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Abstract: High-quality Ta-doped La2Ti2O7 (Ta-LTO) single crystal of about 40 mm in length and 5 mm
in diameter was successfully prepared by the optical floating zone method. An X-ray rocking curve
reveals that the crystal of LTO has excellent crystalline quality. As-grown crystals were transparent
after annealing in air and the transmittance is up to 76% in the visible and near-infrared region.
X-ray diffraction showed that this compound possessed a monoclinic structure with P21 space group.
The dielectric properties were investigated as functions of temperature (0~300 ◦C) and frequency
(102 Hz~105 Hz). Dielectric spectra indicated an increase in the room-temperature dielectric constant
accompanied by a drop in the loss tangent as a result of the Ta doping. One relaxation was observed in
the spectra of electric modulus, which was ascribed to be related to the oxygen vacancy. The dielectric
relaxation with activation energy of 1.16 eV is found to be the polaron hopping caused by the
oxygen vacancies.
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1. Introduction

With the recent progress and development in chemical and material processing, automotive,
aerospace, and power-generating industries, there has been an ever-increasing need for actuators
and sensors that can be operated at high temperatures [1–3]. For example, nuclear reactors
need to be monitored during operation, and the temperature can be reached above 1000 ◦C [1,2].
Similarly, aerospace engines have working temperature at above 900 ◦C [1,2]. They both require
a high-temperature sensor to monitor the operation situation. In the past several decades, most
studies on high-temperature piezoelectric or ferroelectric have focused on a range of single crystals
based on gallium phosphate (GaPO3), lithium niobate (LiNbO3, LN), langasites with general formula,
Ca3TaAl3Si2O14, and oxyborate [ReCa4O(BO3)] (Re is rare earth element) [1,2,4–7]. Low Curie point,
high cost and poor mechanical properties have limited their practical applications at very high
temperature. So it is of great significance to develop piezoelectric materials with high Tc to meet urgent
requirements for high-temperature applications.

Ferroelectric materials with a perovskite-like layered structure (PLS) have caught attention due
to the highest Curie temperature [8,9]. Generally, the PLS structure with a formula of AnBnO3n+2 is
characterized by coner-shared BO6 octahedron and 12-coordinated A cations within the perovskite-like
layered separated by oxygen-rich gaps [10,11]. Among all these PLS ferroelectrics, La2Ti2O7 (LTO)
is a promising candidate for actuators and sensors at extremely high temperature (Tc = 1500 ◦C).
Masakazu et.al had reported the LTO single crystal for the first time in 1972 [12]. The piezoelectric
coefficient (d22) and relative permittivity (ε) of LTO single crystal had been reported to be 16 pC/N
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and 42–62, respectively [9]. The ferroelectric and piezoelectric properties of LTO had been studied
in the form of polycrystalline ceramics and thin films [13–20]. In addition, Ni-doped LTO has been
found to have good photocatalytic activity in the water-splitting reaction [21] and in the oxidative
decomposition of CH3Cl [22]. Cai et al. [23] found that Graphitic-C3N4 hybridized N-doped LTO
two-dimensional layered composites as an efficient visible-light-driven photocatalyst. Also, a series
of ceramics with a general formula La2Ti2−xTaxO7 (x = 0.05, 0.1, 0.2 and 0.3) were prepared by Spark
Plasma Sintering [24].

However, LTO and Ta-doped LTO single crystals have barely been reported. On the one hand,
their melting points are very high and volatile; on the other hand, they are easily cleaved due to
the special layered structure. Generally speaking, it was difficult to prepare a single crystal, since
the piezoelectric properties are closely related to the dielectric properties, and in lead zirconate
titanate (PZT), pentavalent donor additions (tantalum) were reported to produce significant effects
on the mechanical and electrical properties characterized by enhanced dielectric constant and DC
resistivity [25]. Therefore this motivated us to study effects of tantalum substitution on the structure
and dielectric properties of La2Ti2O7. A thorough understanding of the dielectric properties is of
vital importance.

In the present work, we successfully prepared the LTO and Ta-doped LTO single crystals using
optical floating zone method (OFZ). The scanning electron microscope (SEM) with energy-dispersive
X-ray (EDX) experiment used a field emission scanning electron microscope Hitachi SU8220
manufactured by Hitachi, Japan. The XRD patterns were recorded in the range 10◦–70◦, with a step of
0.02◦ and with a speed of 2◦/min, using a Rigaku Ultima IV X-ray diffractometer equipped with Cu
anticathode (λkα1 = 1.54059 nm), nickel foil filter used to attenuate Cu kβ radiation and Soller slits to
limit the divergence of X-ray beam. The transmittance (Varian Cary-5000, Agilent, Varian, Palo Alto,
CA, USA) of LTO and Ta-LTO single crystals in visible and near-infrared region were measured.
Besides, detailed investigations on the frequency (102 Hz–105 Hz) dielectric properties of Ta-doped
LTO single crystal over a wide temperature range from 0–300 ◦C were performed. The dielectric
properties were measured on a precise impedance analyzer dielectric measuring system (Broadband
Dielectric/Impedance Spectrometer, Novocontrol Technologies Gmbh and Co. KG, Germany).

2. Experimental Details

High-purity powders of La2O3 (purity 99.99%, Sinopharm Chemical Regent, Shanghai, China),
TiO2 (Purity 99.99%, imported from Japan) and Ta2O5 (Purity 99.99%, Aladdin, Shanghai, China) were
mixed in a stoichiometry of La2Ti2O7 and La2Ti1.98Ta0.02O7 chemical formula. They were milled in
the presence of absolute ethanol for 24 h. After being dried and screened, the mixture was calcined at
1300 ◦C for 8 h in air with an intermediate grinding to improve its homogeneity. Then, the well-mixed
powders were ground and formed into round rods using a cold isostatic pressure of 200 MPa. The rods
were then sintered at 1200 ◦C–1500 ◦C for 5–8 h in air. The typical dimensions of the sintered rod
were 7–9 mm in diameter and 60–80 mm in length. The polycrystalline rods were used as feed and
seed rods.

The crystal growth experiments were carried out by the OFZ technique with four ellipsoidal
mirrors (FZ-T4000H), using four 4.0 KW halogen lamps as heat sources and the LabVIEW control
system. The feed rod was suspended at the upper shaft and the seed was attached to the lower shaft.
Both the feed rod and seed rod moved downwards and the melting zone was formed. The feed and
seed shafts rotated at 15 rpm in the opposite direction and the crystal was grown from the bottom to
top in a vertical direction, and the growth rate was 4–6 mm/h.

In this work, we have grown single crystals in an argon atmosphere and crack-free single crystals
were obtained. The as-grown single crystals were annealed in air at 1200 ◦C for 1 h to eliminate
thermal stress and reduce oxygen vacancy, then were naturally cooled down to room temperature.
We have randomly selected two pieces of crystal from the big Ta-LTO crystals. One of them was
characterized by energy-dispersive X-ray (EDX). The other was ground into powder to measure the
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X-ray diffraction. In order to check the crystal perfection, a (100) wafer of LTO crystal was carefully
polished for measuring the rocking curve by high resolution X-ray diffraction (HR-XRD). The crystals
ware cut into several slices perpendicular to the direction of growth and then polished. The prior
growth direction was (622) determined by X-ray orientation.

3. Result and Discussion

The melting point of tantalum oxide is higher than lanthanum oxide, so it is more difficult to
grow Ta-doped LTO solution crystals at higher temperature. Considering the melting point (1790 ◦C)
and furnace power (1.94 KW) of LTO crystals, we adopted furnace power of 2.16 KW to grow Ta-LTO
crystals in an argon atmosphere. By optimizing growth parameters, we have successfully grown
the LTO and Ta-LTO single crystals, and a typical as-grown Ta-LTO single crystal boule is shown
in Figure 1a. The Ta-LTO single crystal without annealing is black and non-transparent because of
oxygen vacancy. The Figure 1b is the Ta-LTO single crystal after annealing for 1 h at 1200 ◦C in air.
Annealing not only eliminated the thermal stress, but also reduced the oxygen vacancy and made
the single crystal transparent. Oh et al. had suggest that the post-annealing effect, which involves a
reduction in carrier concentration, originates with the loss of oxygen vacancies in the contact region by
absorbing the oxygen present in the annealing atmosphere [26]. One sample was cut directly from the
Ta-LTO single crystal boule perpendicular to the growth direction, then polished as shown in Figure 1c.
Some cracks can be seen in Figure 1b. After the X-ray diffraction orientation, it is found that these
cracks are due to incomplete cleavage along (400) direction consistent with pure LTO as Figure 1d [9].
Figure 2 shows the X-ray rocking curve of the LTO crystal. The profile of the (400) Bragg-reflections
has a symmetrical peak with a full width at half maximum (FWHM) of 19.4 arcsec. The nearly perfect
shape without any shoulder clarified the absence of any sub-grain, indicating the excellent quality of
the LTO crystals.

The schematic diagram of the growth direction specimen of Ta-LTO single crystal wafer and the
XRD of the Ta-LTO crystal wafer after annealing are shown in Figure 3, respectively. The Ta-LTO single
crystals were grown by spontaneous nucleation. The prior growth direction was (622) determined by
X-ray orientation. The energy-dispersive X-ray (EDX) images of Ta-LTO single crystal were shown in
Figure 4. The results showed the composition homogeneity.
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The XRD patterns of the LTO and Ta-LTO powder samples at room temperature were shown in 
Figure 5. It can be noted that the main phase of Ta doped LTO was the same as LTO. All the peaks 
were successfully indexed based on a monoclinic crystal structure with P21 space group. As is shown 
in the inset, we can see that the position of the corresponding peak move to a large diffraction angle 
compared with LTO. The lattice parameters calculated with Jade 6.0 software are a = 12.94924(3) Å,  
b = 5.56649(4) Å, and c = 7.81266(3) Å. Compared to LTO [9], it is observed that both b and c increased 
slightly with Ta doping, whereas a exhibited an obvious decrease. Generally, Ta ions replace Ti ions 
and the Ta ion (0.65 Å) radius are larger than Ti (0.604Å) [27], which induce an expansion of the 
crystal structure. Similar phenomena can be seen in indium-doped barium hexaferrites [28]. 
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Figure 4. EDX images of Ta-LTO single crystal. (a): Ta-LTO (b): La (c):Ti (d):Ta.

The XRD patterns of the LTO and Ta-LTO powder samples at room temperature were shown in
Figure 5. It can be noted that the main phase of Ta doped LTO was the same as LTO. All the peaks
were successfully indexed based on a monoclinic crystal structure with P21 space group. As is shown
in the inset, we can see that the position of the corresponding peak move to a large diffraction angle
compared with LTO. The lattice parameters calculated with Jade 6.0 software are a = 12.94924(3) Å,
b = 5.56649(4) Å, and c = 7.81266(3) Å. Compared to LTO [9], it is observed that both b and c increased
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slightly with Ta doping, whereas a exhibited an obvious decrease. Generally, Ta ions replace Ti ions
and the Ta ion (0.65 Å) radius are larger than Ti (0.604Å) [27], which induce an expansion of the crystal
structure. Similar phenomena can be seen in indium-doped barium hexaferrites [28].
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Figure 5. XRD patterns of the Ta-LTO and La2Ti2O7 crystalline powder. The inset shows the magnified
patterns of main peak.

Figure 6 shows the transmission spectrum of Ta-LTO and LTO crystals. It is transparent in the
wavelength range of 350–900 nm and both of the transmittance are about 70%. Compared to the
transmittance spectrum of Ta-LTO and LTO single crystals, we can see that the absorption edge shifted
to infrared direction due to doping Ta2O5 into LTO single crystals.
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Figure 6. Transmission spectrum of Ta-LTO and LTO single crystals (0.02 mm).

The temperature dependences of the dielectric constant and dielectric loss tangent at various
frequencies of LTO and Ta-LTO single crystals are shown in Figure 7a,b, respectively. From Figure 7a,
we can see that dielectric constant for LTO crystals are almost independent of frequency and
temperature in the low-temperature range from 0~100 ◦C. However, when the temperature is over
100 ◦C, the loss tangent in the form of index increased. This may be attributed to the larger conductivity
due to oxygen vacancies. Although the Ta-LTO crystal changed from black to transparent after
annealing at 1200 ◦C, it still has some oxygen vacancies. As the temperature increases, the movement
speed of the oxygen vacancy increases rapidly, leading to the increase in current. In Figure 7b, it
can be seen that the dielectric constant for Ta-LTO crystals are almost independent of frequency
and temperature in the low-temperature range from 0–150 ◦C. This behavior indicates that Ta-LTO
shows an intrinsic dielectric response resulting from the electronic and/or ionic polarization in the
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low-temperature range [29,30]. The dielectric constant plateau of Ta-LTO shows a value of ~68 as
Figure 7b, which is higher than the dielectric constant of LTO as shown in Figure 7a, so Ta doping
can improve the dielectric properties of LTO. As shown in the inset of Figure 7a,b, the dielectric loss
tangent of Ta-LTO crystal was lower than LTO crystal, which is more suitable for practical applications.
It is worth noting that the frequency-dependent dielectric permittivity of Ta-LTO remarkably increases
as the temperature increases above 200 ◦C, and tanδ (T) increases rapidly with increasing temperature,
causing pronounced background. The remarkable background in high temperature is usually caused
by conductivity [31]. In this case, we applied the electric modulus, which is a powerful function for
revealing background-obscured relaxation [30]. We, therefore, resort to the electric modulus.
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Figure 8a shows the imaginary part of the electric modulus M′′ as a function of frequency in the
temperature range from 398 k to 573 k. We can clearly see that M′′ registers a peak whose position
shifts to a higher temperature with increasing frequency. Meanwhile, the relaxation cannot be observed
in the spectra of dielectric constants, indicating that electric modulus is a “good” dielectric function in
revealing dielectric relaxation in the absence of a well-defined peak in tanδ (T) or dielectric constant. It is
well known that there are two sources contributing to the dielectric permittivity in the high-temperature
range: the dielectric relaxation and the conductivity. When the conductivity contribution surpasses
the relaxation contribution, especially in the high-temperature range, the relaxation is merged by the
background. Since the electric modulus is defined as M∗ = M′ + jM′′ = 1/ε∗, the higher values of the
background and the smaller values of M′′ can be obtained. Therefore, the electric modulus can greatly
lessen the background and become a “good” dielectric function in revealing the background-merged
relaxation. The relaxation parameter can be obtained in terms of Arrhenius law

f = f0 exp(Ea/kBTP) (1)

where f0 is the pre-exponential factor, Ea is the activation energy, kB is the Boltzman constant, TP is the
peak temperature. Figure 8c,d shows the Arrhenius plot of lnf as a function of 1000/Tp. The Arrhenius
relation are quite good straight lines, the straight line fitting to Equation (1) gives the activation energy
for relaxation Ea = 1.16 eV in the Ta-LTO and 1.07 eV in the LTO. Obviously LTO has a much wider
frequency span than Ta-LTO in Figure 7a,b. It results in a relatively slight enhancement in activation
energy values for Ta-doped LTO. As this may be Ta5+ ion to Ti4+ site and enhance the energy gap,
the original bound electron hole is a more difficult to excite carrier, causing increased activation.

Now we turn our attention to the origin of dielectric anomaly in the Ta-LTO crystal at a
temperature of around 250–300 ◦C in Figure 7b. As can be seen from inset of Figure 7b, the dielectric
anomaly appears in the temperature where tanδ nearly exponentially increases with temperature.
This fact indeed indicates that the conductivity becomes remarkable in this temperature range that
causes pronounced background. So from Figure 8a we can clearly see that a set of M′′ (T) peaks
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appear in the temperature range where the dielectric anomaly occurs. The peak shifts to higher
temperature with increasing frequency indicative of a thermally activated relaxation process. So the
dielectric anomaly behavior in the Ta-LTO crystal sample might be related to the oxygen vacancies.
An oxygen-related dielectric anomaly has been reported in different material systems [32–34].
Two oxygen-vacancy-related relaxation processes have been reported [35]: a dipolar relaxation related
to the hopping motions of oxygen vacancy and a Maxwell-Wagner relaxation as the defects were
blocked by the interface on sample contacts. Typically, the dielectric relaxation of Mn-doped YFeO3

ceramics at high temperature was originated from the polaron hopping based on the electron defect [36].
Meanwhile the dielectric relaxation of bismuth-doped La2Ti2O7 ceramics in the temperature range of
600–1000 ◦C originates from the Maxwell-Wagner effect [37]. It is well known that oxygen vacancies
can make contributions to polarization in the form of doubly charged state at high temperature ranges.
For example, the activation energy for the relaxation associated with doubly ionized oxygen vacancies
in NiTiO3 was found to be 1.17 eV [38]. The activation energy value for Ta-LTO crystal samples
is 1.16 eV, so the dielectric relaxation in the Ta-LTO crystal stems from the doubly charge oxygen
vacancies. If the dielectric relaxation was related to the electron migration of oxygen vacancies, the
polarization and conduction processes should show close values of activation energy [39]. The carrier
conduction process can be understood through AC conductivity measurements.
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Figure 9 shows the variation of AC conductivity with frequency at several temperatures.
The conductivity was observed to be nearly the frequency independent in the low frequency, and then
exponentially increases with frequency. As seen in Figure 9, the AC conductivity is nearly constant at
low frequencies and is approximately equal to DC conductivity (σdc). The plateau region extends to
higher frequencies with the decrease of temperature, the σdc can be read directly and is plotted as a
function of the reciprocal of temperature as shown in the insert of Figure 9. It follows the Arrhenius law:

σdc = σ0exp[− Econd/kBT] (2)
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where σ0 is the pre-exponential factor, and Econd is the activation energy for conduction. The activation
energy was deduced to be Econd = 0.96 eV. It was a little smaller than the activation energy for dielectric
relaxation (Ea = 1.16 eV), which suggests that the dielectric anomaly at temperature of about 275 ◦C is
truly related to the hopping motions of doubly charged oxygen vacancies.Crystals 2018, 8, x FOR PEER REVIEW  8 of 10 
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4. Conclusions 

In this work, a Ta-doped La2Ti2O7 single crystal of about 40 mm in length and 5 mm in diameter 
was successfully grown by the floating zone method in an argon atmosphere. The crystal has a 
monoclinic structure (P21) with good composition homogeneity. The dielectric properties of Ta-LTO 
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range of 0–300 °C. An obvious dielectric relaxation with the activation energy of 1.16 eV was observed 
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4. Conclusions

In this work, a Ta-doped La2Ti2O7 single crystal of about 40 mm in length and 5 mm in diameter
was successfully grown by the floating zone method in an argon atmosphere. The crystal has a
monoclinic structure (P21) with good composition homogeneity. The dielectric properties of Ta-LTO
crystal has been systematically investigated in the frequency of 102 Hz to 105 Hz and a temperature
range of 0–300 ◦C. An obvious dielectric relaxation with the activation energy of 1.16 eV was observed
in the spectra of the electric modulus, which may be associated with the migration of oxygen vacancies.
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