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Abstract: Erbium-doped magnesium zinc oxides were prepared through spray pyrolysis deposition
at 450 ◦C with an aqueous solution containing magnesium nitrate, zinc acetate, erbium acetate,
and indium nitrate precursors. Diodes with different erbium-doped magnesium zinc oxide
thicknesses were fabricated. The effect of erbium-doped magnesium zinc oxide was investigated.
The crystalline structure and surface morphology were analyzed using X-ray diffraction and scanning
electron microscopy. The films exhibited a zinc oxide structure, with (002), (101), and (102) planes
and tiny rods in a mixed hexagonal flakes surface morphology. With the photoluminescence analyses,
defect states were identified. The diodes were fabricated via a metallization process in which the
top contact was Au and the bottom contact was In. The current–voltage characteristics of these
diodes were characterized. The structure resistance increased with the increase in erbium-doped
magnesium zinc oxide thickness. With a reverse bias in excess of 8 V, the light spectrum, with two
distinct green light emissions at wavelengths of 532 nm and 553 nm, was observed. The light intensity
that resulted when using a different operation current of the diodes was investigated. The diode
with an erbium-doped magnesium zinc oxide thickness of 230 nm shows high light intensity with an
operational current of 80 mA. The emission spectrum with different injection currents for the diodes
was characterized and the mechanism is discussed.
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1. Introduction

Rare-earth-doped materials have been widely investigated in many applications in past
decades [1–5]. Erbium (Er), one of the rare earth materials, has shown good performance in
optoelectronic devices [6–8]. On the other hand, the wide bandgap II-VI semiconductor zinc oxide
(ZnO), which has a large exciton binding energy, is one of the most promising host materials in
optoelectronic devices [8]. In a combination of the two materials, an Er-doped ZnO diode has shown
Er-related green light luminescence performance [9]. However, a high reverse-biased operation is
needed for the diode operation, which limits the device’s applications. Still, the luminescence spectrum
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of such a diode is in the green gap spectral range for developing InGaN diodes [10]. Moreover, the
emission wavelength is also in the low transmission loss window of PMMA-core optical fiber [11].
This is promising for the development of similar diodes as the emission source in Si-based photonic
applications [12].

In the operation of the Er-doped ZnO diode, an operational voltage in excess of the reverse bias
breakdown condition is needed to achieve the carrier impact ionization condition to transfer the energy
to Er-related emissions [9]. When considering the quality of host material, the low defect requirement
is an important issue in the breakdown behavior [13,14]. In the ZnO host material, certain defects such
as zinc interstitial (Zni) and oxygen vacancy (VO) are generally incorporated into the film. To improve
this, it was found that some defect emissions in photoluminescence (PL) in ZnO can be reduced with
the introduction of Mg [15]. The MgZnO device with suitable Mg content shows low dark current
performance [16].

In ZnO-based material fabrication, many technologies can be applied [17–19]. The spray pyrolysis
method is one of the best non-vacuum methods for ZnO deposition [20,21]. We investigated the diode
performance of the ZnO:Er on a p-Si substrate by spray pyrolysis method in the previous study [22].
In this study, a diode with different MgZnO:Er active layer thickness was prepared on a Si substrate
by the spray pyrolysis method. The film morphology, crystalline quality, and diode properties were
investigated. The effect of the injection current on diode electroluminescence intensity and spectral
properties was studied.

2. Experimental

A MgZnO:Er layer followed by a ZnO:In layer were deposited on a p-type silicon substrate ((111),
5 × 1018 cm−3) by the spray pyrolysis method at 450 ◦C. Two aqueous solutions were prepared in
the fabrication of MgZnO:Er and ZnO:In layers. In the fabrication of the MgZnO:Er film, an aqueous
solution mixed with 0.2 mol/L zinc acetate dihydrate (Zn(CH3COOH)2·2H2O, ZnAc), magnesium
acetate tetrahydrate (Mg(CH3COOH)2·4H2O, MgAc) (Mg/Zn = 25 at %), and erbium acetate hydrate
(Er(CH3COO)3·4H2O, ErAc) (Er/Zn = 5 at %) was prepared. In the fabrication of the ZnO:In film, an
aqueous solution with 0.2 mol/L ZnAc, mixed with indium nitrate hydrate (In(NO3)3·5H2O, InNt)
(In/Zn = 5 at %), was prepared. Before deposition, the aqueous solution was stirred for 1 h at room
temperature to yield a clear solution. The 2 × 1 cm Si substrate, cut from the Si wafer, was cleaned
with acetone, rinsed in DI water, dried by N2 gas, dipped in diluted HF (1:20), rinsed in DI water
and dried by N2 gas. After that, the Si substrate was transferred to a deposition chamber. After a
high-temperature stabilization step, the substrate temperature was fixed at 450 ◦C and the MgZnO:Er
and ZnO:In layers were deposited sequentially. After the film deposition, In was deposited on the Si
side by a thermal process. The front Au circular pad (0.8 mm diameter) was formed by a direct-current
magnetron sputtering process with a shadow mask. The thickness of the MgZnO:Er/ZnO:In layer was
170 nm/100 nm, 230 nm/100 nm, and 550 nm/100 nm for samples ST1, ST2, and ST3, respectively.
The films’ thickness was controlled with different deposition times after the thickness calibration runs.
When considering the run-to-run deposition rate stability and thickness uniformity on the wafer, the
thickness variation in the following device study was ±11%.

The surface morphology and cross-section of the samples were examined by scanning electron
microscopy (SEM, Hitachi S-4300N, Tokyo, Japan). The element contents of the film were accomplished
by XPS analysis (ESCALAB XI+, Thermo Fisher Scientific, Madison, WI, USA). The photoluminescence
(PL) spectrum was obtained by an optical system with a spectrometer (HR2000+, Ocean Optics,
Largo, FL, USA), He-Cd laser (325 nm wavelength), and a cryostat. The diode current–voltage and
electroluminescence characters were examined by the spectrometer and source meter (Keithley 2400,
Solon, OH, USA).
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3. Results and Discussion

Figure 1 exhibits the surface morphology of samples ST1, ST2, and ST3. The cross-section of each
sample is shown in the inset. The morphology, with different sized hexagonal flakes and tiny rods, can
be observed. For ST1, a small-grained structure can be observed in the cross-section. With an increase
in the MgZnO:Er deposition time, a similar surface morphology can be observed. However, some large
grains in the cross-section in ST3 can be observed, while small grains formed near the Si/MgZnO:Er
interface. The varied morphology may originate from the deposition nature [20,21] and deposition
parameters [23] in the spray pyrolysis process.

Figure 1. SEM images of the sample surface (a) ST1; (b) ST2; and (c) ST3. The cross-section is shown in
the inset.

The XRD patterns of samples ST1, ST2, and ST3 are shown in Figure 2. Three crystalline
orientations, (002), (101), and (102), of the ZnO wurtzite structure were observed. For MgxZn1−xO, the
MgO characteristic peak can be observed as phase separation occurred (x ≥ 0.4) [24]. For Er-doped
ZnO, there is generally no Er2O3 characteristic peak that can be observed while the doping content
is low [25]. As the Mg composition and Er content in the MgZnO:Er is low, there are no obvious
MgO- [26] and Er2O3 [27]-related signals that can be observed. Regarding the peaks in Figure 2, the
broad character is caused by the grain size effect [28] and the superposition of the two host materials,
MgZnO and ZnO [29].

Figure 3a shows the PL spectrum of these samples measured at 10 K. Two peaks with wavelengths
of 362.7 nm (3.42 eV) and 366.5 nm (3.38 eV) can be observed for all samples. The two emission
peaks come from the MgZnO:Er layer, mainly as both emissions display a higher energy than the
band gap emission of ZnO. Furthermore, as the energy difference for the two peaks is 40 meV, the
near-band-edge (NBE) emission at 362.7 nm is attributed to the recombination of excitons bound to the
neutral donor (DoX) and the emission at 366.5 nm is attributed to the two electron satellite (denoted
as TES) transitions of the DoX [30,31]. With the optical band gap evaluated from NBE emission, the x
quantity in the MgxZn1−xO:Er layer was estimated to be approximately 0.1 [32].
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Figure 2. XRD patterns of samples ST1, ST2, and ST3.

Figure 3. Photoluminescence spectra of samples ST1, ST2, and ST3 measured at (a) 10 K and
(b) room temperature.

In the spectrum, a broad profile at a wavelength of 400 nm for all samples can be observed.
The emission signal around 400 nm is attributed to the isolated VZn-related or OZn type [33].
Certain such defects exist in the diode. Moreover, no obvious emissions around a wavelength of
480-520 nm [33,34] can be observed in the 10 K PL for all samples.
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Figure 3b shows the PL spectrum of the samples measured at room temperature. Compared to
the spectrum measured at 10 K, a NBE band with temperature broadening [30] and band gap
narrowing [35,36] with a central wavelength at 368 nm was observed. A weak and broad blue
emission (BE) around a wavelength of 500 nm can also be observed. The BE band was attributed to the
carrier recombination between the extended zinc interstitial state and holes [37]. In PL measurement,
the carriers were generated by a photo-exciting process and transported spatially. The emission
was observed after the carrier recombination. The carrier spatial transport ability depends on
the environmental temperature [38,39]. The inconsistency of the BE band for samples measured
at 10 K and room temperature suggests the non-uniformed BE-related defect distribution in the
samples. Furthermore, when we compare the PL spectra to those of the reported ZnO:Er diodes [9],
the low BE band to NBE band intensity ratio (IBE/INBE) in our MgZnO:Er diode can be observed.
A smaller BE-related defect may exist in our sample. This suggests the benefit of using MgZnO as the
Er-doped layer.

For the Er-doped ZnO, no Er-related emission in the PL measurement can be observed generally.
The Er-related PL band for the ZnO-based materials can be observed for the sample prepared after a
high-temperature procedure [40–42]. The oxygen vacancy states may make a contribution to the PL
emissions [42].

When discussing why there were no Er-related PL emissions in the ZnO host, Iwan et al. [9]
suggest that the intra-atomic level transition of the Er ion saturates at a much lower excitation photon
power compared to the band to band transition of the host material. Harako et al. [43] point out that
the observed visible band electroluminescence (EL) of the ZnO:Er diode was attributed to the carrier
causing impact excitations of Er ions rather than to the energy transformation from e-h pairs in the
ZnO host. Thus, the energy transform yield from e-h pairs, as generated by the PL process, to Er ion
states in the visible band may be quite low, which might account for the missing Er-related emissions
in the visible band.

Figure 4 exhibits the XPS spectra of Zn 2p, Mg 1s, O 1s, and Er 4d in the MgZnO:Er layer of
sample ST3. In Figure 4a, the Zn 2p3/2 signal with a peak energy of 1022 eV can be observed. The value
is within the reported range for high-temperature annealed ZnO [44]. A distorted profile toward the
high-energy side of Figure 4a can be observed. This is ascribed to Zn2+ in hydroxide [45], and originates
in the spray pyrolysis process. In Figure 4b, the binding energy, 1304 eV, of the Mg 1s core level is
observed [46]. In Figure 4c, the O1s signal with a peak energy of 531 eV was observed. This value is
near the reported O2− on a normal wurtzite ZnO crystal (530.8 eV) [44,47]. The distorted shape in the
high-energy side shows O2− in hydroxide [48]. Figure 4d shows the Er 4d5/2 signal. This broad profile
may include the signal related to Er-OH bonds (peak energy at 170.4 eV) and the signal related to Er-O
bonds (peak energy at 168.4 eV) [46]. The Er/Zn ratio in the film is estimated be 0.2% from the XPS
characterization. As the atomic ratio of Er/Zn is 5% in the precursor, the incorporation efficiency of Er
from ErAc is low compared to that of Zn from ZnAc in the spray pyrolysis deposition process.

Figure 5 shows the current-voltage (I–V) characteristics of diodes ST1, ST2, and ST3, measured at
room temperature. The error bars show the variations of the five diodes in each sample. A rectification
character in forward bias and breakdown behavior in reverse bias can be observed. In the reverse bias
region, the breakdown voltage increases with the increase in the MgZnO:Er layer’s thickness. As with
the higher bandgap host material MgZnO, the samples show a small reverse bias current around −4 V
compared to the reported ZnO:Er diodes [22]. On the other hand, the diode and series resistance (Rs)
and ideality factor (n) that describe the diode can be extracted [48] and are listed in Table 1.
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Figure 4. XPS spectra of (a) Zn 2p; (b) Mg 1s; (c) O 1s; and (d) Er 4d in the MgZnO:Er layer of
sample ST3.

Figure 5. Current-voltage (I-V) characteristics of samples ST1, ST2, and ST3 measured at room temperature.

Table 1. The diode ideality factor (n) and series resistance (Rs) of the p-Si/MgZnO:Er/ZnO:In diodes.

Sample n Rs (Ω)

ST1 6.4 ± 0.9 38 ± 8
ST2 6.1 ± 0.8 33 ± 6
ST3 7.2 ± 0.6 107 ± 6

In Table 1, the quantities and variations of diode ideality n for considering five diodes on each
sample were listed. Since n is 1 for the recombination of injected carriers in the neutral region, it is 2
for the carrier recombination by mediated recombination centers in the space charge region [49,50].
A high ideality factor with n greater than 2 can be observed in many diodes made from wide bandgap
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materials [51]. For the heterostructured diode with grained morphology in this work, the high ideality
may arise from the effect of the heterojunction [52] and/or the high defect density [9] around the grain
boundary in the MgZnO:Er layer. In Table 1, the high series resistance quantity for ST3 can be observed.
For a film with a large grain, the boundary induced conduction is inhibited. Thus the high Rs from
ST3 may come from the large grain as shown in Figure 1 and/or from the thick MgZnO:Er layer.

Figure 6 shows the electroluminescence spectra of ST1, ST2, and ST3 with different reverse biased
injected current measured at room temperature. Figure 7 expresses the light intensity-injection current
(L-I) characteristics of samples ST1, ST2, and ST3 measured at room temperature. The error bar for
each measurement is shown. For the diode under high reverse bias, the electrons and holes, which
were created and accelerated in the depletion region due to the high electric field, transfer the energy
to excite Er ions by impact ionization [9,53,54] and cause the emissions of the diode. In Figure 4, two
emission bands in the visible range related to the energy state transitions of Er3+ of 2H11/2→4I15/2
(around 532 nm) and 4S3/2→4I15/2 (around 553 nm) [55] can be observed. Compared to the reported
emission spectra in the ZnO:Er diode [22], little spectral difference can be observed in the MgZnO:Er
samples. The fine spectrum variation in the emission band is caused by the variation of the host
structure [56].

Figure 6. The electroluminescence spectra of samples (a) ST1; (b) ST2; and (c) ST3 measured at room
temperature with different injection currents measured at room temperature.
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Figure 7. The light intensity-current (L-I) characteristics of samples ST1, ST2, and ST3 measured at
room temperature.

In terms of the L-I character of ST1, the light intensity shows an increasing-remaining behavior
with the increase in the injection current. The low light intensity of ST1 may originate from the thin
MgZnO:Er active layer. For sample ST2, the light intensity increases with the increase in the injection
current. The light intensity then begins to decrease when the injection current is in excess of 80 mA.
The decreasing character originates from the joule heat generated under a high injection current [57,58].
For ST3 under operation, as the diode preserved a thick MgZnO:Er layer and a high overall series
resistance, the joule heat accumulated heavily in the active region and thus caused damage to the
diode with an injection current in excess of 60 mA.

Figure 8 shows the electroluminescence intensity ratio between the 2H11/2→4I15/2 transition
(I532 nm) and the 4S3/2→4I15/2 (I553 nm) transition of the samples with different operational currents.
The intensity ratio R(I532 nm/I553 nm) increases with the increase in the injection current. For the diode
operating in an avalanche breakdown condition, the increased current was caused by the enhanced
impact ionization due to the high reverse bias. The carriers preserved high impact energy in the
case of a high injection current. The increase in the short wavelength emission intensity in 2H11/2 is
due to the increase of high energy carrier impaction. This causes an increase in the intensity ratio
R(I532 nm/I553 nm) with the increase in the injection current.

Figure 8. The electroluminescence intensity ratio R(I532 nm/I553 nm) of samples ST1, ST2, and ST3
measured at room temperature with different injection current I.
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4. Conclusions

Heterostructured p-Si/MgZnO:Er/ZnO:In diodes with different MgZnO:Er active layer
thicknesses were prepared by spray pyrolysis. The morphologies, crystalline properties, and diode
characteristics were investigated. The surface morphology varied with the increase in film thickness.
The diode series resistance increases with the increase in the MgZnO:Er layer. Two Er ions’ related green
emissions were characterized. The emission intensity increased with the increase in the MgZnO:Er
layer at a low injection current. With a thick MgZnO:Er layer operating at a high injection current, the
diode represented worse emissions due to the high resistance. With the increase in the injection current,
green emissions with a short wavelength had the advantage. The possible mechanisms were discussed.
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