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Abstract: The thermal conductivity of the Mg-1Mn-2Zn-xNd alloys (x = 0.5, 1.0, 1.5 wt. %) was
studied for the potential applications of heat dissipation. The phase constituents were examined
by X-ray diffraction analysis, and the microstructure was observed by light and scanning electron
microscopes. The thermal conductivity of the Mg alloys was gauged at room temperature using
laser flash method. The experimental results indicate that the thermal conductivity of both the cast
and extruded Mg alloys decreases slowly with Nd content, and the extrusion process remarkably
reduces the grain sizes and thermal conductivity of the Mg alloys. The thermal conductivity of cast
Mg-1Mn-2Zn-xNd alloys exceeds the required critical value (100 W/(m·k)) for the cast Mg alloys.
Among them, the cast Mg-1Mn-2Zn-1Nd alloy has great potential to be a good candidate of heat
dissipation materials due to its good combination of thermal and mechanical properties.
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1. Introduction

The rapid development of various electronic devices demands higher heat dissipation
performance of metal fins. Silver, gold, copper and aluminum (Al) have the best thermal conductivity
(427, 315, 398 and 237 W/(m·K) for silver, gold, copper and Al at room temperature, respectively)
among the metallic materials [1] and they should be expected to be good candidates of heat dissipation
materials. Silver and gold, however, are precious metals with very high price, and copper also has its
own disadvantages: high cost, large weight and poor corrosion resistance. This is the reason why the
light Al alloys are often used to manufacture the most currently-used heat sinks. Recently, Magnesium
(Mg) and its alloys have attracted a great attention as potential heat dissipation materials because
Mg has good thermal conductivity of 156 W/(m·K) at room temperature, which is only lower than
that of pure Al among the commercially-used metallic materials [1], and it has much lower density
(about 1.8 g/cm3) and higher specific heat capacity as compared with the above metals. Pure Mg,
however, has poor strength (about 21 MPa for cast Mg). The cast Mg alloys have much higher strength
than pure Mg due to solution strengthening or/and precipitation strengthening, but addition of
alloying elements deteriorates inevitably the thermal conductivity at the same instant due to the lattice
distortion or/and formation of precipitates caused by alloying elements. For example, the thermal
conductivity of cast AZ91 and AM60 is respectively about 58 [2] and 65 W/(m·K) [3]. In addition,
3C products, shell of automobile engines and light emitting diode (LED) radiators demand both higher
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mechanical and thermal properties [4], and thus the most frequently used cast Mg alloys such as
AZ91 and AM 60 cannot meet the heat dissipation requirement of those products because of their low
thermal and mechanical properties. The ultimate tensile strength (UTS) of AZ91 can be enhanced to
305 and 365 MPa from 125 MPa by multidirectional forging [5] and rolling [6], respectively. And the
slow extrusion can increase the UTS of Mg-9Al alloy to 402 MPa [7]. The thermomechanical processes,
however, simultaneously reduce the thermal property of the Mg alloys manly due to much finer
grain size and higher dislocation density of wrought Mg alloys than the cast alloys [8,9]. Therefore,
it is necessary to develop new Mg alloys with a good combination of both thermal conductivity and
mechanical properties for the wide applications of heat dissipation.

Since the different elements have the different effects on the mechanical properties [10–15] and
thermal performance [2–4,16–22] of the Mg alloys, the alloying element type and concentration of the
Mg alloys developed for the applications of heat dissipation should be carefully chosen in order to get
a good balance between the thermal and mechanical properties. So far, most studies [2,3,9,16,17,19,20]
have focused on the thermal conductivity of the Mg alloys without consideration from the angle of
good combination of mechanical and thermal properties, which is undesirable for the applications
of heat dissipation. It was reported that the cast Mg-Zn-Mn alloy exhibits the heat conductivity of
125 W/(m·K) [22] which is about twice as high as that of AZ91 and AM60, and the extruded Mg-Mn-Zn
system alloys with a low content of Nd exhibit good strength [23]. Therefore, Mg-Mn-Zn-Nd alloys are
expected to offer a good combination of thermal and mechanical properties. Until now, there has been
no report on the thermal property of those Mg alloys. Thus, the thermal conductivity of Mg-Mn-Zn-Nd
alloys was investigated to check if they are suitable for possible applications of heat dissipation.

2. Experimental

The fabrication and hot extrusion processes of designed Mg-1Mn-2Zn-xNd alloys (x = 0.5, 1.0, 1.5
wt. %) were detailed in the previous investigation [23]. The actual chemical compositions of designed
Mg alloys, which were analyzed by X-ray fluorescence spectrometry, were shown in Table 1 [23].
The specimens with 10 mm (diameter) × 3 mm (thickness) were machined from the cast ingots and
extruded bars at cross section. The thermal diffusivity of the alloys was gauged at room temperature by
laser flash method. The densities of the samples were calculated through Archimedes method and the
Neumann–Kopp rule was used to determine the specific heat capacities of the designed alloys [24,25].
The thermal conductivity was obtained using the following equation [3]:

λ = α × $ × Cp (1)

where α is thermal diffusivity (m2/s), $ is the density (g/cm3) and Cp is the specific heat capacity
(J/(g·K)) under constant pressure. The results were the averages of at least 3 sample tests.

Table 1. Chemical compositions of the Mg-1Mn-2Zn-xNd alloys (mass %).

Alloy Code Mn Zn Nd Ni Fe Al Mg

Cast1 1.29 2.42 0.28 0.01 0.02 - Bal.
Cast2 1.23 2.31 0.81 0.02 0.02 0.03 Bal.
Cast3 1.21 2.2 1.21 0.02 0.03 0.03 Bal.

Note: Cast1, Cast2, Cast3 respectively stand for the cast Mg-1Mn-2Zn-xNd alloys with Nd content of 0.5, 1.0 and
1.5%, and Extruded1, Extruded2, and Extruded3 stand for the extruded Mg-1Mn-2Zn-xNd alloys with Nd content
of 0.5, 1.0 and 1.5%, respectively.

The phase constituents of the studied alloys were analyzed by X-ray diffraction analysis (XRD)
operated at 40 kV and 40 mA with Copper Kα radiation in 2θ = 25–85◦ and scanning speed of 0.02◦/s.
The microstructure of the designed alloys was observed by light microscopy (LM) and scanning
electron microscope (SEM, Hitachi SU-1500) operated at 20 kV. The etching solution was composed of
5 mL nitric acid and 100 mL distilled water.



Crystals 2018, 8, 427 3 of 10

3. Results

3.1. Microstructure of the Alloys

The XRD results of the Mg-1Mn-2Zn-xNd alloys are presented in Figure 1 and Table 2. It is
noticed that all the cast and extruded Mg alloys are compose of both α phase and Mg7Zn3, and the
extruded alloys exhibit the obvious texture because their strongest peaks are (100) which are different
to the strong peaks (101) of the cast Mg alloys and powder Mg without texture (JCPCS card 35-0821).
The slight increase of peak intensity of Mg7Zn3 suggests that the amount of Mg7Zn3 increases with
addition of Nd content due to the limited solubility of alloying elements in α phase. The lattice
parameters of α phase were calculated by software of Jade 6.0 based on the XRD results and
summarized in Table 3. It can be seen that the c/a ratios of the crystal parameters of α phase slowly
increase with Nd content, which causes lager crystal distortion and destroys the lattice periodicity.
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Figure 1. XRD patterns of the Mg alloys.

Table 2. Intensity of main peaks for α phase and Mg7Zn3 (cps.).

Alloy Code A (100) A (101) Mg7Zn3 (400) Mg7Zn3 (622)

Cast1 7842 86,119 905 978
Cast2 5493 41,023 990 1002
Cast3 3319 21,927 1090 1204

Extruded1 74,521 5027 1709 1678
Extruded2 74,255 5563 1909 1860
Extruded3 47,336 5828 2050 1969

Table 3. Lattice parameters of α phase and mean grain size of Mg alloys.

Alloy Code Lattice Parameters Grain Size

a/nm c/nm c/a /µm

Pure Mg [26] 0.32094 0.52108 1.6236 –
Cast1 0.32095 0.52111 1.6236 200
Cast2 0.32088 0.52118 1.6242 155
Cast3 0.32097 0.52142 1.6245 100

Extruded1 0.32096 0.52130 1.6241 4~7
Extruded2 0.32107 0.52148 1.6242 4~7
Extruded3 0.32109 0.52156 1.6243 4~7
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The microstructure of the cast Mg alloys is shown in Figure 2. The coarse equiaxed microstructure
can be observed for all the cast Mg alloys, and their mean grain sizes measured by the method of
linear intercept are 200, 155 and 100 µm, respectively, which indicates that the grain size of the Mg
alloys slowly declines with addition of Nd content. On the contrary, all the extruded Mg alloys
exhibit very fine microstructure with a mean grain size of 4~7 µm (Figure 3), which is due to the grain
breakage caused by the hot-extrusion and recrystallization. It can also be observed that the number
of white particles in Figure 3 increases with Nd content. In order to identify those white particles,
the Energy Dispersive Spectrometer (EDS) was employed and the results are shown in Figure 4.
The white particles are distributed in Mg-1Zn-1Mn-1.5Nd alloy as shown in Figure 4a. The EDS result
in Figure 4b suggests that the white particle (assigned A area) should be Mg7Zn3 because the atom
ratio of Mg/Zn is close to 7:3. Figure 4c indicates that the assigned area B (surrounding area of the
white particles) is the α-Mg matrix. The finding is in agreement with the previous report [13,18,27].
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Figure 2. Light microscopy (LM) microstructure of the cast Mg alloys. (a) Cast1, (b) Cast2 and (c) 

Cast3. 
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Figure 2. Light microscopy (LM) microstructure of the cast Mg alloys. (a) Cast1, (b) Cast2 and (c) Cast3.
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Figure 3. SEM microstructure of the extruded Mg alloys. (a) Extrude1, (b) Extrude2 and (c) Extrude3.
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Figure 4. (a) SEM micrograph of the extruded3 alloy, (b) EDS analysis corresponding to assigned A
area and (c) EDS analysis corresponding to assigned B area.

3.2. Thermal Conductivity

Figure 5 shows the thermal conductivity of the examined Mg alloys, which was calculated from
the thermal diffusivity data using Equation (1). It can be observed that the thermal conductivity of both
the cast and extruded Mg alloys slowly decreases with addition of Nd content, which is much lower
than that of pure Mg (156 W/(m·K)). The thermal conductivity of the Mg alloys declines remarkably
after the extrusion process. The standard deviation was less than 5%.
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4. Discussion

4.1. Effect of Nd Content on the Thermal Conductivity

The electrons and phonons are the main heat carrier of the alloys, and the thermal conductivity is
composed of electronic thermal conductivity and lattice thermal conductivity [28]. When the alloying
elements dissolve in the α-Mg phase, the solid solutions will be formed and crystal lattice of the Mg
matrix will be distorted. While the addition of alloying elements exceeds their solid solubility in
α phase (Mg), precipitates are produced [12,13,23,27,29]. Solute atoms and precipitates, which are
scattering centers of phonons and electrons, can reduce the mean free path of electrons and result
in a reduction of the thermal conductivity of the alloy [4]. According to the above microstructure
and Table 3, it can be considered that the increased lattice distortion, destruction of lattice periodicity
and number of Mg7Zn3 particles (scattering centers), with addition of Nd content mainly account
for the thermal conductivity of designed Mg alloys decreases with Nd content. The variation trend
of thermal conductivity of the Mg alloys with alloy element content is in agreement with previous
investigations [8,9,17,19,21,30].

4.2. Effect of Extrusion Process on the Thermal Conductivity

The lattice defects including vacancies, dislocations and crystal boundaries, are also the scattering
centers of phonons and electrons that stop the free movement of electrons and accordingly reduce the
thermal conductivity of the alloys [4,9]. The finer grain size leads to worse thermal performance of the
Mg alloys [22,31]. As shown above (Figures 2 and 3), the extrusion process significantly reduces the
mean grain size of the Mg alloys, so the extruded Mg alloys contain much more crystal boundaries
(the scattering centers of phonons and electrons) than the cast alloys, which results in remarkable
decreases of the thermal conductivity of the extruded alloys. This is the main reason why the extruded
Mg alloys exhibit much lower thermal conductivity than the cast Mg alloys. As compared with the cast
alloys, the extruded Mg alloys might contain a certain amount of dislocation caused by the extrusion,
which also contributes to the reduction in the thermal conductivity of the extruded Mg alloys since the
dislocation is also the scattering center of phonons and electrons and reduces the thermal conductivity
of the extruded Mg alloys [31]. That the extruded Mg alloys exhibit lower thermal conductivity than
the cast Mg alloys in this study is consistent with the previous investigations [8,9,18]

Texture may influence the thermal conductivity due to the anisotropic feature of Mg alloy
with close-packed hexagonal structure [4]. Yuan et al. [18] investigated the thermal conductivity
of extruded ZM51 in the extrusion and transverse directions, which was 110.7 and 117.9 W/(m·k),
respectively. This indicates that the difference in the thermal conductivity between extrusion and
transverse directions is about 6%, and the influence of the texture caused by extrusion process is
relatively weaker as compared with the above factors such as alloying element and precipitates.
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The strength of deformation texture generally depends on the processing method (rolling, extrusion or
drawing), amount of deformation, deformation temperature, material nature and original state (original
orientation). Lager deformation amount and lower deformation temperature usually leads to stronger
texture. Since the Mg-1Mn-2Zn-xNd alloys in this study and the ZM51 [18], which were processed
by the same method (extrusion), have the similar material nature and original state (homogenized),
their difference in strength of texture is mainly related to the amount of deformation and deformation
temperature. The extrusion ration (14.7) of the Mg-1Mn-2Zn-xNd alloys in this study is smaller than
that (16) of the ZM51 [18] and the extrusion temperature (623 K) of the Mg-1Mn-2Zn-xNd alloys
is higher than that (573 K) of the extruded ZM51 [18], thus the texture strength of the extruded
Mg-1Mn-2Zn-xNd alloys should be weaker than that of the extruded ZM51 [18] and the influence of
texture on the thermal conductivity of the Mg-1Mn-2Zn-xNd alloys is accordingly expected to be less
than 6%.

The thermal conductivity of heat dissipation materials is an essential thermophysical performance.
The more efficient cooling effect comes from the higher thermal conductivity [30], which can prevent
the electric(al) equipment from overheating and prolong the service life. Huawei Technology Co., Ltd.,
a globe leading manufacturer of information and technology, demanded that the thermal conductivity
of the cast and wrought Mg alloys should respectively exceed 100 and 120 W/(m·K) [31]. Thus, the cast
Mg-1Mn-2Zn-xNd alloys exceed the required critical value (100 W/(m·K)) of thermal conductivity for
the cast Mg alloys. The tensile properties of cast Mg-1Mn-2Zn-xNd alloy are shown in Table 4 [32] and it
can be seen that the cast Mg-1Mn-2Zn-1Nd alloy exhibits the highest tensile strength of 185 MPa among
the cast Mg alloys. Therefore, this alloy has a good combination of mechanical and thermal properties,
and it has great potential to be a good candidate of heat dissipation materials. Although the extruded
alloys have much higher strength [23] than the cast Mg alloys, their thermal conductivity is lower
than the above critical value (120 W/(m·K)) for the wrought Mg alloys. Fortunately, recent studies
have indicated that aging treatment can enhance the thermal performance of the Mg alloys [33–36].
Therefore, the thermal conductivity of extruded Mg-1Mn-2Zn-xNd alloys is expected to rise after aging
treatment. Those experiments are under progress and the results will be reported later.

Table 4. Tensile properties of the cast Mg-1Mn-2Zn-xNd alloys.

Alloy Code Ultimate Tensile Strength (MPa) Tensile Yield Strength (MPa)

Cast1 181 55
Cast2 185 57
Cast3 110 41

5. Summary

The thermal conductivity of the Mg-1Mn-2Zn-xNd alloys (x = 0.5, 1.0, 1.5 wt. %) was studied for
the potential applications of heat dissipation. The results show that the thermal conductivity of both
the cast and extruded Mg alloys slowly decreases with addition of Nd content. The extrusion process
remarkably reduces the grain sizes and thermal conductivity of the Mg alloys. The cast Mg alloys
exhibit higher thermal conductivity than the critical value (100 W/(m·k)) of the as-cast Mg alloys
required for the application of heat dissipation. The cast Mg-1Mn-2Zn-1Nd alloy has a great potential
to be a good candidate of heat dissipation materials due to its good combination of mechanical and
thermal properties.
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