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Abstract: Selected recent examples of coordination polymers (CPs) or metal-organic frameworks
(MOFs) constructed from different multifunctional carboxylic acids with phenyl-pyridine or biphenyl
cores have been discussed. Despite being still little explored in crystal engineering research, such
types of semi-rigid, thermally stable, multifunctional and versatile carboxylic acid building blocks
have become very promising toward the hydrothermal synthesis of metal-organic architectures
possessing distinct structural features, topologies, and functional properties. Thus, the main aim
of this mini-review has been to motivate further research toward the synthesis and application of
coordination polymers assembled from polycarboxylic acids with phenyl-pyridine or biphenyl cores.
The importance of different reaction parameters and hydrothermal conditions on the generation and
structural types of CPs or MOFs has also been highlighted. The influence of the type of main di- or
tricarboxylate ligand, nature of metal node, stoichiometry and molar ratio of reagents, temperature,
and presence of auxiliary ligands or templates has been showcased. Selected examples of highly
porous or luminescent CPs, compounds with unusual magnetic properties, and frameworks for
selective sensing applications have been described.

Keywords: coordination polymers; metal-organic frameworks; crystal engineering; hydrothermal
synthesis; carboxylic acids

1. Introduction and Scope

In recent years, various crystalline metal-organic architectures (MOAs) including coordination
polymers (CPs) or metal-organic frameworks (MOFs) have been an object of very intense research that
spans from the fields of crystal design and engineering to chemistry of functional materials [1–15].
In particular, a very interesting research direction concerns the search for new and versatile organic
building blocks that can be applied for the design of unusual metal-organic architectures with desirable
structural features and notable functional properties [16–19]. Despite considerable progress achieved
in this field, the assembly of coordination polymers or metal-organic frameworks in a predictable
way is often a difficult task. This is mainly because the assembly of such compounds can depend on
various factors, such as the nature and coordination properties of metal nodes [20,21], connectivity
and type of organic building blocks [22–24], reaction conditions and stoichiometry [25,26], and effects
of templates [27–29] or supporting ligands [30,31].
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A high diversity of aromatic polycarboxylic acids has been extensively applied as multifunctional
building blocks in designing novel metal-organic networks [32,33]. Among such building blocks,
flexible ligands containing biphenyl and phenyl-pyridine cores with a varying number and position
of carboxylic groups as well as distinct locations of N-pyridyl functionality have attracted a special
interest [34,35]. It can be justified by a possibility of two adjacent phenyl and/or pyridine rings
to rotate around the C–C single bond and thus conform to a coordination environment of metal
nodes. Besides, the presence of several carboxylic groups with a varying degree of deprotonation
in addition to an optional N-pyridyl functionality can provide multiple and distinct coordination
sites, thus leading to different coordination fashions and resulting in the assembly of structurally
distinct coordination polymers [36–38]. Furthermore, depending on a deprotonation degree and
crystal packing arrangement, these aromatic polycarboxylate ligands can behave as good H-bond
acceptors and donors, thus furnishing an extra stabilization of metal-organic structures and facilitating
their crystallization.

Hence, the main objective of the present work consists in highlighting selected recent examples
of coordination polymers that were hydrothermally assembled from a series of multifunctional
carboxylic acids with phenyl-pyridine or biphenyl cores (Scheme 1). These carboxylic acids are
still very poorly explored toward the design of CPs or MOFs, but can constitute an interesting type
of semi-rigid, thermally stable, multifunctional, and versatile building blocks in crystal engineering
research. Thus, the present study briefly discusses the general aspects of hydrothermal synthesis of
selected coordination polymers derived from the aromatic carboxylic acids shown in Scheme 1. Some of
them represent isomeric biphenyl tricarboxylate blocks (H3bptc and H3btc), while other are isomeric
phenyl-pyridine tricarboxylate blocks (H3cptc, H3dcppa, and H3cpta). The study also highlights
the influence of various parameters (main ligand type, metal node, molar ratio and stoichiometry,
temperature, presence of auxiliary ligand or template) on structural diversity of the obtained products.
For selected examples of CPs, functional properties and applications are also highlighted.
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2. Hydrothermal Synthesis and Structural Diversity of Coordination Polymers

2.1. Advantages of Hydrothermal Synthesis

Hydrothermal synthesis is commonly applied toward the design of metal-organic
networks [39–41] and refers to the synthesis and crystallization of coordination compounds that
occur under hydrothermal conditions, typically in a hermetically sealed aqueous solution at elevated
temperatures and pressures. The hydrothermal synthesis features a number of important advantages
over other common methods for preparing CPs, namely: (i) high reactivity of reactants and unique
synthetic conditions in terms of a combination of pressures and temperatures; (ii) growth of good
quality single crystals (Figure 1) or microcrystalline phases with no need for additional work-up
and purification; (iii) possible control of solution or interface reactions, formation of metastable
and unique structures that cannot be generated by other methods; (iv) use of water as a green
organic-solvent-free reaction medium that can also aid crystallization by supplying labile H2O ligands
to complete coordination environment of metal nodes; and (v) relative simplicity of the equipment.
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biphenyl cores (Scheme 1), typical synthetic procedure begins with mixing, in water at ambient 
temperature and under constant stirring, a metal nitrate or chloride salt, a main carboxylic acid 
building block, and an auxiliary ligand (optional) [42–44]. The obtained mixture is then treated with 
sodium hydroxide as a typical base to adjust the solution pH value in the range of 5–7. Then, the 
reaction mixture is sealed in a Teflon-lined stainless steel autoclave and subjected to the 
hydrothermal treatment at 80–210 °C for 2 or 3 days in an oven, followed by gradual cooling to 
ambient temperature at a rate of 10 °C/h (Figure 2). The autoclaves are opened after being kept at 
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or isolated manually to furnish a coordination polymer product (Figure 1). 
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control (b) typically applied for the hydrothermal generation of CPs. 

Figure 1. Images showing examples of single crystals of Ni (a), Cd (b), and Cu (c) coordination
polymers generated hydrothermally.

For coordination polymers driven by multifunctional carboxylic acids with phenyl-pyridine
or biphenyl cores (Scheme 1), typical synthetic procedure begins with mixing, in water at ambient
temperature and under constant stirring, a metal nitrate or chloride salt, a main carboxylic acid
building block, and an auxiliary ligand (optional) [42–44]. The obtained mixture is then treated with
sodium hydroxide as a typical base to adjust the solution pH value in the range of 5–7. Then, the
reaction mixture is sealed in a Teflon-lined stainless steel autoclave and subjected to the hydrothermal
treatment at 80–210 ◦C for 2 or 3 days in an oven, followed by gradual cooling to ambient temperature
at a rate of 10 ◦C/h (Figure 2). The autoclaves are opened after being kept at ambient temperature
for 24 h. The obtained crystalline solids are filtered off and washed (optional) or isolated manually to
furnish a coordination polymer product (Figure 1).
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2.2. Effect of Building Block Type

The type of the main carboxylic acid ligand (Scheme 1) is one of the structure-defining factors
during the hydrothermal synthesis of CPs. Selected examples of different metal-organic networks
that were obtained under similar reaction conditions are summarized in Table 1. For example,
the use of different dicarboxylic acids (H2cpna, H2cppa, or H2bpydc) as main building blocks and
1,10-phenanthroline as an auxiliary ligand led to the generation of distinct manganese(II) derivatives
1−3 (Figure 3), the structures of which range from a 1D ladder [Mn(µ3-cpna)(phen)(H2O)]n (1) and
1D zigzag chain [Mn(µ-cppa)(phen)(H2O)]n (2) to a 3D MOF [Mn(µ4-bpydc)(phen)]n (3). The use of a
cobalt(II) metal source in combination with the isomeric H2cpna or H2cppa ligands and 2,2′-bipyridyl
resulted in the assembly of a 2D metal-organic layer [Co(µ3-cpna)(2,2′-bpy)(H2O)]n (4) or a 1D zigzag
chain {[Co(µ-cppa)(2,2′-bpy)(H2O)]·H2O}n (5). Similar structure-defining influence of tricarboxylic
acid building blocks can be observed in other zinc(II) (6, 7) and manganese(II) (8, 9) coordination
compounds (Table 1).

Table 1. Selected examples of coordination polymers (CPs) showing an effect of main carboxylate
ligand on product structure.

Compound Formula Ligand Structure Reference

1 [Mn(µ3-cpna)(phen)(H2O)]n H2cpna 1D ladder chain [42]
2 [Mn(µ-cppa)(phen)(H2O)]n H2cppa 1D zigzag chain [44]
3 [Mn(µ4-bpydc)(phen)]n H2bpydc 3D MOF [45]
4 [Co(µ3-cpna)(2,2′-bpy)(H2O)]n H2cpna 2D layer [42]
5 {[Co(µ-cppa)(2,2′-bpy)(H2O)]·H2O}n H2cppa 1D zigzag chain [44]
6 [Zn3(µ3-cptc)2(H2O)6]n H3cptc 1D ladder chain [46]
7 {[Zn3(µ5-dcppa)2(H2O)4]·2H2O}n H3dcppa 3D MOF [47]
8 [Mn(µ-Hdcppa)(phen)(H2O)]2·2H2O H3dcppa 0D dimer [47]
9 {[Mn(µ4-Hcpta)(phen)]·4H2O}n H3cpta 3D MOF [48]
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2.3. Effect of Metal Source

The type of metal node also plays an important structure-defining role in the hydrothermal
generation of coordination polymers. This is primarily associated with different coordination behavior
and ligand affinity of distinct metal centers, their charges and ionic radii. Selected examples of CPs
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assembled under identical reaction conditions but using different metal sources are collected in Table 2.
In particular, an interesting series of compounds 14−16 can be built from H3btc and phen ligands by
using different metal(II) chlorides, namely a 1D chain{[Cd(µ3-Hbtc)(phen)(H2O)]·H2O}n (14), a 3D MOF
[Pb3(µ4-Hbtc)2(phen)]n (15), and a 0D monomer [Ni(Hbtc)2(phen)2(H2O)]·2H2O (16). Notably, despite
the diversity of these structures, they all feature a monoprotonated tricarboxylic acid block, Hbtc2−.

Apart from the nature of metal, the type of anion in a starting metal salt can
also influence the resulting structure. For example, samarium(III) coordination polymers
{[Sm(Hcpna)(µ4-cpna)(phen)]2·H2O}n (3D net, 17) and {[Sm(Hcpna)(µ4-cpna)(phen)]2·2H2O}n (1D
chain, 18) were obtained under exactly the same conditions but using Sm(III) nitrate or chloride,
respectively. MOF 17 reveals a very intricate structure, wherein the Sm2 dimeric units are linked
by the µ4-cpna2− ligands forming a dodecanuclear Sm12 macrocycle (Figure 4a) that adopts a chair
conformation. These Sm12 units are then connected with six adjacent rings by corner-forming 2D layer
motifs (Figure 4b), which are further linked by the coordination interaction with the cpna2− blocks to
furnish a very complex 3D framework (Figure 4c).

Table 2. Selected examples of CPs showing an effect of metal source on product structure.

Compound Formula Metal Source Structure Reference

10 [Co(µ-cppa)(phen)(H2O)]n CoCl2·6H2O 1D zigzag chain [44]
11 {[Cd3(µ3-cppa)3(phen)2]·4H2O}n CdCl2·H2O 3D MOF [44]
12 {[Y2(µ4-cpna)3(phen)2(H2O)]·H2O}n Y(NO3)3·6H2O 3D MOF [43]
13 [Tm(µ3-cpna)(phen)(NO3)]n Tm(NO3)3·6H2O 1D double chain [43]
14 {[Cd(µ3-Hbtc)(phen)(H2O)]·H2O}n CdCl2·H2O 1D chain [49]
15 [Pb3(µ4-Hbtc)2(phen)]n PbCl2 3D MOF [49]
16 [Ni(Hbtc)2(phen)2(H2O)]·2H2O NiCl2·6H2O 0D monomer [50]
17 {[Sm(Hcpna)(µ4-cpna)(phen)]2·H2O}n Sm(NO3)3·6H2O 3D MOF [43]
18 {[Sm(Hcpna)(µ4-cpna)(phen)]2·2H2O}n SmCl3·6H2O 1D chain [43]
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(b) Interconnection of hexagonal macrocycles into a 2D layer motif; green balls are Sm2 units. (c) 3D
metal-organic framework. Adapted from [43].

2.4. Effect of Reagents Molar Ratio

In the synthesis of CPs, a proportion between metal node and main carboxylate ligand can be
easily modified, what can cause a change of the coordination number of metal ions and affect the
resulting structure. In addition, change of the molar ratio between main building block and alkali
metal hydroxide used as a pH-regulator can result in a partial or full deprotonation of polycarboxylic
acid ligand. As shown in Table 3, both 3D MOFs {[Co3(µ4-btc)2(µ-H2O)2(py)4(H2O)2]·(py)2}n (19)
and {[Co3.5(µ6-btc)2(µ3-OH)(py)2(H2O)3]·H2O}n (20) were obtained under exactly the same conditions,
except using a slightly different molar ratio between CoCl2·6H2O and H3btc (1.5:1 for 19 and 1.77:1 for
20). However, these products feature very different structures and topologies (Figure 5). The structures
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of product pairs 21/22 and 23/24 (Table 3) also differ significantly on varying the NaOH:H2cppa and
NaOH:H3bptc molar ratios, respectively. In these cases, an excess of sodium hydroxide leads to a
complete deprotonation of H2cppa in 22 or a generation of additional µ3-OH linkers in 24, thus making
these structures more complicated in comparison with their counterparts assembled using a lower
amount of NaOH.

Table 3. Selected examples of CPs showing an effect of reagents molar ratio on product structure.

Compound Formula Molar Ratio Structure Reference

19 {[Co3(µ4-btc)2(µ-H2O)2(py)4(H2O)2]·(py)2}n CoCl2:H3btc = 1.5:1 3D MOF [50]
20 {[Co3.5(µ6-btc)2(µ3-OH)(py)2(H2O)3]·H2O}n CoCl2:H3btc = 1.77:1 3D MOF [50]
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2.5. Effect of Reaction Temperature

The reaction temperature during the synthesis of metal-organic networks also has a
significant impact on the final product structure. As illustrated in Table 4, compounds
{[Co2(µ3-pyip)2(DMF)]·(solv)}n (25) and {[Co(µ3-pyip)]·2DMF}n (26) were synthesized from exactly
the same reaction mixtures but at different temperatures, 80 and 120 ◦C, respectively. These 3D MOFs
feature distinct structures (Figure 6).

Table 4. Selected examples of CPs showing an effect of reaction temperature on product structure.

Compound Formula Temperature (◦C) Structure Reference

25 {[Co2(µ3-pyip)2(DMF)]·(solv)}n 80 3D MOF [52]
26 {[Co(µ3-pyip)]·2DMF}n 120 3D MOF [52]
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2.6. Effect of Auxiliary Ligand

The presence of an additional auxiliary ligand also plays an important role in the hydrothermal
synthesis of CPs, especially by facilitating product crystallization. Introduction of a common
auxiliary N,N-donor ligand such as 2,2′-bipyridine of 1,10-phenanthroline usually changes the
coordination environment of metal centers, thus resulting in the generation of different structures
(Table 5). For example, the reaction of a cobalt(II) salt with H2cppa with no auxiliary ligand
leads to a 2D coordination polymer [Co(µ3-cppa)(H2O)2]n (27), whereas simpler 1D zigzag
chain products {[Co(µ-cppa)(2,2′-bpy)(H2O)]·H2O}n (28) and [Co(µ-cppa)(phen)(H2O)]n (29) are
generated in the presence of 2,2′-bpy or phen, respectively. Similarly, structurally distinct CPs
{[Nd(µ-Hcpna)2(µ-cpna)2(H2O)2]·3H2O}n (34) and {[Nd(µ-Hcpna)2(µ4-cpna)2(phen)]·2H2O}n (35)
(Figure 7) were prepared under the same synthetic conditions except the introduction of phen in
35. As can be seen from various examples collected in Table 5, the use of the N,N-donor auxiliary
ligands tends to facilitate the formation of CPs with a lower dimensionality if compared to the systems
without an auxiliary ligand. However, rather complex 3D MOF {[Cd3(µ5-btc)2(phen)2(H2O)]·H2O}n

(31) can also be generated in the presence of the auxiliary ligand (Table 5).

Table 5. Selected examples of CPs showing an effect of auxiliary ligand on product structure.

Compound Formula Auxiliary Ligand Structure Reference

27 [Co(µ3-cppa)(H2O)2]n no 2D network [44]
28 {[Co(µ-cppa)(2,2′-bpy)(H2O)]·H2O}n 2,2′-bpy 1D zigzag chain [44]
29 [Co(µ-cppa)(phen)(H2O)]n phen 1D zigzag chain [44]
30 {[Cd3(µ6-btc)2(H2O)5]·4H2O}n no 3D MOF [49]
31 {[Cd3(µ5-btc)2(phen)2(H2O)]·H2O}n phen 3D MOF [49]
32 [Mn(µ3-cpna)(2,2′-bpy)(H2O)]n 2,2′-bpy 2D layer [42]
33 [Mn(µ3-cpna)(phen)(H2O)]n phen 1D ladder chain [42]
34 {[Nd(µ-Hcpna)2(µ-cpna)2(H2O)2]·3H2O}n no 2D layer [42]
35 {[Nd(µ-Hcpna)2(µ4-cpna)2(phen)]·2H2O}n phen 1D double chain [42]
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2.7. Effect of Template

Template-assisted synthesis of CPs has attracted a special attention as a promising approach
toward tunable architectures or structures that might be difficult to access by routine synthetic
methods [47,53,54]. Various inorganic ions or organic molecules can be used as templating agents in
the hydrothermal synthesis of coordination polymers. In particular, 4,4′-bipyridine acts not only as a
common linker in CPs but is frequently applied as a template. Selected pairs of structurally distinct
coordination polymers obtained with or without template are summarized in Table 6. For example,
although compounds {[Ni3(µ4-dcppa)2(H2O)6]·2H2O}n (42) and {[Ni3(µ5-dcppa)2(H2O)6]·2H2O}n (43)
were prepared under similar reaction conditions except using 4,4′-bipy as a templating agent in 43,
they feature structures of different dimensionality and topology (Figure 8).
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Table 6. Selected examples of CPs showing an effect of template on product structure.

Compound Formula Template Structure Reference

36 {[Mn2(µ3-pyip)2(H2O)4]·5H2O}n no 2D layer [55]
37 [Mn3(µ5-pyip)2(µ-HCOO)2(H2O)2]n 4,4′-bpy 2D layer [55]
38 [Co(µ3-pyip)(EtOH)(H2O)]n no 2D layer [55]
39 {[Co(µ4-pyip)(H2O)]·H2O}n cyanoacetic acid 2D double layer [55]
40 {[Mn3(µ4-dcppa)2(H2O)6]·3H2O}n no 2D layer [47]
41 {[Mn3(µ5-dcppa)2(H2O)6]·4H2O}n 4,4′-bpy 3D MOF [47]
42 {[Ni3(µ4-dcppa)2(H2O)6]·2H2O}n no 2D layer [47]
43 {[Ni3(µ5-dcppa)2(H2O)6]·2H2O}n 4,4′-bpy 3D MOF [47]
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2.8. Effect of Two Main Ligands

Although a substantial number of coordination polymers incorporating various kinds of
carboxylate ligands has been reported [56], the examples of heteroleptic networks constructed
from a combination of two kinds of biphenyl or phenyl-pyridine carboxylate building blocks
(Scheme 1) are barely known. It is primarily caused by different solubility of such ligands,
distinct coordination modes and charges, as well as ligand competition for metal node during the
hydrothermal synthesis and crystallization. The latter factor may often lead to the formation of a
mixture of simpler products containing only one main building block rather than more complex
products comprising both carboxylate ligands. The competition between two main carboxylate
building blocks for metal nodes can be even more pronounced when the reaction mixture also
contains an additional auxiliary ligand along with water as a solvent and frequent terminal ligand
source. The effect of two different types of biphenyl carboxylate moieties on the structure of the
resulting metal-organic network remains poorly studied. Notable examples of CPs combining
two kinds of biphenyl carboxylate blocks include a 2D network [Cd2(µ5-cpic)2(µ-bpdc)0.5(phen)2]n

(45) and a 3D MOF [Co2(µ7-btc)2(µ-bpydc)0.5(py)3]n (47) that feature distinct structures and
topologies in comparison with their counterparts {[Cd2(µ4-cpic)(µ3-OH)(phen)2]·2H2O}n (44) and
{[Co3(µ4-btc)2(µ-H2O)2(py)4(H2O)2]·(py)2}n (46), respectively (Table 7, Figure 9).

Table 7. Selected examples of CPs showing an effect of two main carboxylate ligands on
product structure.

Compound Formula Main Ligand Structure Reference

44 {[Cd2(µ4-cpic)(µ3-OH)(phen)2]·2H2O}n H3cpic 2D layer [57]
45 [Cd2(µ5-cpic)2(µ-bpdc)0.5(phen)2]n H3cpic, H2bpdc 2D layer [57]
46 {[Co3(µ4-btc)2(µ-H2O)2(py)4(H2O)2]·(py)2}n H3btc 3D MOF [50]
47 [Co2(µ7-btc)2(µ-bpydc)0.5(py)3]n H3btc, H2bpydc 3D MOF [58]
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3. Selected Functional Properties and Applications

3.1. Highly Porous MOFs

Some coordination polymers based on multifunctional carboxylic acids with phenyl-pyridine or
biphenyl cores possess the highly porous structures and excellent stability (Table 8). These properties
make these materials rather promising for exploring CO2 capture and gas storage applications.
As illustrated in Table 8 and Figure 10, Zhao an co-workers synthesized a UiO type MOF derived
from the H2bpydc block, [Zr6(µ3-O)4(OH)4(µ-bpydc)12] (50). This MOF exhibits high storage capacity
for H2, CH4, and CO2, showing an unusual stepwise adsorption for liquid CO2 and solvents with a
sequential filling mechanism on different adsorption sites. Other related MOFs with high porosity and
interesting N2, H2, CO2 and/or CH4 uptake behavior include [Cu2(µ3-pyip)2(H2O)2]0.5[Cu(pyip)] (48),
{[Cu(µ3-pyip)(H2O)2]·1.5DMF}n (49), and [Zn3(µ5-bpydc)2(HCOO)2]·H2O·DMF (51) (Table 8).

Table 8. Selected examples of highly porous metal-organic frameworks (MOFs).

Compound Formula Porosity Applications in Gas
Uptake or Separation Reference

48 [Cu2(µ3-pyip)2(H2O)2]0.5[Cu(pyip)] 60.8% N2, H2, CO2 [59]
49 {[Cu(µ3-pyip)]·2H2O·1.5DMF}n 54.0% N2, H2, CO2 [60]
50 [Zr6(µ3-O)4(OH)4(µ-bpydc)12] 68.5% N2, H2, CO2, CH4 [61]
51 [Zn3(µ5-bpydc)2(HCOO)2]·H2O·DMF 64.3% N2, CO2, CH4 [62]
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3.2. Highly Luminescent Materials

MOFs based on the europium(III) and terbium(III) nodes are highly luminescent compounds.
As illustrated in Table 9 and Figure 11, an interesting example concerns a Tb MOF
[Tb(µ4-bpydc)(µ3-HCOO)]n (53) derived from the H2bpydc building block. It features a remarkable
temperature-dependent photoluminescence. At 298 K, under UV excitation, compound 53 glows
red-orange, whereas at 77 K it emits a green light. Another example concerns a Eu(III) derivative
[Eu2(µ4-pyip)3(H2O)4]n·2nDMF·3nH2O (52) that is capable of emitting different colors ranging from
yellow to red and orange.

Table 9. Selected examples of highly luminescent MOFs.

Compound Formula λem (nm) Color Reference

52 [Eu2(µ4-pyip)3(H2O)4]n·2nDMF·3nH2O 255–365 yellow to red and then to orange [63]
53 [Tb(µ4-bpydc)(µ3-HCOO)]n 614, 541 red-orange (298 K), green (77 K) [64]
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3.3. Compounds with Unusual Magnetic Properties

Some coordination polymers derived from multifunctional carboxylic acids with phenyl-pyridine or
biphenyl cores can exhibit unusual magnetic properties. Selected examples are highlighted in Table 10.
In particular, Du and co-workers assembled a 3D MOF, {[Dy2(µ4-pyip)3(H2O)4]·2DMF·3H2O}n (54), using
H2pyip as a building block. This compound possesses the pcu topology and exhibits a slow magnetization
relaxation behavior (Figure 12). Other notable examples of magnetic CPs include a nickel(II) derivative
[Ni3(µ5-pyip)2(µ-HCOO)2(H2O)2]n (55) with a long-range magnetic ordering as well as the dysprosium(III)
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[Dy(µ5-bptc)(phen)(H2O)]n (56) and {[Dy3Co2(µ4-bpydc)5(µ3-Hbpydc)(H2O)5](ClO4)2}n (57) frameworks
with a slow magnetization relaxation behavior.

Table 10. Selected examples of CPs with unusual magnetic properties.

Compound Formula Magnetic Behavior Highlight Reference

54 {[Dy2(µ4-pyip)3(H2O)4]·2DMF·3H2O}n weak ferromagnetic slow magnetization
relaxation behavior [63]

55 [Ni3(µ5-pyip)2(µ-HCOO)2(H2O)2]n weak ferromagnetic long-range
magnetic ordering [65]

56 [Dy(µ5-bptc)(phen)(H2O)]n antiferromagnetic slow magnetization
relaxation behavior [66]

57 {[Dy3Co2(µ4-bpydc)5(µ3-Hbpydc)
(H2O)5](ClO4)2·11H2O}n

antiferromagnetic slow magnetization
relaxation behavior [67]
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3.4. Selective Sensing Materials

It is known that some fluorescent MOF materials are sensitive to the presence or absence of guest
solvent molecules. As illustrated in Table 11 and Figure 13, Wen and co-workers reported a 3D MOF
based on the H2pyip ligand, [Zn(µ3-pyip)(bimb)·(H2O)]n (58). This MOF exhibits the first report of a
MOF material as a promising luminescent probe for detecting pesticides. This compound is also unique
by allowing a detection of both pesticides and solvent molecules simultaneously. Other examples of
sensing MOFs are shown in Table 11.
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Table 11. Selected examples of MOFs with selective sensing behavior.

Compound Formula Structure Analyte Reference

58 [Zn(µ3-pyip)(bimb)·(H2O)]n 3D MOF acetone, pesticides [68]
59 [Zr6(µ3-O)4(OH)4(µ4-bpydc)12]n 3D MOF Fe3+ ions [69]
60 [Eu2(µ4-bpydc)3(H2O)3]n·nDMF 3D MOF Cu2+ ions [69]

4. Conclusions and Outlook

In this mini-review, we featured selected recent examples of coordination polymers (CPs) or
metal-organic frameworks (MOFs) that were constructed from various multifunctional carboxylic
acids with phenyl-pyridine or biphenyl cores (Scheme 1). Despite being still little explored, these
types of semi-rigid, thermally stable, and versatile building blocks appear to be very promising
for the hydrothermal synthesis of metal-organic networks with different structural characteristics,
topologies, and functional properties. The present work also highlighted an importance of different
reaction parameters and conditions on the assembly and structural diversity of coordination polymers.
The effects of the type of main carboxylate ligand, kind of metal node, stoichiometry and molar
ratio of reagents, temperature, presence or absence of auxiliary ligands or templates were showcased.
In addition, some examples of highly porous MOFs, notable luminescent materials, compounds with
unusual magnetic properties, and frameworks for selective sensing applications were described.

We believe the application of multifunctional carboxylic acids containing phenyl-pyridine or
biphenyl cores toward the design of coordination polymers will be continued, leading to new series
of coordination compounds and derived materials with fascinating structural features and notable
functional properties. Future research might focus on: (A) widening the family of multicarboxylate
building blocks to new members with additional functional groups; (B) diversifying the types of metal
nodes; (C) assembling heterometallic metal-organic architectures; (D) optimizing the conditions of the
hydrothermal synthesis and crystallization; (E) predicting the structural and topological characteristics;
and (F) broadening the types of possible applications of the obtained coordination polymers.
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Abbreviations

0D zero-dimensional
1D one-dimensional
2D two-dimensional
3D three-dimensional
CP coordination polymer
MOF metal-organic framework
H2cpna 5-(2′-carboxylphenyl)-nicotinic acid
H2pyip 5-(4-pyridyl)-isophthalic acid
H2cppa 4-(3-carboxyphenyl)-picolinic acid
H2bpydc 2,2′-bipyridine-5,5′-dicarboxylic acid
H3bptc biphenyl-2,5,3′-tricarboxylic acid
H3btc biphenyl-2,4,4′-tricarboxylic acid
H3cpic 4-(5-carboxypyridin-2-yl)-isophthalic acid
H3cptc 2-(4-carboxypyridin-3-yl)-terephthalic acid
H3dcppa 5-(6-carboxypyridin-3-yl)-isophthalic acid
H3cpta 2-(5-carboxypyridin-2-yl)-terephthalic acid
py pyridine
phen 1,10-phenanthroline



Crystals 2018, 8, 83 13 of 16

2,2′-bpy 2,2′-bipyridine
4,4′-bpy 4,4′-bipyridine
H2biim 2,2′-biimidazole
H2bpdc 4,4′-biphenyldicarboxylic acid
bimb 4,4′-bis(1-imidazolyl)biphenyl
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