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Abstract: The high-pressure transport behavior of CaF2 nanoparticles with 3 mol% Tb concentrations
was studied by alternate-current impedance measurement. All of the electrical parameters vary
abnormally at approximately 10.76 GPa, corresponding to the fluorite-cotunnite structural transition.
The substitution of Ca2+ by Tb3+ leads to deformation in the lattice, and finally lowers the transition
pressure. The F− ions diffusion, electronic transport, and charge-discharge process become more
difficult with the rising pressure. In the electronic transport process, defects at grains play a
dominant role. The charge carriers include both F− ions and electrons, and electrons are dominant
in the transport process. The Tb doping improves the pressure effect on the transport behavior of
CaF2 nanocrystals.
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1. Introduction

Recently, rare earth (RE)-doped nanomaterials have attracted much attention [1–5], due to their
potential applications such as advanced phosphor [6], display monitors [7], light amplification [8],
and biological labeling [9,10], etc. Among these host materials, calcium fluoride (CaF2) is an attractive
host for RE doping because of its high transparency in a wide wavelength region and low phonon
energy [11–15].

As an important optical and optoelectronic functional material, a thorough study of the electrical
transport properties is essential, and the underlying physical transport behaviors, such as charge carrier
type and scattering processes, are worthy of exploration. The impedance spectrum measurement
method has long been conventional in studies of electrical charge transportation and related physical
properties [16–20]. Specially, using the impedance method, the presence of independent pathways
for charge transportation in an inorganic material [21], and the mixed electronic and ionic conduction
in various organic and inorganic materials have been satisfactorily addressed [22–26]. We have
investigated the electrical properties of CaF2 nanoparticles with Tb concentrations from 1 mol% to
5 mol% at atmospheric pressure, and it was found that the resistance of the sample with a concentration
of 3 mol% Tb is the smallest. Therefore, in this work, the electrical properties of CaF2 nanoparticles with
3 mol% Tb concentrations under high pressure were investigated by alternate-current (AC) impedance
measurement up to 26 GPa. The underlying physical transport behaviors were discussed. Additionally,
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the pressure effect on the structural and electrical properties of Tb-doped CaF2 nanocrystals was
compared with that of un-doped nanocrystals.

2. Materials and Methods

A diamond anvil cell (DAC) was used to generate high pressure. The detailed configuration of the
electrodes and sample has been illustrated in previous works [27–29]. The final microcircuit and the
profile of our designed DAC are shown in Figure 1. Pressure was calibrated by using ruby fluorescence.
The ruby measurement scale is 100 GPa [30] and the accuracy of our measurement is 0.1 GPa. To avoid
additional error on the electrical transport measurements, no pressure-transmitting medium was used.
This will cause non-hydrostatic conditions [31]; however, the effects on the transport measurements
can be neglected in our experiment pressure range [32].
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Figure 1. The completed microcircuit (left) on diamond anvil and the profile of our designed diamond
anvil cell (DAC) (right).

Impedance spectroscopy was measured by a Solartron 1260 impedance analyzer (Solartron,
Hampshire, UK) equipped with a Solartron 1296 dielectric interface. A voltage signal with an amplitude
of 1 V was applied to the sample and its frequency ranged from 0.1 to 107 Hz.

The sample was prepared by the hydrothermal synthesis method as reported in our previous
work [33]. The Tb doping concentrations were 3 mol%. The sample was characterized by transmission
electron microscopy (TEM) (JEOL Ltd., Tokyo, Japan) and X-ray diffraction (XRD λ = 1.5406 Å)
(Rigaku, Tokyo, Japan). Figure 2 exhibits the TEM image and the size distribution histogram. It can be
seen that the shape of the sample is square with a mean dimension of 8 ± 2 nm.
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CaF2 was retained after doping. No impurity peaks are observed in the pattern, indicating that the 
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Figure 2. The TEM image and the size distribution histogram of 3 mol% Tb-doped CaF2 nanoparticles.

3. Results and Discussion

Figure 3 shows the X-ray diffraction pattern of CaF2 nanoparticles with 3 mol% Tb concentrations.
The diffraction peaks of the sample match well with the pure cubic (space group: Fm3m (225)
α = β = γ = 90◦) phase of CaF2 (Joint Committee on Powder Diffraction Standards JCPDS Card No. 35-0816)
and the lattice constant is 5.432 Å, which suggests that the original structure of CaF2 was retained after
doping. No impurity peaks are observed in the pattern, indicating that the Tb3+ ions were incorporated
into the CaF2 lattice and substitute Ca2+ ions. The average size estimated from the full width at half
maximum (FWHM) using the Debye-Scherrer formula is 8.3 nm, which has good agreement with the
TEM result.
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The Nyquist impedance spectra of CaF2 nanoparticles with 3 mol% Tb concentrations under
several pressures are presented in Figure 4.
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Figure 4. The Nyquist impedance spectra under several pressures. The inset (a) shows the equivalent
circuit model, Rb and Rgb are grain and grain boundary resistance, Cb and Cgb are grain and grain
boundary capacitance, and Wi is the Warburg impedance. The inset (b) is the spectroscopy at 1.59 GPa,
R1 and R2 are two intercepts on the real impedance axis.

To analyze the ionic conduction, the impedance spectra were replotted into Z′~ω−1/2 plots,
as shown in Figure 5.
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Figure 5. The Z′~ω−1/2 curves at low frequencies under several pressures.

In the low frequency region, the Z′ can be expressed as:

Z′ = Z′0 + σω−1/2, (1)

where Z′0 is a parameter independent of frequency, σ is the Warburg coefficient, and ω is the
frequency. By linear fitting the Z′~ω−1/2 plots, the Warburg coefficient of various pressure was
obtained. The diffusion coefficient of the ions (Di) can be obtained from:

Di = 0.5(
RT

AF2σC
)2, (2)

where R is the ideal gas constant, T is the temperature, A is the electrode area, F is the Faraday constant,
and C is the F− ions molar concentration. We set the F− ion diffusion coefficient at 0 GPa as D0, and the
curve Di/D0 under different pressures was obtained and is shown in Figure 6a.

To quantify the pressure effect on the electrical transport properties, the impedance spectra
were fitted with the equivalent circuit model (the inset (a) of Figure 4) on the Zview2 impedance
analysis software. The obtained bulk and grain boundary resistances (Rb, Rgb) are plotted in Figure 6.
The relaxation frequency of bulk (fb) under different pressures was obtained from the Z”~f curve and
is presented in Figure 6d.
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From Figure 6, it can be seen that all of the parameters vary discontinuously at approximately
10.76 GPa, corresponding to the fluorite-cotunnite (Fm3m–Pnma) structural transition of the sample.
According to our previous works [29,33], this phase transition of un-doped CaF2 nanocrystals occurs
at about 14 GPa. The variation in the phase transition pressure with the substitution of Ca2+ by Tb3+

can be discussed as follows: the ionic radius of Tb3+ (0.092 nm) is smaller than that of Ca2+ (0.099 nm),
and the valence of Tb3+ is different with that of Ca2+; these result in deformation in the lattice and the
increasing of the deformation potential, and finally make the transition pressure lower.

In the whole pressure range, the diffusion coefficient decreases with pressure; however, the grain
and grain boundary resistance increase, indicating that the F− ions diffusion and electronic transport
become more difficult with the rising pressure. The grain resistance is larger than the grain boundary
resistance, which indicates that defects at grains play a dominant role in the electronic transport process.

The pressure dependence of grain activation energy (dH/dP) can be obtained from:

d(ln fb)/dP = −(1/kBT)(dH/dP), (3)

where kB is the Boltzmann constant and T is the temperature. By linear fitting to the curve lnf b~P,
the dH/dP of the Fm3m and Pnma phases were obtained and are listed in Table 1. The dH/dP of un-doped
CaF2 nanocrystals were obtained by the data of Reference [27] and are also shown in Table 1.

Table 1. Pressure dependence of the grain activation energy of Tb-doped and un-doped CaF2 nanocrystals.

Phase dH/dp (meV/GPa) (Tb-Doped) dH/dp (meV/GPa) (Un-Doped)

Fm3m 4.70 3.12
Pnma 2.97 1.44

The positive values of dH/dP in Fm3m and Pnma phases indicate that the charge-discharge process
becomes more difficult under compression. In the Fm3m and Pnma phases, the dH/dP values of the
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Tb-doped CaF2 nanocrystals are larger than those of un-doped CaF2 nanocrystals. This indicates that
pressure has a larger effect on the charge-discharge process of the Tb-doped sample.

To distinguish the contributions of F− ions and electrons to the transport process, the transference
number were calculated by the following equations [34]:

ti = (R2 − R1)/R2, (4)

te = R1/R2, (5)

where ti is the transference number of F− ions, te is the transference number of electrons, and R1 and
R2 are the intercepts on the real impedance axis as shown in the inset (b) of Figure 4. ti and te under
various pressures are shown in Figure 7. It can be seen that electrons play a dominant role in the
transport process and the electron transference number slightly increases as the pressure rises.
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To further revealing the effect of Tb doping on the high-pressure transport behavior, the resistance
variation of Tb-doped CaF2 nanocrystals is compared with that of un-doped CaF2 nanocrystals.
The bulk and grain boundary resistances at 0 GPa were set as Rb0 and Rgb0, then the Rb/Rb0 and
Rgb/Rgb0 of Tb-doped and un-doped CaF2 nanocrystals were obtained and are shown in Figure 8. It can
be observed that both in the bulk and grain boundary, the resistance variation of the Tb-doped sample
is larger than that of the un-doped sample. This indicates that the Tb doping improves the pressure
effect on the transport behavior of CaF2 nanocrystals.
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4. Conclusions

The electrical properties of CaF2 nanoparticles with 3 mol% Tb concentrations under high pressure
were investigated by impedance measurement. All of the electrical parameters vary abnormally at
approximately 10.76 GPa, corresponding to the Fm3m–Pnma structural transition. The substitution of
Ca2+ by Tb3+ leads to deformation in the lattice, and finally lowers the transition pressure. The F−

ions diffusion, electronic transport, and charge-discharge process become more difficult with the rising
pressure. In the electronic transport process, defects at grains play a dominant role. The charge carriers
include both F− ions and electrons, and electrons are dominant in the transport process. The Tb doping
improves the pressure effect on the transport behavior of CaF2 nanocrystals. Other lanthanides such
as Yb, Er, Ce, etc. would cause similar effects and should be explored in the future.
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