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Abstract: The coupling of cis-[PdCl2(CNXyl)2] (Xyl = 2,6-Me2C6H3) with 4-phenylthiazol-2-amine
in molar ratio 2:3 at RT in CH2Cl2 leads to binuclear (diaminocarbene)PdII complex 3c. The complex
was characterized by HRESI+-MS, 1H NMR spectroscopy, and its structure was elucidated by
single-crystal XRD. Inspection of the XRD data for 3c and for three relevant earlier obtained
thiazole/thiadiazole derived binuclear diaminocarbene complexes (3a EYOVIZ; 3b: EYOWAS; 3d:
EYOVOF) suggests that the structures of all these species exhibit intra-/intermolecular bifurcated
chalcogen bonding (BCB). The obtained data indicate the presence of intramolecular S•••Cl chalcogen
bonds in all of the structures, whereas varying of substituent in the 4th and 5th positions of the
thiazaheterocyclic fragment leads to changes of the intermolecular chalcogen bonding type, viz.
S•••π in 3a,b, S•••S in 3c, and S•••O in 3d. At the same time, the change of heterocyclic system (from
1,3-thiazole to 1,3,4-thiadiazole) does not affect the pattern of non-covalent interactions. Presence of
such intermolecular chalcogen bonding leads to the formation of one-dimensional (1D) polymeric
chains (for 3a,b), dimeric associates (for 3c), or the fixation of an acetone molecule in the hollow
between two diaminocarbene complexes (for 3d) in the solid state. The Hirshfeld surface analysis
for the studied X-ray structures estimated the contributions of intermolecular chalcogen bonds
in crystal packing of 3a–d: S•••π (3a: 2.4%; 3b: 2.4%), S•••S (3c: less 1%), S•••O (3d: less 1%).
The additionally performed DFT calculations, followed by the topological analysis of the electron
density distribution within the framework of Bader’s theory (AIM method), confirm the presence
of intra-/intermolecular BCB S•••Cl/S•••S in dimer of 3c taken as a model system (solid state
geometry). The AIM analysis demonstrates the presence of appropriate bond critical points for these
interactions and defines their strength from 0.9 to 2.8 kcal/mol indicating their attractive nature.

Keywords: Chalcogen bonding; non-covalent interactions; Hirshfeld surface analysis; AIM analysis;
diaminocarbene complexes

1. Introduction

The field of non-covalent interactions has grown explosively in the past decade.
The hydrogen [1,2], halogen [3–10], chalcogen [11–24], pnictogen [25–31], tetrel [32] bonding,
stacking [33–37], cation/anion-π [38–42], and metallophilic interactions [43–45] play key roles in
many chemical, physical, and biochemical processes, due to their ability to control structures and
properties of associates and supramolecular systems.

Nowadays, one of the vigorously investigating types of such interactions is chalcogen
bonding (CB). CB is usually defined as non-covalent interactions between localized positive regions on
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a chalcogen atom in the extension of the covalent bonds (σ-holes) and electron donor species serving
as CB acceptors [11–15,46–50]. Unlike halogens a chalcogen atom possess two σ-holes at the same time
and is prone to the formation of bifurcated chalcogen bonding (BCB) (Figure 1) [51–57].
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Figure 1. Patterns of halogen bonding (XB) and bifurcated chalcogen bonding (BCB).

In the continuation of our projects focused on metal-mediated reactions of isocyanides [15,58–68]
and on non-covalent interactions [15,58,69–77], we recently reported on the coupling between
cis-[PdCl2(CNXyl)2] (Xyl = 2,6-Me2C6H4) and various thiazol- and thiadiazol-2-amines that leads to a
mixture of two regioisomeric binuclear diaminocarbene complexes corresponding to kinetically (3a–d)
or thermodynamically (4a–d) controlled regioisomers (Scheme 1). There is an equilibrium between
these two species in CHCl3 solutions that depends on the energy difference between two types of
intramolecular CBs, viz. S•••Cl and S•••N [58].
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Scheme 1. Coupling of cis-[PdCl2(CNXyl)2] with thiazol- and thiadiazol-2-amines.

In this work, we would like to focus on the ability of the sulfur atom in species 3a–d to
participate not only in intramolecular CB, but also in intermolecular contacts as a donor of bifurcated
chalcogen bonding (BCB). We synthesized and characterized by single-crystal X-ray diffraction (XRD)
binuclear (diaminocarbene)PdII complex 3c, bearing 4-phenyl-thiazole moiety. Also we analyzed the
earlier obtained single-crystal XRD data for binuclear diaminocarbene species with unsubstituted
1,3-thiazole (3a: CCDC code—EYOVIZ), unsubstituted 1,3,4-thiadiazole (3b: CCDC code—EYOWAS),
and 5-phenyl-1,3,4-thiadiazole fragment (3d: CCDC code—EYOVOF). That allowed us to define the
relationship between the nature and the position of the substituents in the ligands and the type of
the non-covalent interaction. Additionally, we carried out the Hirshfeld surface analysis (for 3a–d)
and DFT calculations followed by the topological analysis of the electron density distribution within
the framework of Bader’s theory (AIM method; for 3c) to study the nature and energies of these
non-covalent interactions and determine their contributions in the crystal packing. These results are
accordingly discussed in the sections that follow.



Crystals 2018, 8, 112 3 of 15

2. Materials and Methods

2.1. Materials and Instrumentation

Solvents, PdCl2, 4-phenyl-1,3-thiazol-2-amine, and xylyl isocyanide were obtained from
commercial sources and used as received. Complex cis-[PdCl2(CNXyl)2] was synthesized by the
literature procedure [58]. Mass-spectra were obtained on a Bruker micrOTOF spectrometer (Billerica,
Massachusetts, MA, USA) equipped with electrospray ionization (ESI) source; a mixture of MeOH and
CH2Cl2 was used for samples dissolution. The instrument was operated at a positive ion mode using
m/z range of 50–3000. The capillary voltage of the ion source was set at −4500 V and the capillary
exit at 50–150 V. The nebulizer gas pressure was 0.4 bar and the drying gas flow 4.0 L/min. All NMR
spectra were acquired on a Bruker Avance 400 spectrometer (Billerica, Massachusetts, MA, USA) in
CDCl3 at ambient temperature.

2.2. Synthesis and Characterization

Complex 3c were synthesized by reported procedure [58]. A solution of 4-phenyl-1,3-thiazol-2-
amine (12 mg, 0.068 mmol) in CH2Cl2 (3 mL) was added to solid cis-[PdCl2(CNXyl)2] (20 mg,
0.045 mmol) placed in a 10-mL round-bottom flask. The reaction mixture was stirred in air at RT for 24 h.
The color of the reaction mixture gradually turned from pale yellow to intense lemon yellow and solid
cis-[PdCl2(CNXyl)2] was dissolved. The formed solution was filtered from some insoluble material
and evaporated to dryness. Then, the solid residue was redissolved in an acetone (1.5 mL)/CH2Cl2
(2 mL) mixture and left to evaporate at 20–25 ◦C to ca. 1 mL till the crystalline product formation.

3c. Yield: 49% (11 mg). HRESI+-MS: calcd for C45H42ClN6SPd2
+ 947.0949, found m/z 947.0973

[M-Cl]+. 1H NMR (δ, ppm, J/Hz): 2.08 (s, 6H, CH3, Xyl), 2.22 (s, 6H, CH3, Xyl), 2.26 (s, 6H, CH3, Xyl),
2.48 (s, 6H, CH3, Xyl), 6.19 (t, 1H, para-H, Xyl, J = 7.5), 6.56 (t, 1H, para-H, Xyl, J = 7.6), 6.67 (d, 2H,
meta-H, Xyl, J = 7.5), 6.71 (s, 1H, thiazole), 6.88 (d, 2H, meta-H, Xyl, J = 7.6), 6.98 (d, 2H, meta-H, Xyl,
J = 7.6), 7.01 (d, 2H, meta-H, Xyl, J = 7.3), 7.11–7.19 (m, 2H, para-H, Xyl), 7.35–7.39 (m, 3H, meta- and
para- H, Ph) 7.47–7.52 (m, 2H, orto-H, Ph).

2.3. X-ray Structure Determination

Single crystal of 3c was grown from an acetone/CH2Cl2 mixture. The crystal was measured
at Agilent Technologies SuperNova diffractometer at a temperature of 100 K using monochromated
CuKα radiation (Yarnton, Oxfordshire, UK). The structures have been solved by the direct methods
and refined by means of the SHELX program [78] incorporated in the OLEX2 program package [79].
The crystallographic data and some parameters of refinement are placed in Table 1. The carbon-bound
H atoms were placed in calculated positions and were included in the refinement in the ‘riding’
model approximation, with Uiso(H) set to 1.5 Ueq(C) and C–H 0.96 Å for CH3 groups and with
Uiso(H) set to 1.2 Ueq(C), C–H 0.93 Å for CH groups. Empirical absorption correction was applied
in CrysAlisPro program complex using spherical harmonics, implemented in SCALE3 ABSPACK
scaling algorithm [80]. The unit cell of 3c also contains disordered dichloromethane molecules,
which have been treated as a diffuse contribution to the overall scattering without specific atom
positions by SQUEEZE/PLATON [81]. Supplementary crystallographic data for this paper have been
deposited at Cambridge Crystallographic Data Centre (1815713) and can be obtained free of charge via
www.ccdc.cam.ac.uk/data_request/cif.

www.ccdc.cam.ac.uk/data_request/cif
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Table 1. Crystal data and structure refinement for 3c.

Empirical Formula C45H42N6SCl2Pd2

Formula weight 982.61
Temperature/K 100(2)
Crystal system triclinic

Space group P-1
a/Å 8.2666(4)
b/Å 14.3733(8)
c/Å 19.2538(9)
α/◦ 99.238(4)
β/◦ 97.705(4)
γ/◦ 97.182(4)

Volume/Å3 2212.40(19)
Z 2

ρcalcg/cm3 1.473
µ/mm−1 8.390

F(000) 992.0
Crystal size/mm3 0.22 × 0.16 × 0.09

Radiation CuKα (λ = 1.54184)
2Θ range for data collection/◦ 6.3–139.9

Index ranges −10 ≤ h ≤ 10, −17 ≤ k ≤ 17, −19 ≤ l ≤ 23
Reflections collected 24325

Independent reflections 8247 [Rint = 0.0764, Rsigma = 0.0679]
Data/restraints/parameters 8247/0/495

Goodness-of-fit on F2 1.019
Final R indexes [I >= 2σ (I)] R1 = 0.0523, wR2 = 0.1422

Final R indexes [all data] R1 = 0.0623, wR2 = 0.1592
Largest diff. peak/hole/e Å−3 2.25/−1.64

2.4. Details of Hirshfeld Surface Analysis

The Hirshfeld molecular surfaces were generated by CrystalExplorer 3.1 program [82,83].
The normalized contact distances, dnorm [84], based on Bondi’s van der Waals radii [85], were mapped
into the Hirshfeld surface. In the color scale, negative values of dnorm are visualized by the red color
indicating contacts shorter than the sum of van der Waals radii. The white color denotes intermolecular
distances that are close to van der Waals contacts with dnorm equal to zero. In turn, contacts longer
than the sum of van der Waals radii with positive dnorm values are colored with blue.

2.5. Computational Details.

The single point DFT calculations with relativistic core Hamiltonian [86,87] based on the
experimental X-ray data for 3c have been carried out at the M06/DZP-DKH level of theory in
Gaussian-09 [88] program package. The topological analysis of the electron density distribution with
the help of the “atoms in molecules” (AIM) method developed by R. Bader [89] has been performed by
using the Multiwfn program [90]. The Wiberg bond indices were computed by using the Natural Bond
Orbital (NBO) partitioning scheme [91].

3. Results and Discussion

3.1. Synthesis and Crystallization

In accordance with our recently reported procedure [58], binuclear (diaminocarbene)PdII

complex 3c was synthesized by coupling of cis-[PdCl2(CNXyl)2] (Xyl = Me2C6H3) with
4-phenyl-1,3-thiazol-2-amine in molar ratio 2:3 at RT in CH2Cl2 (Scheme 1) followed by purification
of the formed species by fractional crystallization from an acetone/CH2Cl2 mixture. Crystals of 3c
for XRD were grown also from an acetone/CH2Cl2 mixture. The complex was characterized by
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HRESI+-MS, 1H NMR spectroscopy (Section 2.2), and its structure was elucidated by single-crystal
X-ray diffraction (Section 3.2.2).

3.2. Non-Covalent Interactions in the Crystal Structures of 3a–d

3.2.1. Recognition of S•••Cl/S•••π BCBs in 3a,b

In both the structures of 3a (EYOVIZ) and 3b (EYOWAS) with unsubstituted thiazole/thiadiazole
moieties, intra-/intermolecular BCB S•••Cl/S•••πXyl are present (Figure 2). Remarkably the change of
heterocyclic system (from thiazole in 3a to thiadiazole to 3b) does not affect the pattern of non-covalent
interactions and structures of 3a and 3b are isomorphic. The corresponding distances S•••Cl and the
distances between the sulfur and both the center of π-system of Xyl ring (Xylcenter) and the closest
C atom in this π-system are less than the sum of Rowland’s [92] and Bondi’s [85] vdW radii of these
atoms, whereas the corresponding angles C–S•••Cl and C–S•••Xylcenter are close to 180◦ (Table 2)
and these contacts could be defined as CBs [93,94].
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Intermolecular S•••π CBs in crystal structures of 3a and 3b lead to the formation of
one-dimensional (1D) chains (Figure 3). These interactions in both structures are also supported
by the intermolecular C–H•••N hydrogen bonds (HBs) and their parameters (Table 2) are consistent
with the IUPAC criterion [95].
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Table 2. Distances (Å) and angles (◦) for chalcogen bonding (CBs) and hydrogen bonds (HBs) in the
structures of 3a and 3b.

Contact Parameter 3a 3b Rowland wdV [92] Bondi wdV [85]

Intramolecular CB
d(S•••Cl) 3.097(2) 3.0927(9) 3.57 3.55

∠(Y–S•••Cl) 172.0(3) 172.79(12)

Intermolecular CB

d(S•••C) 3.445(7) 3.425(3) 3.58 3.50
d(S•••Xylcentr) 3.351(3) 3.2906(13)
∠(Y–S•••Xyl) 172.0(3) 172.79(12)
∠(S•••Xylplane) 88.6(3) 91.45(11)

Intermolecular HB
d(H•••N) 2.51(5) 2.50(5) 2.74 2.75
d(C•••N) 3.361(9) 3.349(4) 3.41 3.25

∠(C–H•••N) 151(1) 151(1)

3.2.2. Recognition of S•••Cl/S•••S BCB in 3c

The sulfur atom in 3c possesses one intramolecular CB with the PdII-bound chloride (as in the
previous cases) and one intermolecular CB with the symmetrically located S atom in the neighboring
molecule (Type I [96]; Figure 4). In contrast to 3a,b steric hindrance of the bulky phenyl substituent
in the 4th position of the thiazole ring prevents formation of S•••πXyl CB and leads to the formation
of different intermolecular CB. The intermolecular S•••S CB connects two symmetrically located
molecules of 3c providing the dimeric structure in the solid state. The distances between the S and the
Cl (3.1419(18) Å) and between two S atoms (3.459(2) Å) are less than the sum of their Rowland’s [92]
or even Bondi’s [85] vdW radii (S•••S 3.62 and 3.60 Å). The corresponding angle C1–S•••Cl is
177.65(17) being appropriate for the classic CB (Type II) [93,94], whereas C2–S•••S’ angle is 153.99(16)
in the case of both symmetrically located molecules of 3c revealing that it is Type I interaction [96].
The S•••Cl/S•••S BCB in 3c were theoretically studied by AIM analysis (see Section 3.3.2), and
estimated energies of these non-covalent contacts are 2.7–2.8 (S•••Cl) and 0.9–1.3 (S•••S) kcal/mol.
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Figure 4. View of dimer of 3c. Thermal ellipsoids are drawn at the 50% probability level. Dotted lines
indicate the S•••Cl and S•••S contacts.

3.2.3. Recognition of S•••Cl/S•••O BCB in 3d

Introduction of the Ph-group in the 5th position of the thiadiazole fragment in case of 3d (EYOVOF)
does not affect intramolecular S•••Cl CB (Table 1), but prevents the convergence of two molecules of
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3d with formation of intermolecular CBs between them (unlike above discussed structures). It leads
to formation of hollows in the crystal structure between symmetrically located moieties of 3d in
which solvated species can be placed and fixed by non-covalent interactions. In EYOVOF structure,
two molecules of 3d co-crystallized with one molecule of acetone placed in the hollow between the
complexes. This acetone molecule is disordered and exists in two positions with 0.5 occupancy each
(Figure 5). The solvated acetone in each position is bonded by simultaneous CB and HB with the closest
moiety of the complex forming six-membered cycle. The distance between the O and H (2.46(5) Å) is
less than the sum of their Rowland’s [92] (2.68 Å) whereas the distance between the O and C (3.373(6) Å)
atoms is just on border of the sum of Rowland’s [92] vdW radii (O•••C 3.35 Å), but shorter than the
sum of Allinger’s vdW radii (O•••C 3.64 Å [97]), and the corresponding angle C–H•••O is close to
180◦, indicating that this contact could be interpreted as HB. The S•••O distance (3.334(5) Å) is less
than the sum of their Rowland’s [92] (3.39 Å) and on the border of Bondi’s [85] vdW radii (3.32 Å) and
the angle C–S•••O is in range 150◦–180◦ so this contact could be defined as CB [93,94].
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Additionally, there is the contact between the C atom of the C=O group in acetone and the
Pd-bound chloride (Figure 6). The distances between the C and Cl atoms (3.307(7) Å) are substantially
less than the sums of Rowland’s [92], or even Bondi’s [85], vdW radii (3.53 and 3.45 Å). In this case the
acyl C atom should acts as an electron density acceptor due to the π-hole on it [32,98–100], whereas
the lone pair of the chloride ligand is an electron density donor.Crystals 2018, 8, x FOR PEER REVIEW  8 of 15 
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3.3. Theoretical Consideration of Intra-/Intermolecular Bifurcated Chalcogen Bonding in Thiazole/Thiadiazole
Derived Binuclear (Diaminocarbene)Pdii Complexes

3.3.1. Hirshfeld Surface Analysis for the X-ray Structures of 3a–d

The molecular Hirshfeld surface represents an area where molecules come into contacts, and its
analysis gives the possibility of an additional insight into the nature of intermolecular interactions
in the crystal state. We carried out the Hirshfeld surface analysis for the X-ray structures of
3a–d to understand what kind of intermolecular contacts gives the largest contributions in crystal
packing (Table 3).

Table 3. Results of the Hirshfeld surface analysis for the X-ray structures of 3a–d.

X-ray structure Contributions of Different Intermolecular Contacts to the Molecular Hirshfeld Surface *

3a H–H 52.8%, Cl–H 15.3%, C–H 13.8%, N–H 5.7%, Pd–H 3.6%, S–H 3.4%, C–C 2.5%, S–C 2.4%
3b H–H 49.3%, Cl–H 16.0%, C–H 11.9%, N–H 9.2%, Pd–H 3.7%, S–H 3.3%, C–C 2.6%, S–C 2.5%, N–C 1.1%
3c H–H 53.1%, C–H 20.4%, Cl–H 11.3%, N–H 2.9%, S–H 2.2%, Pd–H 2.1%, C–C 1.2%
3d H–H 45.9%, C–H 23.9%, Cl–H 11.9%, N–H 6.2%, Pd–H 3.2%, S–H 2.9%, O–H 2.6%, C–C 1.9%, Cl–C 1.0%,

* The contributions of all other intermolecular contacts do not exceed 1%.

For the visualization, we have used a mapping of the normalized contact distance (dnorm);
its negative value enables identification of molecular regions of substantial importance for detection of
short contacts. The Figure 7 depicts the Hirshfeld surfaces for 3b–d. In these Hirshfeld surfaces, the
regions of shortest intermolecular contacts visualized by red circle areas.
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The Hirshfeld surface analysis for the X-ray structures of 3a–d reveals that in all cases crystal
packing is determined primarily by intermolecular contacts H–H, Cl–H, and C–H and contributions of
studied intermolecular CBs are low but still take a place: S•••π (3a 2.4%; 3b: 2.5%), S•••S (3c: less
1%), S•••O (3d: less 1%). However, this analysis does not answer the question about the nature
(attractive or repulsive) and energies of these contacts, and, therefore, the DFT calculations should be
further performed.

3.3.2. The QTAIM and NBO Analyses of Intra-/Intermolecular Bifurcated Chalcogen Bonding
S•••Cl/S•••S in Model Dimeric Associate 3c

In order to confirm or disprove the hypothesis on the existence of intra-/intermolecular bifurcated
chalcogen bonding (BCB) in the studied species we carried out DFT calculations and performed
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topological analysis of the electron density distribution within the framework of Bader’s theory (AIM
method) [89] for model dimeric associate 3c featuring intra-/intermolecular BCB S•••Cl/S•••S
to quantify energies of appropriate contacts from theoretical viewpoint. This model dimeric
associate was obtained from the corresponding X-ray structure. Results are summarized in Table 4,
the contour line diagram of the Laplacian distribution ∇2ρ(r), bond paths, and selected zero-flux
surfaces for intra-/intermolecular bifurcated chalcogen bonding S•••Cl/S•••S are shown in Figure 8.
To visualize studied non-covalent interactions, reduced density gradient (RDG) analysis [101] was
carried out, and RDG isosurface for intra-/intermolecular BCB S•••Cl/S•••S was plotted (Figure 8).
The Poincare-Hopf relationship was satisfied, and all of the critical points have been found.

Table 4. Values of the density of all electrons—ρ(r), Laplacian of electron density—∇2ρ(r), energy
density—Hb, potential energy density—V(r), and Lagrangian kinetic energy—G(r) (Hartree) at the bond
critical points, corresponding to intra-/intermolecular bifurcated chalcogen bonding S•••Cl/S•••S in
model dimeric associate 3c, Wiberg bond indices (WI), as well as energies for appropriate contacts Eint

(kcal/mol), defined by two approaches.

Contact ρ(r) ∇2ρ(r) Hb V(r) G(r) Eint
a Eint

b WI

S•••Cl 0.015 0.049 0.002 −0.009 0.010 2.8 2.7 0.02
S•••S 0.007 0.024 0.001 −0.003 0.005 0.9 1.3 0.01

a Eint = –V(r)/2. b Eint = 0.429G(r).
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The AIM analysis demonstrates the presence of appropriate bond critical points (BCPs) for the
intra-/intermolecular bifurcated chalcogen bonding S•••Cl/S•••S in model dimeric associate 3c
(Table 4). The low magnitude of the electron density (0.007–0.015 Hartree), positive values of the
Laplacian (0.024–0.049 Hartree), and close to zero positive energy density (0.001–0.002 Hartree) in
these BCPs are typical for non-covalent interactions. We have defined energies for these contacts
according to the procedures proposed by Espinosa et al. [102] and Vener et al. [103] (Table 4).
The strength of intramolecular S•••Cl CB is in the range of 2.8–2.9 kcal/mol, which is comparable
with contacts in previously studied thiazole/thiadiazole derived binuclear (diaminocarbene)PdII

complexes 3a,b (3.1–3.2 kcal/mol) [58]. In the same time, the intermolecular S•••S CB is much weaker
(0.9–1.3 kcal/mol) than intramolecular contact in 3c, but its energy is comparable with I type CB
contacts in the X2C=S•••S=CX2 (X = H, Cl, F) systems (0.7–1.1 kcal/mol) [96]. The balance between
the Lagrangian kinetic energy G(r) and potential energy density V(r) at the BCPs reveals the nature of
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these interactions, if the ratio −G(r)/V(r) > 1 is satisfied, than the nature of appropriate interaction is
purely non-covalent, in case the −G(r)/V(r) < 1 some covalent component takes place [104]. Based on
this criterion one can state that a covalent contribution in both discussed above contacts is absent, and
negligible values of Wiberg bond indices additionally confirm this observation.

4. Conclusions

In summary, we have synthesized and characterized by single-crystal XRD binuclear
(diaminocarbene)PdII complex 3c bearing 4-phenyl-1,3-thiazole moiety, and, additionally, analyzed the
CCDC data for three relevant earlier obtained binuclear diaminocarbene species with unsubstituted
and 5-phenyl-substituted thiazole/thiadiazole moieties (3a: EYOVIZ; 3b: EYOWAS; 3d: EYOVOF).
Inspection of the single-crystal XRD data for 3a–d reveals that the structure of all these species
exhibits the intra-/intermolecular bifurcated chalcogen bonding (BCB) (Section 3.2). The XRD data
for 3a,b (EYOVIZ, EYOWAS) indicate the presence of the intramolecular S•••Cl CB in both cases,
and, additionally, of the intermolecular contacts of σ-hole on the S atom with the Xyl ring π-system of
the neighboring molecule (Section 3.2.1). In the same time, introduction of the phenyl substituent in
the 4th and 5th positions of the cyclic fragment does not affect intramolecular S•••Cl CB, but leads
to dramatic changes of intermolecular CB’s type. Substitution of the thiazole fragment in the 4th

position (3c) leads to change of the intermolecular CB’s type from the S•••π CB to the symmetrical
S•••S contact (Type I CB) (Section 3.2.2). In case 3d (EYOVOF), the Ph-group in the 5th position of
the thiadiazole fragment prevents the formation of any intramolecular CBs with the neighboring
molecule of complex due to steric hindrance of the bulky phenyl substituent but leads to the S•••O
CB with co-crystallized molecule of acetone (Section 3.2.3). The presence of the intermolecular CB
leads to formation of 1D polymeric chains (for 3a,b), dimeric associates (for 3c), or fixation of the
acetone molecules in the hollows between two diaminocarbene complexes (for 3d) in the solid state.
The preformed Hirshfeld surface analysis for the studied X-ray structures estimated the contributions
of intermolecular CBs in crystal packing of 3a–d: S•••π (3a 2.4%; 3b: 2.4%), S•••S (3c: less 1%), S•••O
(3d: less 1%) (Section 3.3.1).

The additionally performed DFT calculations, followed by the topological analysis of the electron
density distribution within the framework of Bader’s theory (AIM method), confirm the presence of
intra-/intermolecular BCB S•••Cl/S•••S in dimer of 3c taken as a model system (solid state geometry).
The AIM analysis demonstrates the presence of appropriate bond critical points for these interactions
and defines their strength from 0.9 to 2.8 kcal/mol, indicating their attractive nature (Section 3.3.2.).

Thus, the obtained data indicates that the sulfur atoms in these binuclear diaminocarbene species
are able to act as donors of the intra/intermolecular bifurcated chalcogen bonding (BCB) and its type
depends on the nature and the position of the substituents in the heterocyclic fragment. These results
are useful for understanding the relationship between the molecular structure and the crystal packing
of systems with CBs donors and offer new opportunities in the crystal design of functional materials.
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