCPM regime in the yz plane, which occurs in the KTP
crystal and its isomorphs.
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The general character of the change in FOMD (λ1, λ2) also shows the ratio of the spectral widths
of phase matching at various combinations of λ1 and λ2. Figure 4a shows that, for example, for SHG,
the rate of change in the value of FOMD (λ1, λ2) in the short-wave region is much larger than that in the
long-wavelength region. A small rate of change in FOMD (λ1, λ2) corresponds to a slow change in the
phase-matching angle θphm. In this case, the spectral width of phase matching in the long-wavelength
region is greater than that in the short-wavelength region. This is confirmed by with the calculated
wavelength dependences of the spectral width of phase matching for SHG in the KTP crystal (Figure 5):
0.6 nm·cm in short-wavelength region, and 7.2 nm·cm in the long-wavelength region. They differ by
more than an order of magnitude.

The FNCPM regime is also possible when the frequency of ultra-short pulses is converted into a
field of quasi-continuous wave (quasi-CW) radiation. Figure 6 shows the special case of the FOMD (λ1,
λ2) distribution for sum frequency generation for type-II phase matching with broadband radiation at
λ1 = 2.4 µm and quasi-CW radiation at λ2 = 1.75 µm. In this case, the spectral width of phase matching
with respect to λ1 is 170 nm·cm1/2. This possibility follows from the fact that in the case when the
tangent to the isolines of the FOMD (λ1, λ2) distribution is parallel to the axis, the value of deff does not
change in a wide range of the wavelengths. Taking into account the results of Figure 2, we find that in
a wide range of the wavelengths, the phase-matching angle preserves its value. For the KTP crystal,
for example, in the xz plane, this is the angle θphm. The character of the FOMD(λ1, λ2) distribution with
a minimal value in the central region (Figure 6) shows that the FNCPM is possible in a wide range
of the wavelengths. Additionally, possible is the FNCPM regime with a different ratio of the spectral
widths of two wavelengths λ1 and λ2.

Figures 7–10 show the results for RTP (Figure 7), KTA (Figure 8), RTA (Figure 9), and CTA
(Figure 10) crystals, which are similar to those in Figure 2 for KTP.
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In general, the character of the distributions for all these crystals is similar to that for KTP. As in
the case of KTP, for the ssf type, phase matching exists almost everywhere in the crystal transparency
range. However, the value of deff for it is significantly less than that for fsf and sff types. For the fsf
type, phase matching is realized in most of the crystal transparency range.
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In the case of the CTA crystal, in the vicinity of the x axis the rate of change in FOMD (λ1, λ2)
in the complete wavelengths range is much less than that for other crystals. This corresponds to
the fact that the spectral width of phase matching for CTA is larger. At a wavelength of 1.548 µm,
the spectral width in CTA is 4.3 nm·cm, whereas the spectral width in KTP at 1.076 µm is 0.6 nm·cm.
In all crystals, the FNCPM regime can be obtained both for the generation of harmonics and sum and
difference frequencies.

3. Temperature-Noncritical Processes of Frequency Conversion

The above results in the form of FOMD (λ1, λ2) distributions allow us to determine combinations
of the wavelengths for which deff has a maximum value and for which angle and frequency-noncritical
phase matching takes place. It is also possible to implement temperature-noncritical phase matching
(TNCPM) by determining the value of FOMT (λ1, λ2) on the phase-matching cone along the directions
for which d∆k/dT = 0. This regime of frequency conversion in the KTP crystal has been repeatedly
obtained by various authors [67–73]. As in the case of angle and frequency-noncritical phase matching,
the first-order derivative with respect to temperature d∆k/dT = 0 determines the TNCPM direction.
The temperature width is determined by derivatives of a higher order.

It is important that the TNCPM direction is not strictly fixed in the crystal. It has dispersion as
well as phase-matching and optical axis directions. To analyze the feasibility of the TNCPM regime
and its dispersion, it was proposed [73] to determine the directions (cone) of temperature-noncritical
interactions (TNCIs) independently of the phase-matching condition for which ∆k (ϕ, θ) = 0. These are
the directions along which d∆k (ϕ, θ)/dT = 0, no matter if phase matching takes place or not.
The intersection of the phase-matching and TNCI cones determines the direction of TNCPM, since in
this direction ∆k (ϕ, θ) and d∆k(ϕ, θ)/dT are simultaneously equal to zero. With changing the radiation
wavelength, both cones (phase matching and TNCI) change, which leads to a change in the TNCPM
direction. This shows that this regime takes place in a finite range of wavelengths for a given frequency
conversion process.
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Figure 11 shows the angular dependences for phase matching and TNCI of ssf and fsf interactions
types for SHG in the KTP crystal at different wavelengths. For the ssf -type interaction, the TNCPM
regime is initially obtained at a wavelength of λ1 = λ2 = 0.747 µm in the xy plane (ϕ = 64◦, θ = 90◦).
As the wavelength of the radiation increases, the direction of TNCPM changes, and the values of the
angles ϕ and θ change. At a wavelength of λ1 = λ2 = 1.064 µm, the TNCPM regime takes place at
ϕ = 48◦ and θ = 43◦, and at λ1 = λ2 = 3.48 µm it occurs in the xz plane (ϕ = 0◦, θ = 54◦). Thus, for SHG
with the ssf type of interaction, the TNCPM regime can be obtained in the range from 0.774 to 3.48 µm
with a change in the direction from the xy plane to the xz plane. The results of Figure 1a demonstrate
that, in the principal planes xy, yz and xz of the crystal (up to the optical axis), deff = 0, and the results
of Figure 11a,c are of no practical value. The maximum conversion efficiency for the ssf type with
TNCPM can be obtained at λ1 = λ2 of about 3.25 µm.
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wavelengths for (a–c): ssf, and (d–f): sff types of interactions.

For the sff -type interaction, the TNCPM regime can be obtained in the wavelength range
1.002–3.180 µm. The character of the change in the direction of TNCPM is such that it appears
in the xy plane at a wavelength of 1.002 µm (ϕ = 72◦, θ = 90◦) (Figure 11d). As the wavelength
increases, the directions change, but TNCPM with a maximum wavelength does not intersect the main
planes of the crystal. The results for the sff type in Figure 1b demonstrate that the maximum value
of deff (along the x axis) cannot be obtained. The value of FOMT (λ1, λ2) is 3–4 times smaller than the
value along the x axis. But at a wavelength of 3.18 µm TNCPM takes place along the x axis. In this
case, there is TNCPM, angular noncritical phase matching and a maximal value of deff. The result of
Figure 11 agrees with the experimental data obtained in Refs. [67–72].

For the KTP crystal, the FOMT (λ1, λ2) distributions with TNCPM are shown in Figure 12 for all
types of interactions. The region for the existence of phase matching (the wavelength region with phase
matching without TNCPM), corresponding to Figure 2, is shown by gray. Here, the phase matching is
temperature critical. The distribution from the regions with different levels/color corresponds to the
temperature-noncritical phase matching (wavelength region with TNCPM).

A comparison of Figures 2 and 11 for the KTP crystal shows that the values of FOM (λ1, λ2) are
different for the same combinations of the wavelengths. When these values are equal for the KTP
crystal, the TNCPM direction lies in the main plane, where deff has a maximum value. In the case of
SHG, this takes place for fsf = sff type phase matching at a wavelength of 3.18 µm (Figure 11).



Crystals 2018, 8, 386 10 of 15

Additionally, it is possible at different combinations of λ1 and λ2. With FOMD (λ1, λ2) differs
from FOMT (λ1, λ2), the direction of TNCPM has the most common orientation: 90◦ > θ > 0◦ and 90◦ >
ϕ > 0◦. In this case, deff will be less than the maximum possible value for the selected combination
of wavelengths.

The FOMT (λ1, λ2) distributions, similar to those in Figure 12, are presented for KTA (Figure 13),
RTP (Figure 14), RTA (Figure 15), and CTA (Figure 16) crystals. One can see from these figures that only
in the KTP and RTP crystals there are directions in the crystal transparency range along which TNCPM
is realized. For KTA and RTA crystals, the TNCPM region is much smaller than the phase-matching
region. For the CTA crystal, no TNCPM is realized at any combination of wavelengths λ1 and λ2.
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In analyzing the results of Figures 12–16, it is necessary to pay attention to one peculiarity.
For example, more than 10 papers have been published for the KTP crystal in which the Sellmeier
equations ni(λ) are given for the principal values of the refractive indices, and the data are lesser extent,
from the values of ni(λ). As noted above, the following data were used to calculate the FOMT (λ1,
λ2) distributions for the KTP crystal (Figure 12): ni(λ) [49], dni(λ)/dT [50]. They give a fairly good
agreement with the results of calculations and the experimental data for phase-matching angles, mainly
in the visible and near-IR ranges. Additionally, a good agreement was obtained for the temperature
widths of phase-matching. A comparison of the experimental results with the TNCPM [70] was carried
out using the data for dni(λ)/dT from [50]. As a result, a good agreement was obtained.
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Later, more precise measurements of the parameters were made for the KTP crystal [49].
The obtained data for ni(λ) are in very good agreement with the results of calculations for the
phase-matching angles in the crystal transparency range. The data for dni(λ)/dT in Reference [49]
give good agreement for the temperature-critical phase matching in the visible-near-IR range. But in
the crystal transparency range of the KTP crystal, the FOMT (λ1, λ2) distributions (see Figure 17)
considerably differ from the results of Figure 12. The ranges of wavelengths within which TNCPM is
present also differ. Comparison of the results in Figures 12 and 17 raises the problem of refinement
of the data on dni(λ)/dT in the KTP crystal transparency range. At the same time, it is necessary to
measure the temperature derivatives for refractive indices of the second and higher orders to determine
the temperature widths of phase matching [72,73]. Based on this, at present, the reliability of the above
results for RTP, KTA, RTA, and CTA crystals cannot be guaranteed (Figures 13–16). Much less research
was carried out for these crystals than for the KTP crystal.
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Without pretending to rigorous determination of the results (see Figures 12–16) at this stage,
it can be formally noted that in the largest wavelength region, the TNCPM regime takes place for
phosphate crystals (KTP and RTP). In a much smaller region, the TNCPM is realized for crystals
containing arsenic (RTA and KTA). The presence of cesium in the crystal together with arsenic (CTA)
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leads to the fact that the TNCPM regime is absent in the crystal transparency. This is confirmed
by the results of Reference [54], in which the temperature width of phase matching did not exceed
11.1 ◦C·cm for different frequency conversion processes in the range 0.532–2.02 µm. All this requires
an appropriate analysis.

4. Conclusions

The paper presents the results showing the functional capabilities of the KTP crystal and
its isomorphs for nonlinear-optical frequency conversion in the range of their transparency for
all types of interactions with maximal value of effective nonlinear coefficient. Combinations of
wavelengths are shown, at which angle-, wavelength, and temperature-noncritical phase matching
is realized. The boundary of distribution corresponds to angular noncritical phase matching along y
axis. Additionally, the obtained results show angular noncritical phase matching along x and z axes.
The wavelength noncritical phase matching corresponds to the extremum on distribution.

Realization of temperature noncritical phase matching is represented. This regime can be realized
in wide band of wavelengths in some crystals. One can see from obtained results that only in the
KTP and RTP crystals there are directions in the crystal transparency range along which TNCPM is
realized. For KTA and RTA crystals, the TNCPM region is much smaller than the phase-matching
region. For the CTA crystal, no TNCPM is realized at any combination of wavelengths.
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