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Abstract: The optical conductivity in the charge order phase is calculated in the two-dimensional
extended Hubbard model describing an organic Dirac electron system α-(BEDT-TTF)2I3 using the
mean field theory and the Nakano-Kubo formula. Because the interband excitation is characteristic
in a two-dimensional Dirac electron system, a peak structure is found above the charge order gap.
It is shown that the peak structure originates from the Van Hove singularities of the conduction and
valence bands, where those singularities are located at a saddle point between two Dirac cones in
momentum space. The frequency of the peak structure exhibits drastic change in the vicinity of the
charge order transition.
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1. Introduction

An organic conductor α-(BEDT-TTF)2I3 has attracted much interest, since it exhibits a transition
between the charge order (CO) [1–7] and the massless Dirac electron (DE) [8–15] as hydrostatic pressure,
P, increases. Recently, strong electron correlation effects have been revealed in both the CO [16] and
the massless DE [17–20] in spin fluctuations. Thus, electron correlation effects in transport phenomena
have also been expected, especially in the crossover region between the massless DE and the CO.

It has been observed that the optical gap determined by the optical conductivity decreases
monotonously as P increases and reaches almost zero at about Pc = 12 kbar [21,22], while the
resistivity gap reaches almost zero at about 7 kbar [23]. In order to explain such metallic behavior
in the presence of the CO gap, metallic channels owing to edges and domain walls in the CO have
been studied using the extended Hubbard model [24–27]. It has been shown that the massive DE
phase with the gapless edge states emerges in the intermediate region between the massless DE phases
and the trivial CO. Although the CO gap induced by the inversion symmetry breaking exists in both
the massive DE phase and the trivial CO, a pair of Dirac cones with a finite gap at incommensurate
momentum, ±kD, merges at a time reversal invariant momentum (TRIM) at the transition between
these two phases [12,15,28,29]. Such a drastic change in the band structure is expected to give rise to
a characteristic in the optical conductivity.

In the present paper, the optical conductivity is calculated in the band structure determined by
the mean-field theory in the extended Hubbard model for the two-dimensional electron system in
the organic conductor α-(BEDT-TTF)2I3, where the nearest-neighbor Coulomb repulsion, Va is used
to control the charge ordering [1,2], although the donor-acceptor interactions can be also important
for the charge ordering [7]. It is shown that a peak structure emerges above the CO gap in the optical
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conductivity. The frequency of the peak structure, ωpeak, owing to interband excitation between
two Van Hove singularities in the conduction and valence bands, rapidly moves as a nonmonotonic
function of Va, while the frequency of the CO gap, ωCO, increases monotonically as Va increases.
Those Van Hove singularities originate from the saddle points between two Dirac cones. The optical
conductivity exhibits a characteristic strong peak when two Dirac cones merge in the presence of
a large CO gap.

This paper is described as follows. An extended Hubbard model for a two-dimensional electron
system in α-(BEDT-TTF)2I3, the mean field theory, and the optical conductivity are described in
Section 2. Numerical results are shown in Section 3. Sections 4 and 5 are devoted to the discussion
and summary.

2. Formulation

The two-dimensional extended Hubbard model [1,2] has been used in theoretical studies for
α-(BEDT-TTF)2I3, in order to take the on-site Coulomb repulsion, U, and the nearest-neighbor Coulomb
repulsions, Vαβ, into account.

H = ∑
(iα,jβ),σ

(t(iα,jβ) a†
iασajβσ + h.c.)

+ ∑
iα

U a†
iα↑a

†
iα↓aiα↓aiα↑ (1)

+ ∑
(iα:jβ)

∑
σ,σ′

Viαjβ a†
iασa†

jβσ′ ajβσ′ aiασ,

where aiασ and t(iα,jβ) represent the annihilation operators and the transfer energies with unit cells i, j,
spins σ, and sublattices α, β = A, A′, B and C of α-(BEDT-TTF)2I3.

Hereafter, the energies are given in eV. The tight binding model for α-(BEDT-TTF)2I3 [30–34] is
shown in Figure 1a. The sublattices A and A′ are equivalent due to the inversion symmetry in the
massless DE phase. The transfer energies given by the first-principle calculation [33]: tb1 = 0.1241,
tb2 = 0.1296, tb3 = 0.0513, tb4 = 0.0152, ta1 = −0.0267, ta2 = −0.0511, ta3 = 0.0323, t′a1 = 0.0119,
t′a3 = 0.0046, and t′a4 = 0.0060. The nearest neighbor interaction Va in the stacking direction is used for
controlling the CO transition, because this is the most sensitive as a function of P [35–37], while we
treat U = 0.4 and Vb = 0.05 as constants. The temperature T = 0.001 is fixed in the present paper.
The lattice constants, kB and h̄ are taken as unity. The system size in numerical calculations is NL = 500.

The mean-field Hamiltonian HMF [11] is

HMF = ∑
kαβσ

ε̃αβσ(k)a†
kασakβσ, (2)

ε̃αβσ(k) = φασδαβ + εαβ(k), (3)

φασ = Uα〈nα−σ〉+ ∑
β′σ′

Vαβ′〈nβ′σ′〉, (4)

εαβ(k) = ∑
δ

tαβeik·δ, (5)

where φασ is the Hartree potential, 〈nασ〉 = 〈a†
iασaiασ〉 is the electron number, and δ is a vector between

unit cells. The energy eigenvalues ξγσ(k) and the wave functions Φαγσ(k) are given by

∑
β

ε̃αβσ(k) Φβγσ(k) = ξγσ(k) Φαγσ(k), (6)
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with the band index γ = 1, 2, 3, 4. The conduction and valence bands correspond to ξ1σ(k) and ξ2σ(k),
respectively, since the Fermi energy is located between these two bands. The electron number 〈nασ〉 is
given by

〈nασ〉 = ∑
kγ

|Φαγσ(k)|2 f (ξγσ(k)), (7)

where the Fermi distribution function is f (ξγσ(k)) = 1/(exp [(ξγσ(k)− µ)/kBT] + 1) with the
chemical potential µ determined so that the bands are 3/4-filled. Hereafter, let Eγσ(k) = ξγσ(k)− µ

and measure the energy from µ.
The Green function Gαβσ(ω, k) and the density of state ρ(ω) are given by

Gαβσ(ω, k) = ∑
γ

Φ∗αγσΦβγσ

h̄ω− Eγσ(k) + iδ
, (8)

ρ(ω) = 1
NL

∑kασ

(
− 1

π ImGαασ(ω, k)
)

= 1
NL

∑kαγσ δ (h̄ω− Eγσ(k)) |Φγασ(k)|2,
(9)

where NL is the number of lattice points.
The optical conductivity is calculated by the Nakano-Kubo formula based on linear response

theory. It is represented by

σ(ω) =
1

iω
[K(ω)− K(0)] , (10)

K(ω) = − 1
NL

( e
h̄

)2
∑

kγγ′σ

|vγγ′σ(k)|2
f (Eγσ(k))− f (Eγ′σ(k))

Eγσ(k)− Eγ′σ(k) + h̄ω + iδ
, (11)

Here, γ and σ represent a band and spin indices respectively. k is a wave vector. δ is a Minute
amount and ω = E/h̄. where the velocity matrix vγγ′σ is calculated by

vγγ′σ(k) = ∑
αβ

Φ∗αγσ(k)vαβσ(k)Φβγ′σ(k), (12)

vαβσ(k) =
1
h̄

∂

∂k
ε̃αβσ(k). (13)

3. Results

Figure 1b shows the conduction and valence bands in the massless DE phase. There is a pair of
massless Dirac cones at incommensurate momenta,±kD. The Fermi energy is located at the degenerate
points of the two bands. These two bands form the tilted conical structure around ±kD as shown
in Figure 1c. When the energy gap between the two bands is zero, the electronic states are called as
the massless DE, since quasi-particles behave as massless Dirac fermions in the relativistic quantum
mechanics. There are several saddle points at the TRIMs near the Fermi energy, e.g., the M-point in
the conduction band (Mc-VHS), the M-point in the valence band (Mv-VHS), and the Y-point in the
valence band (Yv-VHS).

The optical conductivities at several Va are shown in Figure 2a. These values are divided by
the universal conductivity σ0 = πe2/2h [38]. In the massless DE phase for Va = 0.18, the optical
conductivity almost reaches a universal constant for kBT < h̄ω < Λ, where Λ ∼= 0.01 is a energy scale of
the linear dispersion as shown in previous studies for the massless DE [38–41]. When V > Vc1

a = 0.198,
a frequency of the CO gap, ωCO, increases as Va increases, as shown in Figure 2b, where ωCO is defined
as a flexion point of the shoulder structure in the optical conductivity. It is found that a peak structure
appears above ωCO. As presented in Figure 2b, its frequency, ωpeak, rapidly decreases as Va increases
for Va < Vc2

a = 0.212, at which the two Dirac cones are merged in the conduction band [26,27]. In this
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region, the inversion symmetry in the system is broken, and the finite gap opens near ±kD in the
energy dispersion, but two Dirac cones don’t merge immediately. Thus, this region of Vc1

a < Va < Vc2
a

is the massive DE phase. ωpeak rebounds after falling to ωCO, and the optical conductivity shows
a strong peak. Those two frequencies exhibit asymptotic behavior for Va > Vc2

a , where the CO phase
with the trivial gap appears.
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Figure 1. (a) Schematic figure of two-dimensional conductive plane in α-(BEDT-TTF)2I3. Some ellipses
represent sublattices of the BEDT-TTF molecule. In the figure, signs of b1, b2, ..., a4′ correspond to
transfer integrals tb1, tb2, ..., t′a4 between two molecules. Nearest-neighbor Coulomb repulsions Va,
Vb are represented by the red dotted arrows. On-site Coulomb repulsion U also exists, although it is
not shown in the figure. The unit cell is a region surrounded by a black dotted square in the figure.
In the absence of the Coulomb interactions, the inversion symmetry points exist on B and C sublattices,
and at the midpoint between A and A′ sublattices. (b) The conduction band (purple) and valence band
(green) in the massless DE phase for Va = 0.18, and (c) a view of same two bands projected from the
side along kx axis.

1

0

σ
ω

)/
σ

0

Va=0.190

Va=0.198

Va=0.199

Va=0.205

Va=0.212

Va=0.220

Va=0.230

Va=0.240

0.5

0.01 0.02 0.03 0.04 0.05

ℏω [eV]

Va=0.180(a) ωcoℏ ωpeakℏ

0

0.06

0.2 0.22 0.24

ℏ
ω

[e
V

]

ωco
ωpeak

0.04

0.02

(b)

Va [eV]

ℏ

ℏ

Figure 2. The optical conductivities divided by the universal conductivity σ0 = πe2/2h [38] for
Va = 0.180, 0.190, 0.198, 0.199, 0.205, 0.212, 0.220, 0.230, 0.240 (a). ωCO and ωpeak for Va = Vc2

a = 0.212
are shown in (a). Va-dependences of ωCO and ωpeak are shown in (b). A characteristic peak structure is
found near the CO transition in the extended Hubbard model describing the organic Dirac electron
system α-(BEDT-TTF)2I3.

Figure 3 shows the density of states ρ(ω), where the Fermi energy is defined as zero. When Va < Vc1
a ,

there is a valley due to the Dirac cones. A CO gap, ωCO, opens at the Fermi energy for V > Vc1
a .
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There are several Van Hove singularities (VHS) due to saddle points of the conduction and valence bands
(see Figure 1b). Here we pay attention to VHS at the M-point in the conduction band (Mc-VHS) and
that in the valence band (Mv-VHS), respectively. The Mc-VHS remains an energy source for Va < Vc2

a .
Its energy rapidly increases and the peak structure disappears for Va > Vc2

a , since it is absorbed by the
upper edge of the CO gap, owing to the merging of the Dirac cones in the conduction band as shown in
Figure 4. The Mv-VHS, on the other hand, moves very rapidly until it reaches the lower edge of the CO
gap at Vc2

a . The Mv-VHS and the lower edge of the CO gap exhibits asymptotic behavior for Va > Vc2
a .

An energy difference between the Mc-VHS and Mv-VHS coincides with ωpeak in the optical conductivity
shown in Figure 2a. Other VHSs, e.g., VHS at the Y-point in the valence band (Yv-VHS), show completely
different behavior as Va increases.

0

0.002

0.004

0.006

0.008

-0.04 -0.02 0 0.02 0.04

ρ

(

ω
)

Va=0.198

Va=0.205

Va=0.212

Va=0.220

Va=0.230

ωpeak

Mc-VHS

Yv-VHS

Mv-VHS

ℏω [eV]

ℏ

ωcoℏ

Figure 3. The density of states ρ(ω) for Va = 0.198, 0.205, 0.212, 0.220, 0.230. The origin of the peak
structure in the optical conductivity is identified.
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Figure 4. The contour plots of the conduction band for Va = 0.205 (a), Va = Vc2
a = 0.212 (b), and

Va = 0.220 (c). The band structures as a function of kx for Va = 0.205 (d), Va = Vc2
a = 0.212 (e), and

Va = 0.220 (f), where the CO gaps open between the conduction bands (the purple bands) and the
valence bands (the green bands). Tilting of the Dirac cones causes electron-hole asymmetric behavior
as the CO gap increases.

In order to analyze the behavior of ωpeak and ωCO, the band structure is intensively examined in
Figure 4. Both Mc-VHS and Mv-VHS exist at the M-point (the saddle point) between two Dirac cones.
The Dirac cones in the conduction band (the purple band) merge at the M-point at Vc2

a in the presence
of a large CO gap as shown in Figure 4b,e, leading to the absorption of the Mc-VHS into the upper
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edge of the CO gap. On the other hand, the massive Dirac cones in the valence band (the green band)
do not merge against relatively larger Va as shown in Figure 4c,f, since the Dirac cones are tilted [12,13].
Thus, the Mv-VHS and the lower edge of the CO gap show asymptotic behavior.

4. Discussion

The drastic change of the optical conductivity near CO transition is characterized not only by the
CO gap, but also the peak structure, as shown in Figure 2a,b. By careful analysis on the ρ(ω) shown in
Figure 3 and band structure shown in Figure 4, it is elucidated that the origin of the peak structure
is the VHSs at the M-points between two tilted Dirac cones. The nonmonotonic Va-dependence of
ωpeak is due to both the merging of the Dirac cones with the CO gap and the tilting of the Dirac cones.
It is expected that those features may be observed in the low frequency region (around 100 cm−1),
i.e., just above the CO gap near the CO transition Pc = 12 kbar in the optical conductivity, although
this region has not been analyzed by Beyer et al. [21].

It is a future problem to investigate the optical conductivity in the non-uniform CO with the edges
or the domain walls [26,27] using the real space dependent mean field theory, since it has been shown
that the non-uniform CO may be important to explain the metallic CO near the CO transition [23].
The strong correlation effects beyond the mean field theory [16] may also affect the optical properties.
Although the present calculation is based on the two-dimensional extended Hubbard model [1,2]
being a simplest model to describe the CO in α-(BEDT-TTF)2I3, the donor-acceptor interactions may
also play an important role for the CO [7].

5. Conclusions

The optical conductivity in the vicinity of the CO transition has been investigated using the
Nakano-Kubo formula and the mean-field theory in the two-dimensional extended Hubbard model
describing the Dirac electrons in α-(BEDT-TTF)2I3. It has been found that a peak structure above the
CO gap emerges due to the two-dimensional Dirac cones. It has been also shown that the drastic
change of the peak structure in the vicinity of the CO transition indicates the merging of the massive
Dirac electrons. Thus it has been shown that the optical conductivity in the low frequency region just
above the CO gap indicates important information on the existence of the two-dimensional massive
Dirac electrons and those merging in the intermediate region between the trivial CO phase and the
massless DE phase.
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Abbreviations

The following abbreviations are used in this manuscript:

DE Dirac electron
CO charge order
VHS Van Hove singularity
DOS density of states
TRIM time reversal invariant momentum
Mc-VHS Van Hove singularity at the M-point in the conduction band
Mv-VHS Van Hove singularity at the M-point in the valence band
Yv-VHS Van Hove singularity at the Y-point in the valence band
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