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Abstract: Organic-inorganic hybrid perovskite has attracted intensive attention from researchers as
the gain medium in lasing devices. However, achieving electrically driven lasing remains a significant
challenge. Modifying the devices’ structure to enhance the optically pumped amplified spontaneous
emission (ASE) is the key issue. In this work, gold nanoparticles (Au NPs) are first doped into
PEDOT: PSS buffer layer in a slab waveguide device structure: Quartz/PEDOT: PSS (with or w/o
Au NPs)/CH3NH3PbBr3. As a result, the facile device shows a significantly enhanced ASE intensity
and a narrowed full width at half maximum. Based on experiments and theoretical simulation
data, the improvement is mainly a result of the compound surface plasmon resonance, including
simultaneous near- and far-field effects, both of which could increase the density of excitons excited
state and accelerate the radiative decay process. This method is highly significant for the design and
development and fabrication of high-performance organic-inorganic hybrid perovskite lasing diodes.

Keywords: perovskite lasing diodes; amplified spontaneous emission; gold nanoparticles; compound
surface plasmon resonance

1. Introduction

Organic-inorganic hybrid perovskites have recently attracted intensive attention for
solution-processed optoelectronic devices such as photovoltaics, light-emitting diodes, lasing, and
photodetectors, because of their easily tunable optical bandgap, as well as their attractive absorption,
emission, and charge transport properties [1–6]. Among these applications, the use of perovskites as
gain medium in lasing devices has attracted a lot of attention by an increasing number of scientists [7–9].
In the last few years, although a number of optically pumped driving perovskite-lasing devices have
been confirmed, they have not yet been able to achieve electrical driving stimulated emission [10,11].
Among the many methods to achieve electrical pumping lasing, enhancing amplified spontaneous
emission (ASE) is a key factor [1]. Motivated by this idea, researchers not only tried material
modification, but also searched for ways to optimize the device structure [12–19]. For material
modification, Sum et al. demonstrated ultra-stable ASE under remarkably low thresholds with a large
visible spectrum tenability (390–790 nm) with halide perovskites [12]. Zhu et al. reported single-crystal
halide perovskite nanowires with low lasing thresholds (220 nJ·cm−2) and high quality factors
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(Q ~3600) [13]. For device structure optimization, Friend et al. reported flexible solution-processed
crystalline films with prominent high-photoluminescence (PL) quantum efficiency (up to 70%). They
found that the free charge carrier formation in CH3NH3PbI3−xClx perovskite was within 1 ps, and the
bimolecular recombination time scales of these free charge carriers were within 10 s to 100 s of ns [14].
Song et al. transferred CH3NH3PbBr3 (MAPbBr3) perovskite micro-rod onto a few-layered graphene
slice; it was found that the total output intensity was significantly enhanced more than four-fold,
and the threshold was reduced by around 20% [15]. From the above descriptions, device structure
optimization is a highly feasible and effective route for constructing high-performance lasing devices.

Surface plasmon resonance by metal nanoparticles (NPs) has been confirmed to result in
many unique optical characteristics, such as surface plasmon resonance sensing and detection,
metal-enhanced fluorescence (MEF), focusing and concentrating light, surface-enhanced Raman
scattering (SERS), plasmon metamaterials, and so on [20–28]. In the last few years, metal NPs have been
successfully utilized in perovskite solar cells and light-emitting diodes (PeLEDs) [29–33]. However,
few studies have reported on perovskites lasing devices. In theory, gold nanoparticles (Au NPs) could
enhance the density of excitons excited state and accelerate the radiative decay process, which is the
primary process in ASE.

In this work, we doped Au NPs into a PEDOT: PSS buffer layer in a slab waveguide device
(Quartz/PEDOT: PSS (with or w/o Au NPs)/MAPbBr3) and obtained ~16-fold improvement in
the gain medium MAPbBr3. Based on experiments and theoretical simulation data, the device’s
performance improvement can be attributed to compound surface plasmon resonance, including
simultaneous near- and far-field effects, both of which could increase the density of the excitons’
excited state and accelerate the radiative decay process.

2. Materials and Methods

Au NPs synthesis methods: 20 nm diameter Au NPs were synthesized in accordance with our
previous reports [34]. In a 250 mL flask, 100 mL sample aqueous HAuCl4 (0.25 mM, Sinopharm
Chemical Reagent Co., Ltd., Shanghai, China) was prepared. The solution was vigorously stirred
until boiling, and 1 mL 5% Na3C6H5O7 (Enox) was added until the solution reached a wine red color,
indicating that the desired size Au NPs had been synthesized.

Perovskite synthesis methods: The MAPbBr3 solution was prepared by dissolving MABr and PbBr2

(MABr > 99.9%, PbBr2 > 99.9%, 1.5:1 molar ratio, Xi’an Polymer Light Technology Corp., Xi’an, China)
in DMF solution (reported in our previous research work [33,35]). Then chlorobenzene solution was
dropped into the DMF solution until saturation, accelerating perovskite material crystallization. In the
glove-box, precursor solution was spin-coated onto PEDOT: PSS layer (4000 rpm, 60 s) and annealed
(80 ◦C, 10 min).

Characterization of devices and thin films: A fluorospectrophotometer (Hitachi F-2500) tested the PL
spectrum. UV-vis spectrum were recorded by SHIMADZU UV-2600. Transmission electron microscopy
(TEM) was performed using a JEM-100 CXII. A fluorescence lifetime spectrometer (Horiba Jobin Yvon
FL-TCSPC) studied the time-resolved PL spectrum. Finite-different time-domain (FDTD) solutions
simulated the near-field around Au NPs. A Spitfire Ace (Spectrum Physics) was selected as the optical
pump source; its repetition rate and pulse width were 1 kHz and 100 fs, respectively. A Dektak 150
Surface Profiler measured the film thickness. The crystalline characterizations were determined by
X-ray diffraction (XRD) patterns characterized by Shimadzu XRD-7000. The fluorescence was collected
by an Pixis 100B CCD from the edge of the sample.

Metal NPs classic model of far-field effect: The enhancement originated from the retardation effect
(between original light and reflected light) in the luminescence of molecules (considered as a classical
linear harmonic oscillator) in front of a reflecting boundary. This indicates that the far-field effect comes
from the one light-wave coupling. This phenomenon is explained by the Hertz classical equation for
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considering the radiation field of the dipole [36–38]. When the mirror is parallel to the dipole axis, the
enhancement Ztheory-ASE is given by

Zthoery−ASE = qd
q =

{
q + (1 − q) ·

(
1 + 3

2 qR
(
− sin(γ−δ)

γ3 + sin(γ−δ)
γ + cos(γ−δ)

γ2

))−1
}−1

(1)

from Equation (1) we can see that the decay time (τ) and the corresponding quantum efficiency (q)
markedly depend on the phase shift (δ), the reflectivity of metal NPs (R), the distance between oscillator
and the metal mirror (d), and the emitting light wavelength of the materials (λ). γ is defined as:

γ =
4πnd

λ
(2)

where n is luminescent material refractive index.

3. Results and Discussion

In order to investigate the ASE performance, the slab waveguide device structure with
Quartz/PEDOT: PSS (with or w/o Au NPs)/MAPbBr3 (Scheme 1) was made. The experimental
optical path for the ASE test is also shown in Scheme 1. Light scattering data for Au NPs size
distribution showed a mean diameter of 20 nm in Figure 1a, which is well matched to the TEM images
(Figure 1b). The XRD pattern shown in Figure 2a showed MAPbBr3 crystal film diffraction peaks at
14.90◦ (100), 21.08◦ (110), 29.98◦ (200), 33.62◦ (210), 36.92◦ (211), 42.94◦ (220) and 45.68◦ (300). The XRD
data indicated pure perovskite phase, which suggested a lamellar structure PbBr2 2D-layer parallel to
the substrate [39]. In Figure 2a, the inset images display the MAPbBr3 film photographs (spin-coated
on quartz/PEDOT: PSS) before and after ~365 nm UV lamp irradiation, respectively, and show a
smooth surfaces. Top-view and cross-section SEM images of MAPbBr3 can be seen in Figure 2b,c,
respectively. The MAPbBr3 film coverage shows an average 300–500 nm grain size with highly uniform
and dense stacking. Such high-quality film is critical for generating ASE phenomena [33].

Figure 3 shows the normalized absorption and PL spectrum of MAPbBr3 film and extinction
spectrum of the Au NPs solution. The absorption spectrum of MAPbBr3 shows 350 nm to 650 nm,
which matches the 520 nm extinction peak of the Au NPs. The MAPbBr3 PL spectrum has its central
wavelength peak at around 534 nm, with a full width at half maximum (FWHM) at ~24 nm, which also
overlaps with the Au NP extinction peak. The overlap of the spectra indicates that surface plasmon
resonance would induce an effective absorption or emission enhancement [40,41].
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Figure 1. (a) Light scattering data for Au NPs size distribution, inset: Au NPs solution. (b) TEM image 
of Au NPs. 

Scheme 1. The ASE test experimental optical path and the device structure.
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Figure 3. Absorption spectra of MAPbBr3 film and Au NPs aqueous solution, PL spectrum of
MAPbBr3 film.
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The ASE emission spectra are taken as a function of optical pump energy in the device structure
Quartz/PEDOT: PSS (with Au NPs)/MAPbBr3, where Quartz/PEDOT: PSS (w/o Au NPs)/MAPbBr3

acts as control device. Figure 4a shows the typical ASE behavior of the control device [12], showing a
significant dependence of the edge emission spectrum with increased pump energy intensity. When
the device is optically pumped under low energy, it exhibits a broad ASE emission spectrum, with a
FWHM of ~30 nm in the control device. Once the excitation energy is high enough, the ASE emission
spectrum becomes much narrower, with FWHM ~7 nm. The emission intensity and FWHM with and
w/o Au NP doping are compared, as shown in Figure 4a–d. Figure 4c,d shows the ASE intensity
and FWHM, which are taken as a function of the optical pump energy curve. The ASE intensity of
the device with Au NPs shows a 16-fold enhancement compared to the control one (Figure 4c). The
FWHM narrows from 7.0 to 6.4 nm, which also shows an obvious narrowing after doping with Au
NPs (Figure 4d).

Crystals 2018, 8, x FOR PEER REVIEW  5 of 9 

 

w/o Au NP doping are compared, as shown in Figure 4a–d. Figure 4c,d shows the ASE intensity and 
FWHM, which are taken as a function of the optical pump energy curve. The ASE intensity of the 
device with Au NPs shows a 16-fold enhancement compared to the control one (Figure 4c). The 
FWHM narrows from 7.0 to 6.4 nm, which also shows an obvious narrowing after doping with Au 
NPs (Figure 4d). 

450 500 550 600 650
0

500

1000

Wavelength (nm)

A
S

E
 I

n
te

n
si

ty

(a) w/o Au NPs
 0.9 μJ cm-2

 1.1 μJ cm-2

 2.2 μJ cm-2

 4.4 μJ cm-2

 6.7 μJ cm-2

 8.9 μJ cm-2

 11.1 μJ cm-2

 

450 500 550 600 650
0

2000

4000

6000

8000
(b) with Au NPs

Wavelength (nm)

A
S

E
 I

n
te

n
si

ty
 

 0.9 μJ cm-2

 1.1 μJ cm-2

 2.2 μJ cm-2

 4.4 μJ cm-2

 6.7 μJ cm-2

 8.9 μJ cm-2

 11.1 μJ cm-2

0 2 4 6 8 10 12
0

2000

4000

6000

8000

O
u

tp
u

t 
In

te
n

si
ty

 (
a.

u
.)

Pump Energy (μJ cm-2)

 w/o Au NPs
 with Au NPs

(c)

0 2 4 6 8 10 12

5

10

15

20

25

30  w/o Au NPs
 with Au NPs

F
W

H
M

 (
n

m
)

Pump Energy (μJ cm-2)

(d)

Figure 4. The emission spectrum Device Quartz/PEDOT: PSS/MAPbBr3 (a) w/o Au NPs, (b) with Au 
NPs. The ASE peak intensity and FWHM of the emission spectra as a function of the pump energy (c) 
w/o Au NPs, (d) with Au NPs. 

Figure 5a,b shows the absorbance and time-resolved PL spectra, in order to demonstrate the 
mechanism of ASE intensity enhancement by Au NPs. On one hand, due to the improved absorbance 
probability, the absorbance intensity of MAPbBr3 improved by 38% after Au NP doping (Figure 5a) 
[42]. Thus, the density of the excitons’ excited state is increased. On the other hand, the MAPbBr3 
time-resolved PL spectrum in Figure 5b shows that the exciton lifetime of 8.23 ns in the control 
devices surprisingly decreases to 0.28 ns with Au NPs, which means that the radiative decay process 
is also accelerated. 

The enhancement mechanism could be contributed to the Au NP compound’s near- and far-field 
effects. The near- and far-field distributions are simulated as shown in Figure 6a,b. For near-field, 
Figure 6a shows that the working distance is within the range of 1–10 nm, as simulated by FDTD 
around the neighborhood of Au NPs. The intensity degraded with distance very quickly, and nearly 
vanished beyond 10 nm. The thickness of PEDOT: PSS is the key factor for determining the 
improvements of ASE intensity. The thin PEDOT: PSS thickness would induce Au NP contact with 
MAPbBr3, which could directly quench the fluorescence by Förster energy transfer [43,44]. The thick 
PEDOT: PSS would hinder the near-field effect. In our research work, the thickness of PEDOT: PSS 
is optimized at 23 nm, which would make full use of near-field. For far-field, the detailed mechanism 
was described in the Experimental Section. Based on the simulated far-field classic model, Figure 6b 
displays the main improved multi-enhancement peaks. The main improved peaks are 95 nm, 245 nm 
and 385 nm, which are within the scope of the MAPbBr3 thickness of 500 nm. Considering the device 
structure and the thickness of MAPbBr3 and PEDOT: PSS, the near- and far-field could both overlap 

Figure 4. The emission spectrum Device Quartz/PEDOT: PSS/MAPbBr3 (a) w/o Au NPs, (b) with Au
NPs. The ASE peak intensity and FWHM of the emission spectra as a function of the pump energy
(c) w/o Au NPs, (d) with Au NPs.

Figure 5a,b shows the absorbance and time-resolved PL spectra, in order to demonstrate the
mechanism of ASE intensity enhancement by Au NPs. On one hand, due to the improved absorbance
probability, the absorbance intensity of MAPbBr3 improved by 38% after Au NP doping (Figure 5a) [42].
Thus, the density of the excitons’ excited state is increased. On the other hand, the MAPbBr3

time-resolved PL spectrum in Figure 5b shows that the exciton lifetime of 8.23 ns in the control
devices surprisingly decreases to 0.28 ns with Au NPs, which means that the radiative decay process is
also accelerated.

The enhancement mechanism could be contributed to the Au NP compound’s near- and far-field
effects. The near- and far-field distributions are simulated as shown in Figure 6a,b. For near-field,
Figure 6a shows that the working distance is within the range of 1–10 nm, as simulated by FDTD around
the neighborhood of Au NPs. The intensity degraded with distance very quickly, and nearly vanished
beyond 10 nm. The thickness of PEDOT: PSS is the key factor for determining the improvements of
ASE intensity. The thin PEDOT: PSS thickness would induce Au NP contact with MAPbBr3, which
could directly quench the fluorescence by Förster energy transfer [43,44]. The thick PEDOT: PSS would
hinder the near-field effect. In our research work, the thickness of PEDOT: PSS is optimized at 23 nm,
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which would make full use of near-field. For far-field, the detailed mechanism was described in the
Experimental Section. Based on the simulated far-field classic model, Figure 6b displays the main
improved multi-enhancement peaks. The main improved peaks are 95 nm, 245 nm and 385 nm, which
are within the scope of the MAPbBr3 thickness of 500 nm. Considering the device structure and the
thickness of MAPbBr3 and PEDOT: PSS, the near- and far-field could both overlap with the gain
medium, as shown in Figure 6c. There are two advantages to using compound near- and far-field
surface plasmon resonance, in comparison to a single optical effect: (1) the enhancement ratio of ASE
intensity using compound surface plasmon resonance would be greater than with a single-optical
effect; and (2) considering the device structure (shown in Scheme 1), it’s easy to utilize compound
surface plasmon resonance in lasing devices based on perovskites.
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In summary, we demonstrated an obvious performance improvement of lasing devices by 
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were both effectively promoted. The results indicate that the compound near- and far-field surface 
plasmon resonance is the mechanism of enhancement, both of which could increase the density of 
the excitons’ excited state and accelerate the radiative decay process. Our results provide a flexible 
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4. Conclusions

In summary, we demonstrated an obvious performance improvement of lasing devices by doping
Au NPs into the optically pumped slab waveguide device. The ASE intensity and FWHM were both
effectively promoted. The results indicate that the compound near- and far-field surface plasmon
resonance is the mechanism of enhancement, both of which could increase the density of the excitons’
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excited state and accelerate the radiative decay process. Our results provide a flexible and effective
route for obtaining high-performance lasing devices based on perovskites.
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