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Abstract: Two-dimensional (2D) materials, such as graphene (Gr), transition metal dichalcogenides
(TMDs) and hexagonal boron nitride (h-BN), offer interesting opportunities for the implementation
of vertical transistors for digital and high-frequency electronics. This paper reviews recent
developments in this field, presenting the main vertical device architectures based on 2D/2D or
2D/3D material heterostructures proposed so far. For each of them, the working principles and the
targeted application field are discussed. In particular, tunneling field effect transistors (TFETs) for
beyond-CMOS low power digital applications are presented, including resonant tunneling transistors
based on Gr/h-BN/Gr stacks and band-to-band tunneling transistors based on heterojunctions
of different semiconductor layered materials. Furthermore, recent experimental work on the
implementation of the hot electron transistor (HET) with the Gr base is reviewed, due to the predicted
potential of this device for ultra-high frequency operation in the THz range. Finally, the material
sciences issues and the open challenges for the realization of 2D material-based vertical transistors at
a large scale for future industrial applications are discussed.

Keywords: graphene; 2D materials; van der Waals heterostructures; vertical field effect transistors;
hot electron transistors

1. Introduction

In 2004, the pioneering works on the field effect in atomically thin carbon films [1], from then on
named graphene (Gr), gave birth to an entirely new research branch of solid-state electronics, focused
on the use of two-dimensional (2D) materials and their heterostructures for electronics/optoelectronics
devices with unconventional or improved performances compared to traditional semiconductor
devices. Due to its excellent carrier mobility (up to ~105 cm2 V−1 s−1) [2,3] and micrometer electron
mean free path [4–7], Gr has been considered since the first studies as the channel material for fast
field effect transistors (FETs) [8]. Essentially, the Gr field effect transistor (GFET) resembles the classical
metal-oxide-semiconductor FET architecture, where lateral transport in the channel is modulated by
a gate electrode separated from Gr by a thin insulator. As a matter of fact, the lack of a bandgap in
the electronics band structure of Gr results in a poor ON/OFF current ratio in GFETs, making them
unsuitable for digital (logic) or switching applications [9]. On the other hand, GFETs can be of interest
for radio frequency (RF) applications, where fast current modulation of the device operated in the
on-state is required and switch-off is not necessarily needed [9,10]. To date, RF GFETs allowing current
amplification at very high frequencies (>400 GHz) have been demonstrated [11]. However, the same
devices suffer from limited performances in terms of voltage and power amplification, mainly due to
the high output conductance resulting from the lack of a bandgap. On the other hand, the peculiar
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symmetric ambipolar conduction of GFETs has been exploited to demonstrate novel device concepts,
such as the RF mixer [12].

To overcome the Gr fundamental limitations arising from the missing bandgap both in digital and
RF electronics, new solutions have been explored inside the wide family of 2D materials. In particular,
two routes have been followed by scientists working in this field.

The first route was replacing Gr as the channel material in lateral FETs with semiconducting 2D
materials, such as some members of the transition metal dichalcogenides (TMDs) family (MoS2, WS2,
MoSe2, WSe2) [13] or phosphorene (a 2D lattice composed of phosphorus atoms) [14]. The second route
has been to introduce novel device architectures based on van der Waals (vdW) heterostructures
obtained by the stacking of 2D materials (such as Gr, hexagonal boron nitride (h-BN), TMDs) [15,16]
or by 2D material heterojunctions with thin conventional 3D (i.e., bulk) semiconductors [17].
These devices rely on quite different working principles than traditional lateral FETs and mainly
exploit vertical current transport across the interfaces of these materials. They include the tunneling
field effect transistors (TFETs) [18,19], the band-to-band tunneling transistor [20], the transistor based
on the field effect modulation of the Gr/semiconductor Schottky barrier (barristor) [21] and the hot
electron transistor (HET) with the base made with a 2D material [22–25]. These devices typically show
high ON/OFF current ratios, not reachable by conventional lateral GFETs, that make them suitable for
logic and switching applications. Furthermore, some of these device concepts, like the HET with a Gr
base, are especially targeted to operate at ultra-high frequencies up to THz.

This paper reviews recent developments in 2D material-based vertical transistors. Section 2
discusses the open issues of Gr and TMD lateral FETs, and it serves to introduce some of the potential
advantages of vertical architectures. Therefore, the main vertical device structures considered so far
are presented in the Section 3, where the working principles and the targeted application fields for
each structure are discussed. In particular, recent implementations of TFET based on 2D materials are
overviewed due to their interest in beyond-CMOS digital electronics. Furthermore, recent experimental
activity on the HET with Gr base is presented, considering the predicted potential of these devices
in ultra-high frequency electronics. In Section 4, the materials science issues and the open challenges
for the realization of 2D material vertical transistors at a large scale are illustrated. Finally, the last
section includes a summary and some prospects for future industrial applications of the discussed
device structures.

2. Lateral Field Effect Transistors

Due to the proper bandgap (in the range from 1–2 eV), combined with a good stability under
ambient conditions, semiconductor TMDs are very promising candidates as channel materials for
digital electronics [13]. As an example, MoS2-channel FETs have been fabricated with large Ion/Ioff
ratios (>104) and small subthreshold swings (SS < 80 mV/decade) [26], approaching the desired
requirements of FETs for CMOS digital circuits. The energy gap of TMDs comes, however, at the cost
of a relatively low mobility. As an example, the upper theoretical limit for the mobility of monolayer
MoS2 at room temperature is about 400 cm2 V−1 s−1 [27], whereas the experimental values reported so
far are in the range of a few tens of cm2 V−1 s−1 [28,29].

Besides TMDs, also phosphorene has recently attracted interest as a semiconducting channel
material for FETs. A mobility of 286 cm2 V−1 s−1 has been reported for few-layer phosphorene [14],
whereas values up to ~1000 cm2 V−1 s−1 have been shown for multilayer phosphorene with an ~10 nm
thickness [30]. However, the main disadvantage of phosphorene (as compared to TMDs) is its chemical
reactivity under ambient conditions, which can represent a serious concern for practical applications.

The ultimate thin body of TMDs can be very beneficial for the scaling prospects of lateral FETs for
CMOS applications, as discussed in many simulation works [31–34]. As an example, Liu et al. [33]
predicted that MoS2 FETs can meet the requirements of the International Technology Roadmap for
Semiconductors (ITRS) [35] down to a minimum channel length of 8 nm. For such aggressively reduced
geometries, the low mobility of MoS2 is not a real issue, because transport can be considered as almost
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ballistic for channel lengths below 10 nm. Although most of these predictions are based on simulations,
some experimental work has been also reported, where the challenges of channel length scaling in
TMD lateral transistors down to the nanometric limit started to be addressed [36].

Concerning high frequency applications, the first Gr-based FET capable of RF operation, fabricated
using exfoliated Gr from graphite, was reported in 2008 [37]. Later on, the development of
advanced synthesis methods, such as epitaxial growth of Gr on SiC by controlled high temperature
graphitization [38–41] or chemical vapor deposition (CVD) on catalytic metals [42], provided high
quality Gr of a large area for device fabrication. Ultra-scaled transistors with interesting RF
performances have been demonstrated both using transferred CVD Gr [43] (see, e.g., Figure 1a)
and epitaxial Gr on SiC (see, e.g., Figure 1b) [43,44].

RF transistors are typically used for the amplification of a high frequency input signal (current
or voltage), and the amplifier gain decreases with increasing frequency. Hence, the two main figures
of merit for RF transistors are the cut-off frequency fT (i.e., the frequency for which current gain is
reduced to unity) and the maximum oscillation frequency fMAX (i.e., the frequency for which power
gain is reduced to unity). As in the case of more conventional RF transistors, the fT of GFETs was
found to increase with reducing the channel length L (see, as an example, Figure 1c). A record value of
fT = 427 GHz has been reported for scaled devices obtained with a self-aligned fabrication process [11].
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reaches a peak value around 150 nm and decreases for lower L values. 

Figure 1. Cross-sectional TEM micrographs of scaled RF graphene (Gr) field effect transistors (GFETs)
fabricated with transferred CVD Gr (a) and with epitaxial Gr grown on SiC(0001) (b); behavior of the
cut-off frequency fT (c) and of the maximum oscillation frequency fMAX (d) as a function of channel
length. Figures adapted with permission from [43].

These values of fT are comparable with those achieved by the state of the art InP high electron
mobility transistors (HEMTs) with similar channel lengths. However, for most RF applications,
both high fT and high fMAX are required, and unfortunately, fMAX values measured for GFETs are
significantly smaller than fT values, as illustrated in Figure 1d [43]. Furthermore, contrary to common
expectations for RF FETs, fMAX shows a non-monotonic behavior with the channel length L. In fact, it
reaches a peak value around 150 nm and decreases for lower L values.
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The reason for these poorer power gain performances can be argued by comparing the theoretical
expressions of fT and fMAX for RF transistors:

fT =
gm

2π
(

Cgs + Cgd

)
 1

1 + gd(Rs + Rd) + gm
Cgd(Rs+Rd)

Cgs+Cgd

 (1)

fMAX =
fT

2
√

gd

(
Rs + Rgs

)
+ 2π fT RgsCgd

(2)

Here, Cgs and Cgd are the gate-source and gate-drain coupling capacitances, Rs and Rd are
the source and drain series resistances, Rgs is the gate-source resistance, gm = dID/dVG is the
transconductance and gd = dID/dVD is the output conductance.

The drain current ID of an FET is proportional to the saturated velocity vs and to the sheet
concentration ns of the carriers in the channel. Hence, the two prerequisites to achieve a high
transconductance are a high vs and a high dns/dVG, i.e., an effective modulation of the carrier
density with the gate bias.

If the Rs and Rd resistance contributions in Equation (1) are properly minimized, the expression
of fT can be approximated as fT ≈ gm/[2π(Cgs + Cgd)], and it results in being independent of the
output conductance gd. For this reason the high carrier mobility and saturation velocity of Gr results
in a high transconductance gm and, hence, in a high fT. On the other hand, from Equation (2), it is
evident that, even minimizing Rs, the output conductance gd still plays a role in the expression of fMAX.
As a matter of fact, the output characteristics of Gr channel FETs exhibit a poor saturation behavior,
i.e., a large gd. This overcompensates the effect of a large gm, ultimately resulting in degradation
of fMAX. The non-monotonic behavior of fMAX in Figure 1d has been also ascribed to the competing
contributions from fT, gd and Rgs as L decreases [43].

The poor saturation of the output characteristics is mainly a consequence of the missing bandgap
in the Gr band structure. Hence, this peculiar physical property of Gr not only hinders its application
in digital electronics, but severely limits also the high frequency performances of GFETs in terms of
power amplification and fMAX. Finally, the high off-state current (Ioff) of GFETs results in a high power
dissipation and represents a significant concern in terms of energy efficiency.

Besides Gr, single and multiple layers of MoS2 have been also investigated as channel materials in
lateral FETs for RF applications. Thanks to an electron saturation velocity vs > 3 × 106 cm/s [45] and to
a high bandgap (resulting in a high ratio gm/gd > 30), MoS2 FETs can achieve, in principle, both current
and power amplification [46–49]. However, quite low values of fT and fMAX have been reported to
date. Initial work on exfoliated monolayer MoS2 RF FETs yielded fT = 2 GHz and fMAX = 2.2 GHz at
a gate length of 240 nm [48]. Figure 2 shows a cross-sectional TEM micrograph (a) and the DC output
(b) and transfer (c) characteristics of an FET fabricated with multilayer MoS2 flakes. For these devices,
the scaling behavior of fT and fMAX with the channel length is illustrated in Figure 2d,e, showing how
fT = 42 GHz and fMAX = 50 GHz are achieved at a gate length of 68 nm [47]. More recently, RF FETS

fabricated with monolayer MoS2 deposited by CVD showed fT = 6.7 GHz and fMAX = 5.3 GHz at a gate
length of 250 nm [49].

Several issues still need to be addressed to evaluate the real potentialities of TMDs both in digital
and RF electronics. Besides the issues related to the lattice defects (such as chalcogen vacancies) [50–52]
and impurities [53] commonly present in these compound materials, some critical processing steps
need to be developed. These include the fabrication of low resistance source/drain contacts [54,55]
and doping [56–58].
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As an example, MoS2 thin films are typically unintentionally n-type doped. Furthermore, most of
the elementary metals exhibit a Fermi level pinning close to the MoS2 conduction band, resulting in
a small (but not negligible) Schottky barrier height (SBH) for electrons’ injection and a high SBH
for holes’ injection. The origin of this Fermi level pinning is still a matter of debate, although
some nanoscale electrical investigations highlighted the possible role of the defects present at the
MoS2 surface [59,60]. As a matter of fact, this Schottky barrier results in a significant source/drain
contact resistance [54,61], which degrades the intrinsic performances of the transistor. Furthermore,
the high injection barrier for holes makes it difficult to achieve p-type or ambipolar transport in MoS2

FETs [62,63]. On the other hand, ambipolar transistors can be useful not only for logic (CMOS)
applications, but also for some RF circuits. To date, p-type MoS2 transistors have been fabricated by
using high work function MoOx contacts [64]. Recently, multilayer MoS2 transistors with ambipolar
behavior have been demonstrated by selective-area p-type doping in the source/drain regions with O2

plasma [65]. Besides MoS2, other TMDs have been also considered for FETs’ fabrication. As an example,
WSe2 is a slightly p-doped semiconductor, allowing the fabrication of both p-type and n-type FETs
by proper selection of the metal contacts [66–68]. However, the problem of the contact resistance still
holds also in the case of WSe2.

Most of the TMD-based FETs have been fabricated using metals as source-drain contacts and
high permittivity (high-k) dielectrics as gate insulators. Recently, some attempts at fabricating FETs
with all components formed by 2D materials have been reported. As an example, Roy and co-workers
have demonstrated an FET including MoS2 as the channel material, h-BN as the dielectric layer for
top electrode isolation and Gr for semi-metal contacts (see the schematic and the optical microscopy
in Figure 3a,b) [69]. An optimal Ohmic contact between Gr and MoS2 is possible by tuning the Gr
Fermi level by the SiO2/Si back-gate bias. Due to its large bandgap, h-BN acts as a top-gate dielectric,
allowing current modulation over several orders of magnitude (see Figure 3c). Furthermore, thanks to
its atomically-smooth surface without charge trapping, h-BN forms an ideal interface with the MoS2

channel [3]. One of the most relevant advantages of this smooth interface is that the channel mobility
of this device remains constant at high gate bias values (see Figure 3d), different from that in common
FETs, where a decrease of mobility is observed at high fields due to the effect of the interface roughness.



Crystals 2018, 8, 70 6 of 25
Crystals 2018, 8, x FOR PEER REVIEW  6 of 24 

 

 
Figure 3. Schematic (a) and optical microscopy (b) of an FET with all components formed by 2D 
materials, where MoS2 works as the channel, hexagonal boron nitride (h-BN) as the dielectric layer 
for top electrode isolation and Gr for semimetal source/drain contacts. Transfer characteristics (c) and 
mobility vs. gate bias behavior (d) of this transistor. Figures adapted with permission from [69]  

3. Vertical Transistors 

3.1. Tunneling Field Effect Transistors 

One of the main issues for modern digital electronics is the dramatic increase of power 
consumption with the increase in the device integration density. As a matter of fact, the minimum 
supply voltage to switch an MOSFET from the OFF to the ON state is determined by the thermionic 
emission mechanism of carrier injection over the energy barrier at the source. This mechanism results 
in a theoretical limit of 60 mV/decade for the minimum subthreshold swing (SS) for MOSFET devices. 
On the other hand, tunneling field effect transistors (TFETs), based on quantum mechanical tunneling 
across an energy barrier, have the potential of reduced supply voltage, since a pure tunneling process 
is not thermally activated. Numerous studies have been conducted in the last decade to implement 
this device concept using bulk (3D) semiconductors, such as Ge, III-V and Si [70,71], and sub-
thermionic SS values have been reported with TFETs based on these materials. However, the 
demonstrated performances have not been good enough for practical applications. In particular, one 
of the main limitations is that SS < 60 mV/decade (at room temperature) is typically obtained only at 
low drain currents, whereas it would be desirable to get such a behavior over a current range of 
several orders of magnitude. One of the reasons for the difficulty in obtaining sharp switching over 
a wide current range is the presence of band-tail states in bulk semiconductors [72]. Under this point 
of view, 2D materials with sharp band edges even at a thickness of a monolayer can represent an 
interesting platform to implement TFETs. 

Britnell and co-workers first reported a TFET with the vertically-stacked heterostructure 
composed of Gr and thin h-BN [18]. Figure 4a schematically shows the layer stacking (1); the energy 
band diagram under equilibrium (2); under the effect of the back-gate bias Vg (3); and under the effect 
of Vg and of a bias Vb between the two Gr layers (4). The basic principle of this vertical transistor is 
the quantum tunneling between the two Gr electrodes separated by the thin h-BN barrier. Current 
tunneling was controlled by tuning the density of states in Gr and the associated barrier by the 
external gate voltage. Figure 4b shows the tunneling current density J vs. the bias Vb for different 

Figure 3. Schematic (a) and optical microscopy (b) of an FET with all components formed by 2D
materials, where MoS2 works as the channel, hexagonal boron nitride (h-BN) as the dielectric layer for
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3. Vertical Transistors

3.1. Tunneling Field Effect Transistors

One of the main issues for modern digital electronics is the dramatic increase of power
consumption with the increase in the device integration density. As a matter of fact, the minimum
supply voltage to switch an MOSFET from the OFF to the ON state is determined by the thermionic
emission mechanism of carrier injection over the energy barrier at the source. This mechanism results
in a theoretical limit of 60 mV/decade for the minimum subthreshold swing (SS) for MOSFET devices.
On the other hand, tunneling field effect transistors (TFETs), based on quantum mechanical tunneling
across an energy barrier, have the potential of reduced supply voltage, since a pure tunneling process
is not thermally activated. Numerous studies have been conducted in the last decade to implement this
device concept using bulk (3D) semiconductors, such as Ge, III-V and Si [70,71], and sub-thermionic
SS values have been reported with TFETs based on these materials. However, the demonstrated
performances have not been good enough for practical applications. In particular, one of the main
limitations is that SS < 60 mV/decade (at room temperature) is typically obtained only at low drain
currents, whereas it would be desirable to get such a behavior over a current range of several orders of
magnitude. One of the reasons for the difficulty in obtaining sharp switching over a wide current range
is the presence of band-tail states in bulk semiconductors [72]. Under this point of view, 2D materials
with sharp band edges even at a thickness of a monolayer can represent an interesting platform to
implement TFETs.

Britnell and co-workers first reported a TFET with the vertically-stacked heterostructure composed
of Gr and thin h-BN [18]. Figure 4a schematically shows the layer stacking (1); the energy band diagram
under equilibrium (2); under the effect of the back-gate bias Vg (3); and under the effect of Vg and of
a bias Vb between the two Gr layers (4). The basic principle of this vertical transistor is the quantum
tunneling between the two Gr electrodes separated by the thin h-BN barrier. Current tunneling
was controlled by tuning the density of states in Gr and the associated barrier by the external gate
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voltage. Figure 4b shows the tunneling current density J vs. the bias Vb for different values of Vg.
Figure 4c shows the conductance dJ/dVb (at Vb = 0) as a function of Vg, from which an ON/OFF ratio
of ~50 was deduced.
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Figure 4. (a) Schematic illustration of a Gr/h-BN/Gr field effect tunneling transistor: (1) layer stacking;
(2) energy band diagrams under equilibrium; (3) under the effect of the back-gate bias Vg; and (4) under
the effect of Vg and of a bias Vb between the two Gr layers; (b) tunneling current density J vs. Vb for
different values of Vg; (c) conductance σ = dJ/dVb as a function of Vg; (d) schematic illustration of
a Gr/WS2/Gr field effect tunneling transistor: (1) layer stacking; (2) energy band diagrams under
equilibrium; (3) under the effect of Vg < 0; and (4) under the effect of Vg > 0; (e) tunneling current density
J vs. Vb for different values of Vg; (f) conductance σ = dJ/dVb as a function of Vg. Figures adapted
with permission from [18,19].

As the transit time associated with tunneling is very low, the field effect tunneling transistor can
be potentially suitable for high speed operation. On the other hand, as a result of the direct tunneling
mechanism, this device suffers from very low current density (in the order of 10–100 pA/µm2), making
it not useful for practical applications. Starting from the same idea, Georgiou and co-workers reported
a Gr vertical FET with WS2 layers as the barrier [19]. Figure 4d schematically shows the layer stacking
(1); and the energy band diagrams under equilibrium (2); under the effect of Vg < 0 (3); and under
the effect of Vg > 0 (4). Due to the smaller band gap of WS2, current transport between the two
Gr layers occurs by direct tunneling for Vg < 0 and by tunneling or thermionic emission for Vg > 0.
Figure 4e shows the tunneling current density J vs. the bias Vb for different values of Vg, whereas
Figure 4f shows the conductance as a function of Vg. As compared to the Gr/h-BN/Gr prototype, this
device exhibits much higher ON current (in the order of 1 µA/µm2) and better current modulation,
with an ON/OFF current ratio up to 106.

3.1.1. Resonant Interlayer Tunneling Transistors

Progress in the alignment and transfer techniques of 2D materials permitted the demonstration of
resonant tunneling phenomena in TFETs. Devices showing gate-tunable negative differential resistance
(NDR) of the output characteristics due to resonant tunneling were first obtained by Gr/h-BN/Gr
stacks with a precise rotational crystallographic alignment between the two Gr monolayers [73,74].
Since carriers in a Gr monolayer are populated near the K-point on the periphery of its Brillouin zone,
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conservation of both energy and momentum in the tunneling from one layer to the other is allowed
only in the presence of a rotational alignment in momentum space.

Following the first demonstrations with double monolayer Gr, resonant TFET using bilayer Gr as
the top and bottom electrodes and h-BN as the interlayer tunnel barrier were also demonstrated [75,76].
Due to the more complex band structure of bilayer Gr (with two sub-bands both in the conduction
and valence bands at the K-point), additional NDR peaks occur at higher interlayer bias [75]. In fact,
when the first sub-band of one bilayer energetically aligns with the second sub-band of the opposite
bilayer, a second resonant tunneling condition is established. More recently, experimental results for
resonant TFETs with multilayer Gr electrodes separated by an h-BN tunnel barrier have been also
reported [77]. With an increase in the Gr electrode layer thickness, from bilayer to pentalayer Gr,
the resonance peaks have been shown to become narrower in width and stronger in intensity, mainly
due to the increase in the density of states with the increase in the Gr thickness. On the other hand,
due to the increased complexity in the band structure with multiple sub-bands for thicker Gr, multiple
resonance conditions arise in the output characteristics.

h-BN has been widely used as the interlayer in resonant TFETs with symmetric Gr electrodes,
due to its good insulating properties and chemically-inert and atomically-flat surface. However,
its wide energy bandgap (~5.8 eV) severely limits the peak current at resonance in Gr/h-BN/Gr
TFETs [77]. In this context, using TMDs with a smaller bandgap as tunnel barriers may enhance
the peak-to-valley ratio of the resonances in the electrical characteristics. Recently, Burg et al. [78]
demonstrated gate-tunable resonant tunneling and NDR between two rotationally-aligned bilayer Gr
sheets separated by a bilayer WSe2. Remarkable large interlayer current densities of 2 µA/µm2 and
NDR peak-to-valley ratios of ~4 were observed at room temperature in these device structures.

Recently, the possibility of realizing resonant TFETs using TMD electrodes instead of Gr has
been also considered [79,80]. Theoretical reports indicate that vertical heterostructures consisting of
two identical monolayer MoS2 electrodes separated by an h-BN barrier can result in a peak-to-valley
ratio several orders of magnitude higher than the best that can be achieved using Gr electrodes [79].
However, practical implementation of resonant tunneling TFETs with identical electrodes (different
than Gr) proved to be difficult.

On the other hand, many vertical transistor demonstrators have been implemented with differing
bottom and top electrode layers, exploiting the principle of band-to-band tunneling, as discussed in
the following.

3.1.2. Band-To-Band Tunneling Vertical Transistor

Roy et al. [81] first experimentally demonstrated interlayer band-to-band tunneling in vertical
MoS2/WSe2 vdW heterostructures using a dual-gate device architecture. The electric potential and
carrier concentration of the MoS2 and WSe2 layers were independently controlled by the two symmetric
gates. Depending on the gate bias, the device behaves as either an Esaki diode with NDR, a backward
diode with large reverse bias tunneling current or a forward rectifying diode with low reverse bias
current. Notably, the weak electrostatic screening by the atomically thin MoS2 and WSe2 layers
resulted in a high gate coupling efficiency for tuning the interlayer band alignments. Later on,
Nourbakhsh et al. [82] further investigated band-to-band tunneling in the transverse and lateral
directions of the MoS2/WSe2 heterojunctions. The room-temperature NDR in a heterojunction diode
formed by few-layer WSe2 stacked on multilayer MoS2 was attributed to the lateral band-to-band
tunneling at the edge of this heterojunction.

A band-to-band tunneling vertical transistor has been demonstrated also using the vdW
heterojunction between differently-doped layered semiconductors as WSe2 and SnSe2, where WSe2

worked as the back-gate-controlled p-layer and SnSe2 was the degenerately n-type-doped layer [83].
Yan et al. [84] demonstrated room temperature Esaki tunnel diodes using a vdW heterostructure

made of two layered semiconductors with a broken-gap energy band offset: black phosphorus (BP)
and tin diselenide (SnSe2). The presence of a thin insulating barrier between BP and SnSe2 enabled the
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observation of a prominent NDR region in the forward-bias current voltage characteristics, with a peak
to valley ratio of 1.8 at 300 K and a weak temperature dependence, indicating electron tunneling as the
dominant transport mechanism.

Another recently demonstrated very interesting device concept is based on the field effect
modulation of current transport across the p-n heterojunction between 3D and 2D semiconductors.
The 3D semiconductor component of the heterojunction is heavily doped in equilibrium by
substitutional dopants, whereas the doping level of the 2D semiconductor component can be tuned
by the field effect. Therefore, gate-tunable 2D–3D p-n heterojunctions provide a unique opportunity
to realize band-to-band tunneling devices. As an example, Sarkar and co-workers have recently
demonstrated a band-to-band tunnel FET with a vertical heterojunction between a p-type Ge and
an n-type bilayer MoS2 [20] (see the schematic representation in Figure 5a). The band diagrams for the
device in the OFF and ON states are illustrated in Figure 5b and the transfer characteristics in Figure 5c.
By gating the MoS2 into the high n-type doping regime, direct tunneling occurs from the Ge valence
band to the MoS2 conduction band. Figure 5d illustrates the values of the SS at room temperature
as a function of the drain current for this bilayer MoS2/p-Ge TFET and for a conventional MOSFET
fabricated with a bilayer MoS2 channel. Different from the conventional FET, this TFET exhibits an SS
lower than the thermionic limit of 60 mV/decade in the considered drain current range (from 10−13 to
10−9 A). On the other hand, for larger drain currents, significantly larger SS values are obtained.

Crystals 2018, 8, x FOR PEER REVIEW  9 of 24 

 

Another recently demonstrated very interesting device concept is based on the field effect 
modulation of current transport across the p-n heterojunction between 3D and 2D semiconductors. 
The 3D semiconductor component of the heterojunction is heavily doped in equilibrium by 
substitutional dopants, whereas the doping level of the 2D semiconductor component can be tuned 
by the field effect. Therefore, gate-tunable 2D–3D p–n heterojunctions provide a unique opportunity 
to realize band-to-band tunneling devices. As an example, Sarkar and co-workers have recently 
demonstrated a band-to-band tunnel FET with a vertical heterojunction between a p-type Ge and an  
n-type bilayer MoS2 [20] (see the schematic representation in Figure 5a). The band diagrams for the 
device in the OFF and ON states are illustrated in Figure 5b and the transfer characteristics in  
Figure 5c. By gating the MoS2 into the high n-type doping regime, direct tunneling occurs from the 
Ge valence band to the MoS2 conduction band. Figure 5d illustrates the values of the SS at room 
temperature as a function of the drain current for this bilayer MoS2/p-Ge TFET and for a conventional 
MOSFET fabricated with a bilayer MoS2 channel. Different from the conventional FET, this TFET 
exhibits an SS lower than the thermionic limit of 60 mV/decade in the considered drain current range 
(from 10−13–10−9 A). On the other hand, for larger drain currents, significantly larger SS values  
are obtained. 

 
Figure 5. (a) Schematic cross-section of a gate-modulated bilayer MoS2/p-Ge junction; (b) band 
diagrams of the device in the OFF and ON state; (c) transfer characteristics of the device for different 
VDS; (d) comparison of the subthreshold swing (SS) of this bilayer MoS2/p-Ge tunneling field effect 
transistor (TFET) with that of a conventional FET with a bilayer MoS2 channel. Figures adapted with 
permission from [20]. 

3.2. Gate Modulated Schottky Barrier Transistor (Barristor)  

The Barristor device concept is based on the tunability of the Schottky barrier height of a Gr 
contact with a semiconductor by an external electric field. Clearly, a nearly ideal interface between 
Gr and the semiconductor, without interface states responsible for Fermi level pinning, is required to 
achieve an efficient field effect modulation of the Schottky barrier height. The first Barristor was 
demonstrated by transferring CVD graphene onto hydrogen-passivated Si, thus obtaining a nearly 

Figure 5. (a) Schematic cross-section of a gate-modulated bilayer MoS2/p-Ge junction; (b) band
diagrams of the device in the OFF and ON state; (c) transfer characteristics of the device for different
VDS; (d) comparison of the subthreshold swing (SS) of this bilayer MoS2/p-Ge tunneling field effect
transistor (TFET) with that of a conventional FET with a bilayer MoS2 channel. Figures adapted with
permission from [20].
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3.2. Gate Modulated Schottky Barrier Transistor (Barristor)

The Barristor device concept is based on the tunability of the Schottky barrier height of a Gr
contact with a semiconductor by an external electric field. Clearly, a nearly ideal interface between
Gr and the semiconductor, without interface states responsible for Fermi level pinning, is required
to achieve an efficient field effect modulation of the Schottky barrier height. The first Barristor was
demonstrated by transferring CVD graphene onto hydrogen-passivated Si, thus obtaining a nearly
ideal Schottky diode behavior both with n- and p-type Si [21]. Figure 6a illustrates a cross-sectional
schematic of a Gr/Si barristor, and Figure 6b shows the band diagram for the Gr/n-Si Schottky junction
for Vg > 0 and Vg < 0. The modulation of the Gr/n-Si Schottky barrier height with the gate bias is
shown in Figure 6c, and the resulting output characteristics of the device (for different Vg values) are
reported in Figure 6d. A current ON/OFF ratio of ~105 under forward bias was achieved, which is
suitable for digital logic applications.
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The early demonstration of the Barristor was based on the vdW heterostructure between a 2D
material (i.e., Gr) and a 3D material (i.e., Si). More recently, a vertical transistor working on the same
principle has been demonstrated using the 2D/2D vdW heterostructure between Gr and a TMD.
Also in this case, current modulation was obtained by electric-field tuning of the Schottky barrier
between Gr and the TMD, whereas a proper metal layer provides an Ohmic contact with the TMD.
Yu and coworkers have demonstrated such a device with a Gr/few-layer MoS2/metal heterostructure.
This FET showed an ON/OFF ratio larger than 100 and a high current density of 5000 A/cm2 [85].
Moriya and co-workers further improved the current modulation to >105 and current density up to
104 A/cm2 with a similar structure, but better interface fabrication [86]. The advantages of this type of
vertical transistor are the large current density and the small device scale, providing high potential for
future high density integration circuits.

3.3. Hot Electron Transistor

The hot electron transistor (HET) is a three-terminal (i.e., emitter, base and collector)
heterostructure device where the ultra-thin base layer is sandwiched between two thin insulating
barriers (i.e., the emitter-base and base-collector barriers), as schematically illustrated in Figure 7a.
For a sufficiently high forward bias VBE applied between the base and the emitter, electrons are injected
into the base by Fowler–Nordheim (FN) tunneling through the barrier or by thermionic emission
above the barrier, depending on the barrier height and thickness. A key aspect for the HET operation
is that the injected electrons (hot electrons) have a higher energy compared to the Fermi energy of the
electrons’ thermal population (cold electrons) in the base. Ideally, for a base thickness lower than the
scattering mean free path of hot electrons, a large fraction of the injected electrons can traverse the
base ballistically, i.e., without losing energy, and finally reach the edge of the base-collector barrier.
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This barrier is aimed to act as an energy filter, which allows the hot electrons to reach the collector
and reflects back the electrons with insufficient energy. These reflected electrons eventually become
part of the cold electrons’ population in the base and contribute to base current (IB), whereas the hot
electrons reaching the collector give rise to the collector current (IC). Besides transmitting hot electrons,
the base-collector barrier must be thick and high enough to block the leakage current IBCleak of cold
electrons from the base to the collector.Crystals 2018, 8, x FOR PEER REVIEW  11 of 24 
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Figure 7. (a) Schematic illustration of a hot electron transistor (HET); (b) ideal output characteristics
IC-VCB for the transistor biased in the common-base configuration (VB = 0 and VBE = VB − VE > 0) for
different VBE values; (c) energy band diagrams for different VCB biasing regimes.

Figure 7b,c illustrates the DC electrical characteristics and the band diagrams for an HET biased
in the common-base configuration (i.e., with VB = 0 and VBE = VB − VE > 0). Depending on the values
of the potential difference VCB = VC − VB, three current transport regions can be observed in the
output characteristics IC-VCB (Figure 7b). For VCB > 0 (Region II), IC is almost independent of VCB, i.e.,
all the injected hot electrons are transmitted above the B-C barrier (current saturation regime of the
transistor). For VCB < 0 (Region I), the collector edge of the B-C barrier is raised up, and part of the hot
electrons is reflected back in the base, resulting in a decrease of IC with increasing negative values of
VCB, up to device switch-off. For large positive values of VCB (Region III), the leakage current (IBCleak)
contribution of cold electrons injected by FN tunneling through the B-C barrier becomes large, and
this leads to a rapid increase of IC as a function of VCB.

The main figures of merits for DC operation of an HET are the common-base current transfer
ratio α = IC/IE and the common-emitter current gain β = IC/IB. For good DC performances, α ≈ 1 and
β as large as possible are needed.

In the case of an HET, the high-frequency figures of merit, i.e., the cutoff frequency fT and the
maximum oscillation frequency fMAX, can be expressed as follows:

fT =
1

2π
(

τd +
CEB+CBC

gm

) (3)
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fMAX =

√
fT

2πRBCBC
(4)

where τd is the total delay time associated with electrons’ transit in the E-B barrier layer, in the base
and in the B-C filtering layer, CEB and CBC are the capacitances of the two barriers, gm = dJC/dVBE is
the transconductance and RB is the base resistance. Clearly, the most effective way to maximize fT
is the increase of gm. In fact, a reduction of the barrier layer capacitances would imply an increase
of the E-B and B-C barrier thicknesses, with a consequent impact on the transit delay times across
these barriers. Under saturation conditions, when all the hot electrons injected from the emitter
reach the collector (JC ≈ JE), the transconductance gm ≈ dJE/dVBE. As the emitter current is injected
over a barrier, it exhibits an exponential dependence on VBE, i.e., JE ∝ exp(qVBE/kT). As a result,
gm ∝ qJE/kT. This means that a high injection current density is one of the main requirements to
achieve a high cut-off frequency fT. The RB term in Equation (4) is the resistance associated with
“lateral” current transport in the base layer from the device active area to the base contact. Hence,
RB is the sum of different contributions, i.e., the “intrinsic” base resistance RB_int ∝ ρ/dB (with ρ the
base resistivity and dB the base thickness), the resistance of the Ohmic metal contact with the base
and the access resistance from this contact to the device active area. All these contributions should
be minimized to achieve a low RB. Of course, the most challenging issue to obtain high fMAX is
to fabricate an ultra-thin base (allowing ballistic transport of hot electrons in the vertical direction)
while maintaining low enough intrinsic and extrinsic base resistances. However, for most of the bulk
materials, reducing the film thickness to the nanometer or sub-nanometer range implies an increase of
the resistivity, due to the dominance of surface roughness and/or grain boundaries’ scattering, as well
as to the presence of pinholes and other structural defects in the film.

Indeed, the HET device concept was introduced more than 50 years ago by Mead [87]. Since then,
several material systems have been considered for HET implementation, including metal thin
films [87–90], complex oxides [91], superconducting materials [92], III-V and III-nitride semiconductor
heterostructures [93–97]. However, the successful demonstration of high-performance HETs has been
limited by the difficulty to scale the base thickness below the electron mean free path of the carriers.
In this context, 2D materials, in particular Gr and TMDs, can represent ideal candidates to fabricate the
base of HETs, since they maintain excellent conduction properties and structural integrity down to
single atomic layer thickness, allowing one to overcome the base scalability issue.

Theoretical studies have predicted that, with an optimized structure, fT and fMAX up to several
terahertz [98], Ion/Ioff over 105, high current and voltage gains can be achieved with a Gr-based HET
(GBHET). The first experimental prototypes of GBHETs were reported by Vaziri et al. [22] and by
Zeng et al. [23] in 2013. Those demonstrators were fabricated on Si wafers using a CMOS-compatible
technology and were based on metal/insulator/Gr/SiO2/n+-Si stacks, where n+-doped Si substrate
worked as the emitter, a few nm thick SiO2 as the E-B barrier, a thicker high-k insulator (Al2O3 or
HfO2) as the B-C barrier and the topmost metal layer as the collector. Figure 8a shows a schematic
of the device structure, while Figure 8b illustrates the band diagrams in the OFF and ON states.
The measured common-base output characteristics of this device are reported in Figure 8c, showing
a collector current IC nearly independent of VCB and strongly dependent on VBE.

In spite of the wide modulation of IC as a function of VBE, these first prototypes suffered from
a high threshold voltage and a very poor injected current density (in the order of µA/cm2) due to the
high Si/SiO2 barrier, hindering their application at high frequencies.

In order to improve the current injection efficiency, other materials have been investigated as E-B
barrier layers in replacement of SiO2 [99]. As an example, using a 6 nm-thick HfO2 (including a 0.5-nm
interfacial SiO2) deposited by atomic layer deposition results in an improved threshold voltage and
a higher injected current density. Further improvements have been obtained using a TmSiO/TiO2

(1 nm/5 nm) bilayer, where the thin TmSiO layer (with low electron affinity) in contact with the Si
emitter allows high current injection by step tunneling, while the thicker TiO2 layer (with higher
electron affinity) serves to block the leakage current from the Si valence band. For this GBHET
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with a TmSiO/TiO2 E-B barrier, a collector current density JC ≈ 4 A/cm2 (more than five orders of
magnitude higher than in the first prototypes) was obtained at VBE = 5 V and for VBC = 0. However,
the device still suffers from low values of α ≈ 0.28 and β ≈ 0.4, which can be due to the insufficient
quality of the interface between Gr and the deposited B-C barrier.
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Besides Gr, monolayer MoS2 has been also considered as the base material. As an example,
Torres et al. [25] demonstrated an HET device based on a stack of ITO/HfO2/MoS2/SiO2/n+-Si,
where the n+-doped Si substrate worked as the emitter, thermally-grown SiO2 (3 nm) as the E-B
tunneling barrier, a monolayer of CVD-grown MoS2 as the base, the HfO2 layer (55 nm thick) as
the B-C barrier and the topmost ITO as the collector electrode. This device showed an improved
value of α ≈ 0.95 with respect to the previously described Gr-base HET prototypes, mainly due to the
lower conduction band offset between MoS2 and HfO2 (1.52 eV), with respect to the cases of Gr/HfO2

(2.05 eV) and Gr/Al2O3 (3.3 eV). In spite of this, the collector current density of these devices was still
poor (in the order of µA/cm2), due to the high E-B barrier between Si and SiO2.

The above discussed attempts to implement the GBHET device using Si as the emitter material
have been mainly motivated by the perspective of integrating this new technology with the
state-of-the-art CMOS fabrication platform. More recently, the possibility of demonstrating GBHETs
by the integration of Gr with nitride semiconductors has been investigated. GaN/AlGaN or GaN/AlN
heterostructures are excellent systems to be used as emitter/emitter-base barriers, due to the presence
of high density 2DEG at the interface and to the high structural quality of the barrier layer. Thermionic
emission has been demonstrated as the main current transport mechanisms in GaN/AlGaN/Gr
systems with a thick (~20 nm) AlGaN barrier layer [100–102].Very efficient current injection by FN
tunneling has been recently shown in the case of GaN/AlN/Gr heterojunctions with an ultra-thin
(3 nm) AlN barrier [103].

Figure 9a,b illustrates a cross-sectional schematic and the band diagram of a recently-demonstrated
GBHET based on a GaN/AlN/Gr/WSe2/Au stack [103]. The 3-nm AlN tunneling barrier was grown
on top of a bulk GaN substrate (n+-doped), working as the emitter. In order to circumvent the
problems related to the poor interface quality between Gr and conventional insulators or semiconductors
deposited on top of it, an exfoliated WSe2 layer (forming a vdW heterojunction with Gr) was adopted as
the B-C barrier layer. The resulting Gr/WSe2 Schottky junction is characterized by a low barrier height
due the small band offset (~0.54 eV) between Gr and WSe2. Figure 9c shows the common-base output
characteristics (IC-VCB) for different values of the emitter injection current IE in the case of a GBHET
with a 2.6 nm-thick WSe2 barrier. Furthermore, Figure 9d plots the common-base current transfer ratio
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α = IC/IE as a function of VCB in the same bias range. Three current transport regimes can be identified
in Figure 9c,d. At intermediate VCB bias (Region II), IC is almost independent of the VCB and α ≈ 1,
indicating that almost all the injected hot electrons are able to overcome the Gr/WSe2 Schottky barrier
and reach the collector. For VCB < 0 (Region I), the injected electrons from the emitter are reflected back
by the elevated B-C potential barrier, resulting in a reduced IC and α < 1. Finally, at higher positive VCB,
current starts to increase due to the increasing contribution of cold electrons’ leakage current from the
base. Although this device showed excellent DC characteristics in terms of α, its operating VBC window
was very limited (~0.3 V), due to the poor blocking capability of the B-C junction with an ultrathin WSe2

barrier. Increasing the WSe2 thickness improved the blocking capability of the B-C barrier, but resulted
in a reduced value of α. As an example, α = 0.75 was evaluated for a GaN/AlN/Gr/WSe2/Au GBHET
with a 10 nm-thick WSe2 barrier [103].
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Table 1 reports a comparison of the main DC electrical parameters (i.e., the collector current
density JC, the common-base current transfer ratio α and the common-emitter current gain β) for
the HETs with a Gr or MoS2 base reported in the literature. Some examples of HETs fully based on
nitride-semiconductors with a sub-10-nm base thickness are reported for comparison. In spite of the
theoretically-predicted superior performances (related to ballistic transport in the atomically-thin Gr
base), GBHETs still suffer from reduced values of JC, α and β with respect to HETs fabricated by
bandgap engineering of III-N semiconductors (even with a thicker GaN base). This reduced GBHET
performance can be due to the non-ideal quality of Gr interfaces with the emitter and collector barriers,
indicating that further work will be necessary in this direction.
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Table 1. Comparison of JC, α and β for the-state-of-the-art HETs with a Gr or MoS2 base and for nitride
semiconductor-based HETs with a sub-10-nm base thickness

Emitter/Emitter-Base Barrier Base (Thickness) Base-Collector Barrier JC (A/cm2) α β Reference

Si/SiO2 Gr (0.35 nm) Al2O3 ~1 × 10−5 ~0.06 ~0.06 [22]
Si/SiO2 Gr (0.35 nm) Al2O3, HfO2 ~5 × 10−5 ~0.44 ~0.78 [23]

Si/TmSiO/TiO2 Gr (0.35 nm) Si ~4 ~0.28 ~0.4 [99]
GaN/AlN Gr (0.35 nm) WSe2 (10 nm) ~50 ~0.75 4–6 [103]

Si/SiO2 MoS2 (0.7 nm) HfO2 ~1 × 10−6 ~0.95 ~4 [25]
GaN/Al0.24Ga0.76N GaN (10 nm) Al0.08Ga0.92N ~5 × 103 ~0.97 [95]

GaN/AlN GaN/InGaN (7 nm) GaN ~2.5 × 103 >0.5 >1 [97]
GaN/AlN GaN (8 nm) AlGaN/GaN ~46 × 103 ~0.93 ~14.5 [96]

4. Materials Science Issues and Challenges

The device structures reviewed in this paper are based on vdW heterostructures of 2D materials
(Gr, TMDs, h-BN) [15] or on mixed-dimensional vdW heterostructures [17] formed by the integration
of 2D materials with 3D semiconductors and insulators (bulk or thin films). In many cases, proof of
concept devices have been fabricated by the transfer of the individual 2D components, obtained by
mechanical or chemical exfoliation of flakes from layered bulk crystals. As a matter of fact, the large
area growth method of electronic quality 2D materials and heterostructures are mandatory to move
from proof-of-concept devices to industrial applications.

Nowadays, high quality Gr can be grown on a large area by CVD on catalytic metals, such as
copper [42], followed by transfer to arbitrary substrates [104]. Although this is a very versatile
and widely-used method, it suffers from some drawbacks related to Gr damage and polymer
contaminations during the transfer procedure, as well as of possible adhesion problems between Gr
and the substrate. Furthermore, it typically introduces undesired metal (Cu, Fe) contaminations [105]
originating from the growth substrate and the typically used Cu etchants. An intense research activity
is still in progress to optimize Gr transfer procedures to minimize Gr defectivity and contaminations
associated with Gr manipulation [106–109].

Notwithstanding the above-mentioned issues, large area (cm2) Gr heterojunctions with
semiconductors are currently fabricated by optimized transfer of CVD-grown Gr. These have been used
for the fabrication of device arrays using semiconductor fab-compatible approaches. As an example,
Gr junctions with AlGaN/GaN heterostructures showing excellent lateral uniformity have been
reported [100,110] and are currently investigated as building blocks for HET devices. Figure 10a,b
reports two representative morphologies of the AlGaN surface without (a) and with (b) a single-layer Gr
membrane on top. Figure 10c,d shows two arrays of local current-voltage characteristics measured by
conductive atomic force microscopy (CAFM) at the different positions on bare AlGaN- and Gr-coated
AlGaN, respectively. In both cases, all the I-V curves exhibit a rectifying behavior, with a lower Schottky
barrier height for the Gr/AlGaN junction. Noteworthy, a very narrow spread between different curves
is observed for the Gr/AlGaN junction, indicating an excellent lateral homogeneity of the Gr/AlGaN
Schottky contact.

Under many respects, the direct growth/deposition of Gr on the target substrate would be
highly desirable. However, to date, high quality Gr growth has been demonstrated only on a few
semiconducting or semi-insulating materials, such as silicon-carbide [38–40,111,112] and, more recently,
germanium [113]. Single or few layers of Gr can be obtained on the Si face (0001) of hexagonal SiC,
either by controlled sublimation of Si at high temperatures (typically > 1650 ◦C) in Ar at atmospheric
pressure or by direct CVD deposition at lower temperatures (~1450 ◦C) using an external carbon
source (such as C3H8) with H2 or H2/Ar carrier gases [111]. Gr grown on SiC(0001), commonly
named epitaxial graphene (EG), generally exhibits a precise epitaxial orientation with respect to the
substrate, which originates from the peculiar nature of the interface, i.e., the presence of a carbon
buffer layer with mixed sp2/sp3 hybridization sharing covalent bonds with the Si face of SiC [114,115].
This buffer layer has a strong impact both on the lateral (i.e., in plane) current transport in EG, causing
a reduced carrier mobility, and on the vertical current transport at the EG/SiC interface [116,117].
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Hydrogen intercalation at the interface between the buffer layer and Si face has been demonstrated to be
efficient in increasing Gr carrier mobility and tuning the Schottky barrier and, hence, the vertical current
transport across the Gr/SiC interface [118]. Recently, CVD growth of Gr from carbon precursors on
nitride semiconductor (AlN) substrates/templates has been also investigated. Gr deposition on these
non-catalytic surfaces represents a challenging task, as it requires significantly higher temperatures
as compared to conventional deposition on metals. The first experimental works addressing this
issue showed the possibility of depositing a few layers of Gr both on bulk AlN (Al and N face) and
on AlN templates grown on different substrates, such as Si(111) and SiC, at temperatures >1250 ◦C
using propane (C3H8) as the carbon source, without significantly degrading the morphology of AlN
substrates/templates [119,120]. In spite of the very promising results of these experiments, further
work will be required to evaluate the feasibility and the effects of CVD Gr growth onto AlN/GaN
or AlGaN/GaN heterostructures. Moreover, the possibility of integrating these high temperature
processes in the fabrication flow of GBHETs with the GaN/AlN (or GaN/AlGaN) emitter needs to
be investigated.
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Figure 10. AFM morphologies of an AlGaN/GaN heterostructure (a) and of Gr transferred onto
AlGaN/GaN (b). Current-voltage characteristics measured by conductive atomic force microscopy
(CAFM) on an array of different positions on the bare AlGaN surface (c) and on the Gr-coated AlGaN
surface (d). Figures adapted with permission from [100].

Although most of TMD-based devices are still fabricated using exfoliated flakes, much progress
has been made in the last few years in the CVD deposition of MoS2 and other TMDs, both on insulating
substrates, such as SiO2 [121,122] and sapphire [123], and on semiconductors, such as GaN [124].
Noteworthy, an epitaxial registry with the substrate has been observed for CVD-grown MoS2 on
sapphire and on GaN.

High quality thin insulating layers are key components for most of the above-discussed lateral
and vertical devices based on Gr and TMDs. In this context, due to the layer-by-layer deposition
mechanism, atomic layer deposition (ALD) has been considered as method of choice to grow thin
high-k dielectrics (such as Al2O3 and HfO2) on Gr and TMDs [125]. The main challenge related to ALD
on the chemically inert and dangling-bonds’ free surface of 2D materials is the activation of nucleation
sites from which the growth can initiate. Several approaches have been explored so far to this aim,
like ex situ deposition of metal or metal-oxide seed layers [126] or pre-functionalization of Gr [127].
Recently, highly uniform Al2O3 films with very low leakage current and a high breakdown field have
been deposited on Gr by a two-step thermal ALD process, resulting in minimal degradation of the Gr
electronic/structural properties [128]. As a matter of fact, the interface between Gr and TMDs with
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common insulators is not atomically flat. Furthermore, interface or near-interface defects are typically
present in the oxide and act as trapping states for electrons/holes.

In this respect, due to its atomically-flat crystal surface, excellent insulating properties and
chemical inertness, h-BN represents an ideal ultra-flat substrate and interlayer dielectric for Gr
(to which it is closely lattice matched, within 1.6%) and, by extension, other 2D semiconductor
materials [3]. Although single and multilayer h-BN used for device demonstration are still mainly
obtained by exfoliation from the bulk crystal, significant progress has been also made towards the
controlled synthesis of large-area, high-quality h-BN films by CVD on metal catalysts, such as Ni [129],
Cu [130] and Ni/Cu alloys [131]. Recently, Sonde et al. reported a detailed study clarifying the
mechanisms of CVD h-BN growth on Ni and Co thin films on SiO2/Si substrates [132], which could
lead to large area (up to wafer scale) growth of h-BN thin films on arbitrary substrates in a transfer-free
manner. As schematically illustrated in Figure 11a, after exposure to ammonia (NH3) and diborane
(B2H6) precursors at high temperature (~1050 ◦C), diffusion of boron (B) and nitrogen (N) in Ni occurs,
followed by segregation/precipitation of h-BN multilayers both on the upper and the buried face
of the Ni film. These h-BN films showed excellent insulating properties, with a breakdown field of
9.34 MV·cm−1, as determined from current-voltage characteristics measured by CAFM (see Figure 11b).
Finally, the quality of h-BN as a substrate for back-gated Gr field effect transistors has been evaluated.
The Gr resistance measured under forward and backward gate bias sweep is reported in Figure 11c,
showing minimal hysteresis associated with the absence of charge trapping at the Gr/h-BN interface.
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Figure 11. (a) Schematic illustration of the mechanism of h-BN CVD growth on Ni thin films by
ammonia (NH3) and diborane (B2H6) precursors at high temperature (~1050 ◦C); (b) estimation
of the breakdown field (9.34 MV·cm−1) of the multilayer h-BN (10–11 layers) by current-voltage
measurements with CAFM; (c) resistance of a Gr field effect transistor with an h-BN back-gate, showing
minimal hysteresis between forward and backward gate bias sweep. Figures adapted with permission
from [132].

PMMA-assisted transfer is the simplest way to construct arbitrary 2D heterostructures. However,
the quality of the interface can be affected by the trapping of polymer, solvents or chemicals used for
transfer. This represents a major issue, especially for large-area 2D heterostructures. In this respect,
the direct synthesis of vertically-stacked 2D heterojunctions, obtained by CVD growth of one 2D
material on another, would be highly desirable, as the direct growth would result, in principle, in clean
heterojunction interfaces. The early van der Waals epitaxy experiments started from Gr and h-BN,
which share a similar lattice constant. Yang et al. reported a plasma-assisted deposition method for
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the growth of single domain Gr on the h-BN substrate [133]. Gr grows with a preferred orientation
with respect to the h-BN lattice, and the size of the domain is only restricted by the area of underlying
h-BN. Furthermore, Shi et al. have obtained a vertically-stacked MoS2/Gr heterostructure via thermal
decomposition of ammonium thiomolybdate precursors on Gr surfaces [134]. In spite of the 28%
mismatch between MoS2 and Gr lattice constants, Gr is still a good growth platform for MoS2, as the
growth of MoS2 on Gr involves strain to accommodate the lattice mismatch. Lin et al. demonstrated
the direct growth of MoS2, WSe2 and h-BN on epitaxial Gr on SiC through CVD methods [135],
showing how the morphology of the underlying Gr strongly affects the growth and the properties
of top heterostructures. In particular, strain, wrinkling and defects on the surface of Gr provide the
nucleation centers for the upper layer material growth.

5. Summary and Outlook

We have reviewed the state-of-the-art of 2D material-based vertical transistors for logic and high
frequency electronics.

Regarding logic applications, vdW heterostructures obtained by 2D/2D or 2D/3D material
stacking have been explored by several research groups as a platform to implement tunneling
field effect transistors (TFETs). Resonant TFETs have been demonstrated by rotationally-aligned
Gr monolayers or bilayers separated by a tunnel barrier (h-BN or TMD). However, although these
prototypes permitted exploring interesting physical phenomena, the possibility of realizing vdW
heterostructures with a precise crystallographic alignment on a large area represents a big challenge,
making real applications of resonant TFETs in the near future difficult. On the other hand, TFETs relying
on the band-to-band-tunneling across the interface of different semiconducting layered materials could
have more realistic prospects of practical applications, once further progress in van der Waals epitaxy
of TMDs is achieved.

Regarding high frequency applications of 2D materials, lateral Gr FETs with a very high cut-off
frequency (fT > 400 GHz) have been demonstrated, exploiting the high Gr channel mobility. However,
these devices suffer from a lower maximum oscillation frequency fMAX, due to the poor saturation
of the output characteristics mainly originating from the missing bandgap of Gr. Vertical transistors
based on 2D/2D or 2D/3D material heterostructures can represent an alternative to lateral Gr FETs to
realize RF functions. In particular, the hot electrons transistor (HET) has been theoretically predicted to
be suitable for ultra-high-frequency applications, with fT and fMAX values in the THz range. The main
requirement for the implementation of this device concept, i.e., an ultrathin base allowing both ballistic
transport in the vertical direction and low base resistance in the lateral direction, can be fulfilled
by 2D materials, in particular Gr. However, although much progress has been made in the last few
years in the fabrication of Gr-based HETs, the electrical performances of these demonstrators are still
lower than those of previously-reported HET devices fabricated with III-V heterostructures (even with
a thicker base) and far from the state-of-the-art RF HEMTs (which represent the benchmark for any
competing RF device concept). Further improvements in the emitter-base and base-collector barrier
layers and interfaces are still required to achieve the theoretical DC and RF performances of HETs.

Generally speaking, the perspective of industrial applications of 2D material-based devices is
strongly related to the possibility of growing individual 2D layers and, possibly, vdW heterostructures
on a large area.
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