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Abstract: Four new solvent-induced Co(II) complexes with chemical formulae
[{CoL(µ2-OAc)(MeOH)}2Co] (1), [{CoL(µ2-OAc)(EtOH)}2Co] (2), [{CoL(µ2-OAc)(Py)}2Co]
(3) and [{CoL(µ2-OAc)(DMF)}2Co] (4) (H2L = 4-nitro-4′-chloro-2,2′-[(1,3-propylene)dioxybis
(nitrilomethylidyne)]diphenol) have been synthesized and characterized by elemental analyses,
FT–IR, UV–Vis spectra and single-crystal X-ray diffraction. Each of the prepared complexes,
crystallizing in the space groups P–1 (1 and 4), P21/n (2) and P21/c (3), consists of three Co(II)
atoms, two completely deprotonated (L)2− units, two µ2-acetato ligands and two coordinated
solvent molecules. Although the four complexes 1–4 were synthesized in different solvents, it is
worthwhile that the Co(II) atoms in the four complexes 1–4 adopt hexa–coordinated with slightly
distorted octahedral coordination geometries, and the ratio of the ligand H2L to Co(II) atoms is 2:3.
The complexes 2–4 possess a self-assembled infinite 1D, 2D and 1D supramolecular structures via
the intermolecular hydrogen bonds, respectively. Magnetic measurement was performed in the
complex 3.

Keywords: N2O2-donor bisoxime-type complex; synthesis; structure; solvent effect;
magnetic property

1. Introduction

Salen-type ligands (R–CH=N–(CH2)n–N=CH–R) and their metal complexes have been
extensively investigated in modern coordination chemistry for several decades [1–5]. The reaction
of salicylaldehyde or its derivatives with diamines is easy to obtain Salen-type N2O2 ligands,
and which could react with transition metal ions to obtain stable mono- or polynuclear
complexes [6–10]. Their metal complexes are used as catalysts [11], optical materials [12–19],
molecular recognitions [20–23], supramolecular architectures [24–32], biological fields [33–37],
magnetic materials [38–43] and so forth.

To date, Salamo-type ligand as a novel Salen-type analogue has been studied originally.
Salamo-type ligand (R–CH=N–O–(CH2)n–O–N=CH–R) is one of the most versatile ligands and the
large electronegativity of oxygen atoms is expected to strongly affect the electronic properties of the
N2O2 coordination sphere, which can lead to different and novel structures and properties of the
resulting complexes. Owing to the unique structures of Salamo-type complexes, a study was shown
that it is at least 104 times more stable than Salen-type complexes [44].

Herein, we report the syntheses, crystal structures and solvent effects of four
homotrinuclear Co(II) complexes, [{CoL(µ2-OAc)(MeOH)}2Co] (1), [{CoL(µ2-OAc)(EtOH)}2Co] (2),
[{CoL(µ2-OAc)(Py)}2Co] (3) and [{CoL(µ2-OAc)(DMF)}2Co] (4). (H2L = 4-Nitro-4′-chloro-2,2′-[(1,3-
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propylene)dioxybis(nitrogenylmethylidene)]diphenol). Compared with the previously reported
complexes, the complexes 1–4 have similar symmetrically trinuclear structures. The content of
the present work is mainly studied the crystal structures, solvent effects and magnetic property.
With respect to these complexes, phenoxo bridging plays a key role in assembling metal ions and
Salamo-type ligands. As shown in complex 1, O1 or O2 as phenoxo atom, bridges Co(II) atoms
and Salamo-type ligands, and two Co(II) atoms are also bridged through the µ2-acetato ligand.
The µ2-acetato ligand has a strong chelating abilities, can form more stable complex so as to better
study its properties.

2. Experimental Section

2.1. Materials and Methods

5-Chlorosalicylaldehyde and 5-nitrosalicylaldehyde of 98% was purchased from Alfa Aesar
(New York, NY, USA) and have been used without further purification. 1,3-Dibromoprophane and
other reagents were analytical grade reagents from Tianjin Chemical Reagent Factory.

C, H, and N analyses were obtained using a GmbH VarioEL V3.00 automatic elemental analysis
instrument (Elementar, Berlin, Germany). Elemental analysis for Co was carried out by an IRIS
ER/SWP-1 ICP atomic emission spectrometer (Elementar, Berlin, Germany). Melting points were
obtained by the use of a microscopic melting point apparatus made in Beijing Taike Instrument Limited
Company (Beijing, China) and were uncorrected. IR spectra were recorded on a VERTEX70 FT-IR
spectrophotometer (Bruker, Billerica, MA, USA), with samples prepared as KBr pellets, in the region
3500–400 cm−1. UV-Vis absorption spectra were recorded on a Shimadzu UV-3900 spectrometer
(Shimadzu, Tokyo, Japan). 1H NMR spectra were determined by German Bruker AVANCE DRX-400
spectrometer (Bruker AVANCE, Billerica, MA, USA). Single-crystal X-ray structure determinations
for the complexes 1–4 were carried out on a SuperNova Dual Eos (Cu at zero) four-circle or Bruker
Smart Apex CCD (Bruker AVANCE, Billerica, MA, USA) diffractometer. Magnetic susceptibility was
collected by using a Quantum Design model MPMS XL7 SQUID magnetometer (San Diego, CA, USA).

2.2. Synthesis and Characterization of H2L

The main reaction steps involved in the synthesis of H2L are given in Scheme 1.
1,3-Bis(aminooxy)prophane was synthesized according to an analogous method reported earlier [18].

Crystals 2018, 8, x FOR PEER REVIEW  2 of 17 

 

4-Nitro-4′-chloro-2,2′-[(1,3-propylene)dioxybis(nitrogenylmethylidene)]diphenol). Compared with 
the previously reported complexes, the complexes 1–4 have similar symmetrically trinuclear 
structures. The content of the present work is mainly studied the crystal structures, solvent effects 
and magnetic property. With respect to these complexes, phenoxo bridging plays a key role in 
assembling metal ions and Salamo-type ligands. As shown in complex 1, O1 or O2 as phenoxo atom, 
bridges Co(II) atoms and Salamo-type ligands, and two Co(II) atoms are also bridged through the 
μ2-acetato ligand. The μ2-acetato ligand has a strong chelating abilities, can form more stable 
complex so as to better study its properties. 

2. Experimental Section 

2.1. Materials and Methods 

5-Chlorosalicylaldehyde and 5-nitrosalicylaldehyde of 98% was purchased from Alfa Aesar 
(New York, NY, USA) and have been used without further purification. 1,3-Dibromoprophane and 
other reagents were analytical grade reagents from Tianjin Chemical Reagent Factory. 

C, H, and N analyses were obtained using a GmbH VarioEL V3.00 automatic elemental analysis 
instrument (Elementar, Berlin, Germany). Elemental analysis for Co was carried out by an IRIS 
ER/SWP-1 ICP atomic emission spectrometer (Elementar, Berlin, Germany). Melting points were 
obtained by the use of a microscopic melting point apparatus made in Beijing Taike Instrument 
Limited Company (Beijing, China) and were uncorrected. IR spectra were recorded on a VERTEX70 
FT-IR spectrophotometer (Bruker, Billerica, MA, USA), with samples prepared as KBr pellets, in the 
region 3500–400 cm−1. UV-Vis absorption spectra were recorded on a Shimadzu UV-3900 
spectrometer (Shimadzu, Tokyo, Japan). 1H NMR spectra were determined by German Bruker 
AVANCE DRX-400 spectrometer (Bruker AVANCE, Billerica, MA, USA). Single-crystal X-ray 
structure determinations for the complexes 1–4 were carried out on a SuperNova Dual Eos (Cu at 
zero) four-circle or Bruker Smart Apex CCD (Bruker AVANCE, Billerica, MA, USA) diffractometer. 
Magnetic susceptibility was collected by using a Quantum Design model MPMS XL7 SQUID 
magnetometer (San Diego, CA, USA). 

2.2. Synthesis and Characterization of H2L 

The main reaction steps involved in the synthesis of H2L are given in Scheme 1. 
1,3-Bis(aminooxy)prophane was synthesized according to an analogous method reported earlier 
[18]. 

 

Scheme 1. The synthetic route of H2L. 

The Salamo-type N2O2 ligand H2L was synthesized according a procedure from the literature 
[44]. To an ethanol solution (80 mL) of 5-chlorosalicylaldehyde (626.0 mg, 4.0 mmol) was added an 
ethanol solution (50 mL) of 1,3-bis(aminooxy)prophane (637.0 mg, 6.0 mmol). The mixture solution 
was heated at 50–55 °C for 5 h. The solution was concentrated in vacuo and the residue was purified 
by column chromatography (SiO2, chloroform/ethyl acetate, 10:1) to afford colorless flocculent 

Scheme 1. The synthetic route of H2L.

The Salamo-type N2O2 ligand H2L was synthesized according a procedure from the literature [44].
To an ethanol solution (80 mL) of 5-chlorosalicylaldehyde (626.0 mg, 4.0 mmol) was added an ethanol
solution (50 mL) of 1,3-bis(aminooxy)prophane (637.0 mg, 6.0 mmol). The mixture solution was heated
at 50–55 ◦C for 5 h. The solution was concentrated in vacuo and the residue was purified by column
chromatography (SiO2, chloroform/ethyl acetate, 10:1) to afford colorless flocculent crystalline solid of
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2-hydroxy-5-chlorobenzaldehyde O-(2-(aminooxy)ethyl) oxime (655.0 mg, 2.68 mmol). Yield, 66.9%.
Anal. Calcd. for C10H13ClN2O3 (%): C, 49.09; H, 5.36; N, 11.45. Found: C, 49.31; H, 5.47; N, 11.22.

A solution of 2-hydroxy-5-chlorobenzaldehyde O-(2-(aminooxy)ethyl) oxime (489 mg, 2.0 mmol)
in ethanol (15 mL) was added to a solution of 5-nitrosalicylaldehyde (334 mg, 2.0 mmol) in ethanol
(10 mL). The mixture was stirred at 55–60 ◦C for 5 h. After cooling to room temperature, the precipitates
were collected. The product was dried in vacuo, and an orange red powder solid was obtained. Yield,
541 mg (68.8%). m.p. 117–118 ◦C. 1H NMR (400 MHz, CDCl3) δ 2.18 (t, J = 6.0 Hz, 2H, CH2), 4.35
(m, 4H, CH2), 6.91 (d, J = 4.0 Hz, 1H, ArH), 7.04 (d, J = 6.0 Hz, 1H, ArH), 7.13 (s, 1H, ArH), 7.23
(dd, J = 8 Hz, 1H, ArH), 8.14 (d, J = 4.0 Hz, 1H, ArH), 8.16 (s, 1H, ArH), 8.19 (s, 1H, CH=N), 8.26
(s, 1H, CH=N), 9.77 (s, 1H, OH), 10.65 (s, 1H, OH). IR (KBr, cm–1): 3084 (w, νO–H), 1613 (s, νC=N),
1263 (s, νAr–O). UV–Vis (EtOH): λmax (εmax) 219, 267 and 311 nm. (1 × 10−5 M). Anal. Calcd. for
C17H16ClN3O6 (%): C, 51.77; H, 4.21; N, 10.59, Found: C, 51.95; H, 4.10; N, 10.37.

2.3. Syntheses of the Co(II) Complexes 1–4

2.3.1. [{CoL(µ2-OAc)(MeOH) }2Co] (1)

A methanol solution (3 mL) of Co(OAc)2·4H2O (3.74 mg, 0.015 mmol) was added dropwise
to a acetone solution (1 mL) of H2L (3.93 mg, 0.010 mmol) at room temperature. The color of the
mixed solution turned to purplish red immediately. After stirring for 10 min at room temperature,
the mixture was filtered and the filtrate was allowed to stand at room temperature for about one
week, the solvent partially evaporated and purplish red block-like single crystals suitable for X-ray
crystallographic analysis were obtained. Yield, 3.06 mg (53.5%). UV–Vis (EtOH): λmax (εmax) 229
and 368 nm. (1.0 × 10−5 M). IR (KBr, cm–1): 2974 (w, νO–H), 1603 (s, νC=N), 1571 (s, νasCOO

–), 1423 (s,
νsCOO

–), 1242 (w, νAr–O). Anal. Calcd. for C40H42Cl2N6Co3O18 (%): C, 42.05; H, 3.71; N, 7.36; Co, 15.47.
Found: C, 42.28; H, 3.65; N, 7.17; Co, 15.23.

2.3.2. [{CoL(µ2-OAc)(EtOH)}2Co] (2)

A ethanol solution (3 mL) of Co(OAc)2·4H2O (3.74 mg, 0.015 mmol) was added dropwise to
a acetone solution (1 mL) of H2L (3.93 mg, 0.010 mmol) at room temperature. The color of the
mixed solution turned to purplish red immediately. After stirring for 10 min at room temperature,
the mixture was filtered and the filtrate was allowed to stand at room temperature for about one
week, the solvent partially evaporated and purplish red block-like single crystals suitable for X-ray
crystallographic analysis were obtained. Yield, 3.61 mg (62.2%). UV–Vis (EtOH): λmax (εmax) 232
and 372nm. (1.0 × 10−5 M). IR (KBr, cm–1): 1602 (s, νC=N), 1552 (s, νasCOO

–), 1422 (s, νsCOO
–), 1242

(w, νAr–O). Anal. Calcd. for C42H36Cl2N6Co3O18 (%): C, 43.47; H, 3.13; N, 7.24; Co, 15.24. Found: C,
43.85; H, 3.25; N, 7.11; Co, 15.10.

2.3.3. [{CoL(µ2-OAc)(Py)}2Co] (3)

A methanol solution (3 mL) of Co(OAc)2·4H2O (3.74 mg, 0.015 mmol) was added dropwise to
a acetone solution (1 mL) of H2L(3.93 mg, 0.010 mmol) and then methanol solution (0.5 mL )of Py
(0.015 mmol) was added. The purplish red mixture was filtered and the filtrate was allowed to stand
at room temperature for about one week, the solvent partially evaporated and purplish red block-like
single crystals suitable for X-ray crystallographic analysis were obtained. Yield, 3.15 mg (50.9%).
UV–Vis (EtOH): λmax (εmax) 233 and 372 nm. (1.0 × 10−5 M). IR (KBr, cm–1): 1602 (s, νC=N), 1566
(s, νasCOO

–), 1419(s, νsCOO
–), 1249 (w, νAr–O). Anal. Calcd. for C48H44Cl2N8Co3O16 (%): C, 46.62; H,

3.59; N, 9.06; Co, 14.30. Found: C, 46.79; H, 3.66; N, 8.95; Co, 14.12.

2.3.4. [{CoL(µ2-OAc)(DMF)}2Co] (4)

A methanol solution (2 mL) Co(OAc)2·4H2O (3.74 mg, 0.015 mmol) was added dropwise to a
mixture solution of acetone (1 mL) and DMF (0.5 mL) of H2L (3.93 mg, 0.010 mmol). The purplish red
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mixture was filtered and the filtrate was allowed to stand at room temperature for a week, the solvent
partially evaporated and purplish red block-like single crystals suitable for X-ray crystallographic
analysis were obtained. Yield, 2.93 mg (47.8%). UV-Vis (EtOH): λmax (εmax) 232 and 371 nm.
(1.0 × 10−5 M). IR (KBr, cm–1): 1618 (s, νC=N), 1558 (s, νasCOO

–), 1417 (s, νsCOO
–), 1251 (w, νAr–O).

Anal. Calcd. for C44H48Cl2N8Co3O18 (%): C, 43.15; H, 3.95; N, 9.15; Co, 14.44, Found: C, 43.42; H, 3.99;
N, 9.05; Co, 14.21.

2.4. Crystal Structure Determination

The single crystals of the Co(II) complexes 1–4 with approximate dimensions of 0.19× 0.22× 0.25,
0.21 × 0.17 × 0.14, 0.13 × 0.17 × 0.20 and 0.14 × 0.17 × 0.19 mm were placed on a SuperNova, Dual
(Cu at zero) Eos. diffractometer or Bruker Smart diffractmeter equipped with Apex CCD area detector,
respectively. The diffraction data were collected using a graphite monochromated Mo Ka radiation
(λ = 0.71073 Å), respectively. The structures were solved by using the program SHELXS-97 [45] and
Fourier difference techniques, and refined by full-matrix least-squares method on F2 [45]. All hydrogens
were added theoretically. Crystallographic data and refinement for all of the Co(II) complexes are
summarized in Table 1.

Table 1. Crystallographic data and refinement parameter for the Co(II) complexes 1–4.

Compound Code 1 2 3 4

Empirical formula C40H42Cl2Co3N6O18 C42H36Cl2Co3N6O18 C48H44Cl2Co3N8O16 C44H48Cl2Co3N8O18
Formula weight 1142.49 1160.46 1236.60 1224.59
Temperature (K) 296(2) 294(2) 296(2) 296(2)
Wavelength (Å) 0.71073 0.71073 0.71073 0.71073
Crystal system triclinic monoclinic monoclinic triclinic

Space group P–1 P21/n P21/c P–1
Unit cell dimensions

a (Å) 11.0545(13) 13.3496(7) 11.1889(8) 9.195(13)
b (Å) 11.2647(14) 13.6078(5) 9.4659(7) 12.816(18)
c (Å) 12.9730(16) 15.8972(6) 25.6944(17) 13.814(19)
α (◦) 69.274(2) 90 90 69.243(18)
β (◦) 72.603(2) 106.944(5) 108.125(3) 83.06(2)
γ (◦) 82.921(2) 90 90 84.178(19)

V (Å3) 1441.5(3) 2762.5(2) 2586.3(3) 1.349
Z 1 2 2 1

Dc (g·cm–3) 1.316 1.395 1.588 1.348
µ (mm–1) 1.011 1.057 1.132 0.972

F (000) 583 1178 1262 627
Crystal size (mm) 0.19 × 0.22 × 0.25 0.21 × 0.17 × 0.14 0.13 × 0.17 × 0.20 0.14 × 0.17 × 0.19

θ Range (◦) 1.8–25.0 3.39–26.02 1.7–25.5 1.6–25.2

Index ranges
–13 ≤ h ≤ 9 –16 ≤ h ≤ 14 –12 ≤ h ≤ 13 –9 ≤ h ≤ 11
–13 ≤ k ≤ 13 –16 ≤ k ≤ 16 –10 ≤ k ≤ 11 –15 ≤ k ≤ 15
–15 ≤ l ≤ 12 –12 ≤ l ≤ 19 –31 ≤ l ≤ 18 –13 ≤ l ≤ 16

Reflections collected 8022 10789 14683 8008
Unique reflections 5051 5416 4825 5341

Rint 0.023 0.0557 0.032 0.080
Completeness (%) (θ) 99.3 (25.00) 99.5 (25.24) 100 (25.24) 98.70% (25.20)

Data/restraints/parameters 5051/0/309 5416/42/363 4825/12/368 5341/21/331
GOF 1.085 0.992 1.027 1.206

Final R1, wR2 indices 0.0463, 0.1416 0.0642, 0.1363 0.0347, 0.0736 0.1010, 0.2039
R1, wR2 indices (all data) 0.0540, 0.1468 0.1203, 0.1620 0.0495, 0.0799 0.1812, 0.2249

Residuals peak/hole (e Å–3) 0.93/–0.46 0.54/–0.35 0.44/–0.43 1.46/–0.38

Supplementary crystallographic data for this paper have been deposited at Cambridge
Crystallographic Data Centre (1811845, 1811844, 1811842 and 1811843 for the complexes 1, 2, 3 and 4)
and can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html.

www.ccdc.cam.ac.uk/conts/retrieving.html
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3. Results and Discussion

3.1. IR Spectra Analyses

IR spectra of H2L and its corresponding Co(II) complexes 1–4 exhibits various bands in the region
of 3500–400 cm−1 region (Figure 1). The spectrum of the ligand H2L shows an O–H stretching band
at 3084 cm−1 that belongs to phenolic hydroxyl group. The free ligand exhibits a characteristic C=N
stretching band at 1613 cm−1, while νC=N of the Co(II) complexes 1–4 are observed at 1603, 1602, 1602,
and 1618 cm−1, respectively [46]. The shift of this C=N absorption bands by about 10, 11, 11 and
5 cm−1 on going from the free ligand H2L to the Co(II) complexes 1–4, respectively.

The Ar–O stretching band is a strong band at 1268–1213 cm−1 as reported for similar Salen-type
ligands [47,48]. This band is at 1263 cm−1 for H2L, and at 1242, 1242, 1249 and 1251 cm−1 for the
complexes 1–4, respectively. The Ar–O stretching bands are shifted to lower wavenumbers, indicating
that the Co–O bonds are formed between the Co(II) atoms and oxygen atoms of phenolic groups [31].

The far-infrared spectra of the Co(II) complexes 1–4 were obtained from 550 to 100 cm−1 to
identify wavenumbers due to the Co–O and Co–N bonds. IR spectra of the Co(II) complexes 1–4 show
ν(Co–N) (or ν(Co–O)) vibrational absorption bands at 527, 515, 521 and 521 (or 476, 489, 476 and 469)
cm−1, respectively, which are in consistent with the literature values [49,50].
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3.2. UV–vis Spectra

UV–vis absorption spectra of H2L and its complexes 1–4 were determined in 1.0× 10−5 M ethanol
solution, as shown in Table 2 and Figure 2.

Table 2. Absorption maxima and molar extinction coefficients for complexes 1–4.

Compound c

H2L 1.0 × 10–5 219 (5.1 × 10–4) 267 (4.9 × 10–4) 311 (2.6 × 10–4)
Complex 1 1.0 × 10–5 229 (1.1 × 10–5) 368 (2.6 × 10–4)
Complex 2 1.0 × 10–5 232 (9.5 × 10–4) 372 (5.9 × 10–4)
Complex 3 1.0 × 10–5 233 (8.7 × 10–4) 372 (5.5 × 10–4)
Complex 4 1.0 × 10–5 232 (5.2 × 10–4) 371 (3.4 × 10–4)
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Absorption spectra of the complexes 1–4 show that the complexes 1–4 have similar absorption
spectra, but are different from the spectrum of H2L. UV–Vis spectrum of H2L exhibits three absorption
peaks at ca. 219, 267 and 311 nm. The absorptions at 219 and 267 nm can be assigned to π–π*
transitions of the benzene rings while the absorptions at 311 nm can be attributed to intraligand
π–π* transitions of C=N groups [51–53]. Compared with the absorption peaks of H2L, with the
emergence of the first absorption peaks at ca. 229–233 nm are observed in the complexes 1–4,
These peaks are bathochromically shifed, indicating coordination of the ligand moieties with Co(II)
atoms. The absorption peaks at ca. 267 and 311 nm are absent in the complexes 1–4. Meanwhile,
new absorption peaks are observed at ca. 368–372 nm in the complexes 1–4, may be due to L→M
charge-transfer transitions, which are characteristic of the transition metal complexes with Salen-type
N2O2 coordination spheres [54].
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Figure 2. UV–vis spectra of H2L and its complexes 1–4 in ethanol (c = 1.0 × 10−5 M).

3.3. Description of the Crystal Structures

Selected bond lengths (Å) and angles (◦) are presented in Table S1. Hydrogen bonds in the Co(II)
complexes 1–4 are given in Table S2.

3.3.1. Structure of the Co(II) Complex 1

X-ray crystallographic analysis of the Co(II) complex 1 reveals a symmetric trinuclear structure.
As depicted in Figure 3. It crystallizes in the triclinic system, space group P–1, and consists of three
Co(II) atoms, two completely deprotonated (L)2- units, two µ2-acetato ligands and two coordinated
methanol molecules. All the hexa–coordinated Co(II) atoms lie in slightly distorted octahedral
coordination environment. The terminal Co2 atom is hexa–coordinated by two oxime nitrogen (N1
and N2) and two phenolic oxygen (O1 and O2) atoms of the deprotonated Salamo-type (L)2- unit, one
oxygen (O8) atom comes from the µ2-acetato ligand and the other oxygen (O9) atom comes from the
coordinated methanol molecule. The dihedral angle between coordination planes of N1-Co2-O1 and
N2-Co2-O2 is 5.03(5)◦. This indicates that Co2 forms a slightly distorted octahedral geometry.

The coordination geometry of the central Co1 atom deviates slightly from ideal octahedron.
The coordination sphere of the central Co1 atom contains four phenoxo oxygens (O1, O2, O1#1 and
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O2#1) atom from two deprotonated (L)2– units also coordinated to Co2 atom and double µ2–acetato
oxygen (O7 and O7#1) atoms that adopts a similar M-O-C-O-M fashion [55,56]. All the six oxygen
atoms that are coordinated to Co1 atom constitutes a slightly distorted octahedral geometry [57,58].
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In the crystal structure of the complex 1, the structure is connected by three pairs of intramolecular
hydrogen bonding (C8–H8A···O8, C10–H10A···O3 and C16–H16···O7) interactions (Table S2 and
Figure 4), which plays a vital role in constructing and stabilizing the complex 1 molecules [59–63].
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3.3.2. Structures of the Co(II) Complexes 2–4

X-ray crystal structure analysis of the Co(II) complexes 2–4 indicates that the structure is
similar to that of the Co(II) complex 1. They have the same individual trinuclear neutral molecular
unit [{CoL(µ2-OAc)(solvent)}2Co] (The solvent molecules are ethanol, Py and DMF in the Co(II)
complexes 2–4, respectively), as shown in Figure 5, Figure 6, and Figure 7, respectively, while the
different solvents observed lead to the formation of the typical solvent-induced Co(II) complexes [64].
All the hexa-coordinated Co(II) atoms of the Co(II) complexes 2–4 have slightly distorted octahedral
coordination polyhedra. The terminal Co2 or Co2#1 atom lies in a hexa-coordinated environment and
adopts a slightly distorted octahedral geometry, where the inner N2O2 coordinated environment of the
completely pentadentate (L)2− units comprises the basal plane and one oxygen (O9) atom from the
µ2-acetato ligands and one oxygen (O7) atom from the coordinated solvent molecule occupy together
the apical positions. (The solvent molecules are ethanol and DMF in the Co(II) complexes 2 and 4,
respectively). While for the complex 3, one oxygen (O8) atom from the µ2-acetate ion and one nitrogen
(N4) atom from the coordinated Py molecule occupy together the apical positions. The dihedral angle
between the two coordination planes of N1–Co2–O1 and N2–Co2–O4 (N2–Co1–O6 and N3–Co1–O5
or N3–Co2–O6 and N2–Co2–O5) is 7.06(3)◦ in the Co(II) complex 2 (6.41(2) or 8.03(2)◦ in the Co(II)
complex 3 or 4, respectively), which are larger than the Co(II) complex 1, showing that the terminal
Co(II) atoms have higher distortion than the Co(II) complex 1 in octahedral geometries.

In addition, the central Co1 atom is located in a hexa-coordinated environment, surrounded by
six oxygen atoms from the two [CoL(solvent)] units and two oxygen atoms from µ2-acetato ligands,
with the same coordination environment as that of the central Co(II) atom in the Co(II) complex 1.
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It is noteworthy that due to the different coordination solvent molecules of the complexes 1–4,
this solvent effect leads to different supramolecular interactions, but all the Co(II) atoms have the
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same slightly distorted octahedral geometries, and are shown in blue in the Figures 8b, 9b and
10b. There are three pairs of intramolecular hydrogen bonds in the Co(II) complexes 2 and 3.
(C8–H8A···O9, C10–H10A···O2, C18–H18A···O8 and C8–H8B···O8, C10–H10A···O8, C21–H21···O7)
(Figures 8a and 9a). The Co(II) complexes 2 and 3 are further linked by a pairs of intermolecular
hydrogen bonding interactions form a 1D and 2D supramolecular structures, respectively [65–70],
(C5–H5···O6′ and C15–H15···O2) (Figures 8b and 9b). In the crystal structure of the complex 4,
there are six pairs of intramolecular hydrogen bond (C5–H5···O8, C8–H8B···O9, C10–H10B···O3,
C16–H16···O8, C20–H20···O8 and C21–H21C···O7) interactions (Figure 10a). The neighboring complex
molecules are linked into an infinite 1D supramolecular structure by intermolecular hydrogen bonding
(C22–H22B···O1) interactions (Figure 10b).
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To sum up, here we report four homotrinuclear Co(II) Salamo-type complexes. In previous
reports, the Salamo-type Co(II) complexes are essentially mono- [58], di- [7,31], tri- [11,55,56] and
tetra-nuclear [71]. However, trinuclear complexes are generally bridged by acetato ligands, and the
ratios of the ligand to the Co(II) atoms are 1:1, 2:2, 2:3 and 2:4. Here we have successfully designed and
synthesized a new ligand by prolonging length of alkoxy chain of Salamo-type ligand, and including
introduce of different aldehyde units. Its corresponding Co(II) complexes were synthesized by the
introduction of different solvents, in order to further promote the study of its structure and properties.
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3.3.3. Solvent Effect

Four Co(II) complexes could been synthesized by the reaction of the Salamo–type ligand H2L with
Co(OAc)2·4H2O in different solvents. The complexes 1–4 present similar stoichiometric ratio when the
introduction of different solvent molecules. Although the molecule structures of the Co(II) complexes
are similar each other, obtained in different mixture solutions, the complexes 1–4 possess different
supramolecular structural features. The Co(II) complexes 2–4 self-assemble into infinite 1D, 2D and
1D supramolecular structures through intermolecular hydrogen bonding interactions, respectively.
In the Co(II) complexes 1–4, the solvent effect clearly shows the changes in bond distances (Å) and
angles (◦). (Table S1). It is noteworthy that the bond lengths from the oxygen (O9 and O7) atoms of the
coordinated solvent molecules (methanol or ethanol) to the terminal Co(II) ions in the Co(II) complexes
1 and 2 are 2.109(2) and 2.168(4) Å, respectively, which present a regular elongation when the steric
hindrance successively becomes larger from methanol to ethanol.

3.4. Magnetic Property

Since complexes 1–4 have similar structures, they have little difference in magnetic properties.
This article only discusses the magnetic property of the complex 3. The magnetic analysis of complex
3 was tested under the applied magnetic field of 1000Oe, and the magnetic susceptibility data of
the complex 3 in the temperature range of 2–300 K was measured. Measured the sample with the
single-crystals of the complex 3. The temperature dependence of magnetic susceptibilities of the
complex 3 is shown in Figure 11. The χMT value of the complex 3 is 8.79 cm3 K mol−1 at 300 K.
which is larger than the value of 5.63 cm3 K mol−1 expected for three Co(II) (S = 3/2) magnetically
isolated ions. Upon lowering the temperature, the χMT value kept decrease gradually to reach a
minimum value of 6.63 cm3 K mol−1 at 10 K, and when the temperature was further decreased,
the χMT value increased sharply and reached a maximum value of 8.46 cm3 K mol−1 at 2 K. The χMT
value decreased with decreasing temperature, indicating an intramolecular weak antiferromagnetic
interaction between the three Co(II) atoms. In addition, when the temperature dropped below 2 K, the
sharp increase in the χMT value is mainly due to the interaction between ferromagnetic molecules,
Zero-field splitting and Zeeman effects. The magnetic susceptibilities (1/XM) obey the Curie–Weiss law
in the 2–300 K temperature range for the complex 3, giving a negative Weiss constant θ = −6.686 K
and C = 8.931 cm3 K mol−1 (Figure 11 inset), and confirming the weak antiferromagnetic interaction
exhibited again by the complex 3 [19,43,72–74].
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4. Conclusions

We have designed and synthesized four new solvent-induced trinuclear Co(II) complexes with
a new Salamo-type ligand. Single-crystal X-ray diffraction structures revealed that the structural
features of the complexes 1–4 are very similar each other except for the differences in the coordinated
solvent molecules. Interestingly, the existence of solvent effect in the complexes 1–4 may be responsible
for the slight differences in their crystal and supramolecular structures. The Co(II) complexes 2–4
possess self-assembling infinite 1D, 2D and 1D supramolecular structures via the intermolecular
hydrogen bond interactions, respectively. All the Co(II) atoms of the Co(II) complexes 1–4 lie in a
hexa-coordinated environment and adopt slightly distorted octahedral geometries. The UV–vis spectra
clearly indicate that the structures of the four Co(II) complexes are similar and different from that of
the ligand (H2L). Magnetic study showed that the complex 3 has weak antiferromagnetic interaction
at higher temperature.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/8/3/139/s1,
Table S1: Selected bond lengths (Å) and angles (◦) for the complexes 1–4; Table S2 Hydrogen bonding interactions
[Å ◦] for the complexes 1–4.
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