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Abstract: A novel hexanuclear Co(II) coordination compound with a nonsymmetrical Salamo-type
bisoxime ligandH4L, namely [{Co3(HL)(MeO)(MeOH)2(OAc)2}2]·2MeOH, was prepared and
characterized by elemental analyses, UV–vis, IR and fluorescence spectra, and X-ray single-crystal
diffraction analysis. Each Co(II) is hexacoordinated, and possesses a distorted CoO6 or CoO4N2

octahedrons. The Co(II) coordination compound possesses a self-assembled infinite 2D supramolecular
structure with the help of the intermolecular C–H···O interactions. Meanwhile, the photophysical
properties of the Co(II) coordination compound were studied.

Keywords: nonsymmetrical Salamo-type ligand; Co(II) coordination compound; crystal structure;
synthesis; photophysical property

1. Introduction

Salen (N,N′-Disalicylideneethylenediamine) and its derivatives play an important role in inorganic
chemistry [1–10], which are gained via the condensation reaction of diamines with salicylaldehyde or
its analogues, and can coordinate to transition metal ions in a tetradentate chelating mode to form a
neutral metal coordination compound [11–18]. Such coordination compounds have been extensively
investigated as nonlinear optical materials [19], catalysts [20,21], strong activities with DNA, and
so on [22–29]. In addition, some of these coordination compounds possess interesting magnetic
properties [30–32]. Meanwhile, supramolecular chemistry has recognized Salen-type coordination
compounds because of intermolecular hydrogen bonding interactions, C–H···π and π···π stacking
interactions consist in chelate rings and the associated aromatic rings [33–42]. In recent years, our
focus switched to the syntheses, structures, and properties of metal coordination compounds with
Salamo (2,2′-[Ethylenedioxybis(nitrilomethyli-dyne)]diphenol) and its various derivatives derived
from its constitutional units with different substituent groups [43–49]. The structural motifs of these
coordination compound molecules may be affected by several factors, such as the performance of the
ligands, the property of the central atoms, anion effects, solvent effects, and so on[50–59]. Transition
metal Salamo-type coordination compounds have aroused widespread concerns for their photophysical
properties [60–66]. Previous studies have been carried out on the mononuclear coordination
compounds [67,68]. However, there are relatively few studies on multinuclear Salamo-type bisoxime
coordination compounds. Though mono-, di-, and trinuclear Co(II) coordination compounds have
been reported [69–71], the study of the synthesis and corresponding properties of multinuclear Co(II)
coordination compounds are relatively few [72–74].
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The purpose of the present work is the structural characterization of polynuclear
Co(II) coordination compounds derived of nonsymmetrical Salamo-type bisoxime ligands.
Here, the ligand H4L and its corresponding hexanuclear Co(II) coordination compound
([{Co3(HL)(MeO)(MeOH)2(OAc)2}2]·2MeOH) was gained. In addition, the supramolecular buildings
and photophysical behaviors of the Co(II) coordination compound are discussed.

2. Experimental

2.1. Materials and Physical Measurements

All chemicals were of analytical reagent grade. Elemental analyses for C, H, and N were gained
using a GmbH VarioEL V3.00 automatic elemental analysis instrument (Berlin, Germany), elemental
analysis for Co was detected by an IRIS ER/S·WP-1 ICP atomic emission spectrometer (Berlin,
Germany). UV–vis and fluorescence spectra were measured on a Shimadzu UV-2550 spectrometer
(Shimadzu, Japan) and F-7000 FL spectrometer (Hitachi, Tokyo, Japan), respectively. Infrared (IR)
spectra were performed on a VERTEX-70 FT-IR spectrophotometer (Bruker, Billerica, MA, USA), with
samples prepared as KBr (500–4000 cm−1). 1H-NMR spectra were carried out via German Bruker
AVANCE DRX-400 spectroscopy (Bruker AVANCE, Billerica, MA, USA). Single-crystal X-ray structure
determination was performed on a SuperNova Dual (Cu at zero) Eos four-circle diffractometer. Melting
points were measured via a microscopic melting point apparatus (Beijing Taike Instrument Limited
Company, Beijing, China).

2.2. Preparations and Characterizations

2.2.1. Preparation and Characterization of H4L

1,2-Bis(aminooxy)ethane was obtained by an early reported method [75–77]. Yield: 85.2%. Anal.
Calcd for C2H8N2O2 (%): C, 26.08; H, 8.76; N, 30.42. Found: C, 25.98; H, 8.90; N, 30.38. The synthetic
route to H4L is depicted in Scheme 1.
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Scheme 1. Synthetic route to H4L. 

Monooxime compound was obtained by a modified method [32]. After purification by column 
chromatography, single condensation product of ethylene oxide single condensing 1,2-diamine-2,4-
dihydroxyacetophenone was obtained. Reaction of ethylene oxide single condensing 1,2-diamine-2,4-
dihydroxyacetophenone with 2,3-dihydroxybenzaldehyde provided one nonsymmetrical Salamo-
type compound H4L. Yield: 88.7%. Anal. Calcd. for C17H18N2O6 (%): C, 58.89; H, 4.82; N, 8.17. Found: 
C, 59.23; H, 4.91; N, 8.01. 1H-NMR (400MHz, CDCl3): δ = 2.28(s, 3H, –CH3), 4.45–4.53(m, 4H, –CH2–
CH2–), 5.12(s, 1H, O–H), 5.59(s, 1H, O–H), 6.42(m, 2H, Ar–H), 6.75(dd, J = 1.52, 1.28Hz, 1H, Ar–H), 
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Monooxime compound was obtained by a modified method [32]. After purification
by column chromatography, single condensation product of ethylene oxide single condensing
1,2-diamine-2,4-dihydroxyacetophenone was obtained. Reaction of ethylene oxide single
condensing 1,2-diamine-2,4-dihydroxyacetophenone with 2,3-dihydroxybenzaldehyde provided one
nonsymmetrical Salamo-type compound H4L. Yield: 88.7%. Anal. Calcd. for C17H18N2O6 (%): C,
58.89; H, 4.82; N, 8.17. Found: C, 59.23; H, 4.91; N, 8.01. 1H-NMR (400MHz, CDCl3): δ = 2.28(s, 3H,
–CH3), 4.45–4.53(m, 4H, –CH2–CH2–), 5.12(s, 1H, O–H), 5.59(s, 1H, O–H), 6.42(m, 2H, Ar–H), 6.75(dd,
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J = 1.52, 1.28Hz, 1H, Ar–H), 6.85(t, J = 1.36, 1.20, 1.16Hz, 1H, Ar–H), 6.97(dd, J = 1.56, 1.68Hz, 1H,
Ar–H), 7.28(d, J = 9.12Hz, 1H, Ar–H), 8.22(s, 1H, N=C–H), 9.91(s, 1H, O–H), 11.38(s, 1H, O–H) ppm.

2.2.2. Preparation and Characterizationof the Co(II) Coordination Compound

A methanol solution (3 mL) of Co(OAc)2·4H2O (37.3 mg, 0.150 mmol) was added dropwise to a
methanol solution (4 mL)of H4L (17.3 mg, 0.050 mmol). The color of the mixed solution immediately
turned to brown, and then continuing stirring for 2 h. The resultant solution was allowed to slowly
evaporate at room temperature. Brown diamond single crystals suitable for X-ray diffraction studies
were obtained after four weeks. Yield: 68.5%. Anal. Calcd. for C50H72Co6N4O28 (%): C, 39.23; H, 4.74;
N, 3.66; Co, 26.10. Found: C, 39.62; H, 4.57; N, 3.38; Co, 25.78.

2.3. X-ray Structure Determination of the Co(II) Coordination Compound

X-ray diffraction data were collected on a SuperNova Dual (Cu at zero) Eos four-circle
diffractometer via graphite monochromatized Mo-Kα radiation (λ = 0.71073 Å) at 298(2) K. Unit
cell parameters were determined by least squares analysis. The LP factor and semi-empirical
absorption corrections were applied to the intensity data. The structure was solved by the direct
method (SHELXS-97), and all hydrogen atoms were added theoretically. All non-hydrogen atoms
were refined anisotropically using a full-matrix least-squares procedure on F2 with SHELXL-97.
Anisotropic thermal parameters were assigned to all non-hydrogen atoms. The hydrogen atoms
were generated geometrically. Some reflections with high intensities, which made the detector
overflow, were automatically omitted by the diffractometer. So some reflections were missing.
The crystallographic and structural refinement data for the Co(II) coordination compound are
summed in Table 1. Supplementary crystallographic data for this paper have been deposited
at the Cambridge Crystallographic Data Centre (1519431) and can be obtained free of charge
viawww.ccdc.cam.ac.uk/conts/retrieving.html.

Table 1. Crystallographic and structural refinement data for the Co(II) coordination compound.

Molecular formula C50H72Co6N4O28
Molecular weight/g·mol–1 1530.63

Color Light-brown
Habit Block-shaped

Crystal size (mm) 0.21 × 0.23 × 0.31
Crystal system Monoclinic

Space group C2/c
Unit cell dimension

a (Å) 17.9738(8)
b (Å) 15.0717(8)
c (Å) 24.5022(14)
α (◦) 90
β (◦) 102.627(5)
γ (◦) 90

V (Å3) 6477.0(6)
Z 4

Dc(g·cm–3) 1.570
µ(mm–1) 1.585

F(000) 3144
θ range for data collection (◦) 3.2–26.0

Index ranges −22 ≤ h ≤ 22, −18 ≤ k ≤ 18, −29 ≤ l ≤ 30
Reflections collected 14,114

Completeness to θ = 25.00 (%) 99.7
Data/restraints/parameters 6381/0/415

Final Rindices(I > 2σ(I)) R1 = 0.0504, wR2 = 0.1227
R indices(all data) R1 = 0.0694, wR2 = 0.1111

Largest diff. peak and hole (e·Å–3) 0.51 and −0.43

viawww.ccdc.cam.ac.uk/conts/retrieving.html
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3. Results and Discussion

3.1. Description of the Crystal Structure

Asdepicted in Figure 1, the centrosymmetric neutral homomultinuclear Co(II) coordination
compound has been revealedby single crystal X-raydiffraction (Table 2). It crystallizes in the monoclinic
crystal system, space group C2/c, and consists of six Co(II) atoms, two (HL)3- units, two µ2-acetato
ions, two bidentate chelating acetate ions, two coordinated deprotonated methanol molecules, four
coordinated methanol molecules, and two crystallizing methanol molecules. This 6:2 (Co(II) atom:
Ligand) type of Co(II) coordination compound is unprecedented in the early reported Salamo-based
Co(II) coordination compounds bearing the structures of 1:1 [44,58], 3:2 [44,47,74], 4:2 [15] and 8:4 [78].
(Figure 1) The whole coordination compound molecule is symmetrical and therefore only shows Co1,
Co2, and Co3 coordination situation can explain the structure of the whole coordination compound.
The terminal Co1 atom is located in the N2O2 coordination sphere, the axial position is occupied by two
oxygen atoms from two coordinated methanol molecules. The Co2 atom is surrounded by quadruple
phenol oxygen atoms (O1, O5, O7 and O7#1) from two (HL)3- moieties, one µ2-acetato oxygen atom
(O2) and one deprotonated methanol oxygen atom (O6). Meanwhile, the Co3 atom coordinates with
one phenol oxygen atom (O7) from one (HL)3- moiety, one µ2-acetato oxygen atom (O13), two oxygen
atoms (O6 and O6#1) of two coordinated deprotonated methanol molecules and two bidentate chelate
acetato oxygen atoms (O11 and O12) which adopt a familiar Co–O–C–O–Co fashion. Each Co(II) atom
bears a hexacoordinate sphere and possesses distorted CoO6 or CoO4N2 octahedrons.The hydrogen
atoms of two µ2-acetato ions (H10B, H10C, H10D and H10B#1, H10C#1, H10D#1; H22A, H22B, H22C
and H22A#1, H22B#1, H22C#1) are disordered equally over two different positions, which were allowed
for during refinement.
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Table 2. Selected bond lengths (Å) and angles (◦) for the Co(II) coordination compound.

Bond Dist. Bond Dist. Bond Dist.

Co2–O1 2.117(3) Co3–O6 2.061(2) Co1–O1 2.019(3)
Co2–O2 2.141(3) Co3–O6#1 2.089(3) Co1–O5 2.025(2)
Co2–O5 2.029(2) Co3–O7 2.150(2) Co1–O8 2.112(3)
Co2–O6 2.067(3) Co3–O11 2.208(3) Co1–O9 2.214(3)
Co2–O7 2.073(2) Co3–O12 2.116(3) Co1–N18 2.165(3)

Co2–O7#1 2.209(2) Co3–O13 2.041(3) Co1–N25 2.113(4)
Co3–Co3#1 2.9071(10) Co3–C18 2.511(4) Co3#1–O6 2.089(3)
Co2#1–O7 2.209(2)

Bond Angles Bond Angles Bond Angles

O1–Co2–O2 90.80(11) O11–Co3–C18 30.08(12) Co3–O6–Co2 101.80(10)
O1–Co2–O7#1 153.79(9) O12–Co3–Co3#1 146.40(9) Co3–O6–Co3#1 88.94(11)
O2–Co2–O7#1 88.85(10) O13–Co3–O6 91.72(11) C20–O6–Co2 121.2(3)
O5–Co2–O1 76.15(10) O13–Co3–O6#1 93.82(14) C20–O6–Co3 122.4(2)
O5–Co2–O2 86.34(10) O13–Co3–O7 170.00(10) C20–O6–Co3#1 115.2(3)
O5–Co2–O6 101.62(10) O13–Co3–O11 92.80(13) Co2–O7–Co2#1 92.10(9)

O5–Co2–O7#1 77.67(9) O13–Co3–O12 98.46(11) Co2–O7–Co3 98.68(9)
O5–Co2–O7 163.15(10) O13–Co3–C18 97.74(13) Co3–O7–Co2#1 94.82(9)
O6–Co2–O1 102.51(11) C18–Co3–Co3#1 176.17(11) C15–O7#1–Co2#1 105.67(19)
O6–Co2–O2 165.75(10) O1–Co1–O5 78.47(10) C15–O7–Co2#1 133.1(2)
O6–Co2–O7 80.59(9) O1–Co1–O8 98.60(14) C15–O7–Co3#1 121.9(2)

O6–Co2–O7#1 81.45(10) O1–Co1–O9 87.35(11) Co1–O8–H8 111(4)
O7–Co2–O1 119.97(10) O1–Co1–N18 161.07(12) C24–O8–Co1 132.9(3)
O7–Co2–O2 88.43(10) O1–Co1–N25 86.34(13) Co1–O9–H9 98(4)

O7–Co2–O7#1 86.23(9) O5–Co1–O8 91.60(11) C23–O9–Co1 122.5(3)
O6#1–Co3–Co3#1 45.14(7) O5–Co1–O9 90.46(11) C18–O11–Co3 88.4(3)
O6–Co3–Co3#1 45.92(8) O5–Co1–N18 83.09(11) C18–O12–Co3 92.5(2)
O6–Co3–O6#1 87.96(11) O5–Co1–N25 164.65(13) C10–O13–Co3 126.2(4)
O6–Co3–O7#1 82.40(10) O8–Co1–O9 173.99(13) O4–N18–Co1 124.2(2)
O6–Co3–O7 78.93(9) O8–Co1–N18 86.09(14) C10–N18–Co1 127.3(3)

O6–Co3–O11#1 161.75(10) O8–Co1–N25 92.93(14) O3–N25–Co1 120.9(3)
O6–Co3–O11 108.83(11) N18–Co1–O9 88.55(13) C7–N25–Co1 128.9(3)

O6–Co3–O12#1 101.92(11) N25–Co1–O9 86.53(14) Co1–O5–Co2 103.33(11)
O6–Co3–O12 165.23(11) N25–Co1–N18 111.85(14) C16–O5–Co2 112.6(2)
O6–Co3–C18 137.80(13) Co1–O1–Co2 100.48(11) C16–O5–Co1 132.1(2)

O6–Co3#1–C18 131.87(12) C1–O1–Co2 128.5(3) Co2–O6–Co3#1 101.10(11)
O7–Co3–Co3#1 90.21(6) C1–O1–Co1 129.0(2) O12–Co3–O7 91.39(10)
O7–Co3–O11 93.59(11) C21–O2–Co2 128.6(3) O12–Co3–O11 60.23(11)
O7–Co3–C18 91.63(12) O12–Co3–O7 91.39(10) O12–Co3–O11 60.23(11)

O11–Co3–Co3#1 153.05(8)

Symmetry transformations used to generate equivalent atoms: #1-x+1, -y+1, -z+1.

In the crystal structure of the Co(II) coordination compound, there are five significant
intramolecular hydrogen bonds (O9–H9···O2, O10–H10···O11, C2–H2···O11, C17–H17C···O3 and
C8–H8B···O9) and two intermolecular C12–H12···O13 and O14–H14A···O12 interactions (Figure 2).
In addition, there is a pair of π···π interactions Cg1···Cg1 (Cg1=C1–C2–C3–C4–C5–C6) (Figure 3) in
the Co(II) coordination compound [79]. Meanwhile, the hydrogen bonds interactions existing in the
Co(II) coordination compound are described in graph sets (Figure 4) [80]. Furthermore, the molecules
are linked by intermolecular interactions form a 2D infinite planar (Figure 5). Putative hydrogen bonds
for the Co(II) coordination compoundare listed in Table 3.
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Table 3. Putative hydrogen bondings (Å), (◦) in the Co(II) coordination compound.

D–H···A d(D–H) d(H···A) d(D···A) ∠∠∠D–H···A Symmetry Code

C12–H12···O13 0.93 2.35 3.275(5) 171 −1/2+x,–1/2+y,z
O9–H9···O2 0.85 1.77 2.616(4) 171

O10–H10···O11 0.82 1.99 2.759(5) 157
O14–H14A···O12 0.82 1.90 2.718(5) 175 −x,y,1/2 − z

C2–H2···O11 0.93 2.46 3.191(5) 135
C8–H8B···O9 0.97 2.45 3.291(6) 145

C17–H17C···O3 0.96 2.19 2.543(8) 100

3.2. IR Spectroscopy

IR spectra (Table 4) of H4L and its corresponding Co(II) coordination compound exhibit different
bands in the region of 400–4000 cm−1. H4L shows a characteristic C=N stretching band at 1630 cm−1,
while the C=N stretching band of the Co(II) coordination compound appears at 1592cm−1 [64]. For the
ligand H4L, the Ar–O stretching band appears at 1260 cm−1, which is observed at 1255 cm−1 for the
Co(II) coordination compound. The characteristic C=N and Ar–O stretching frequencies are shifted to
lower frequencies, exhibiting that the Co–N and Co–O bonds are formed [69,71]. The O–H stretching
frequency of H4L appears at 3373 cm−1, whereas the Co(II) coordination compound shows a stretching
band at 3421 cm−1, which is attributed to vibrations of the coordinated methanol molecules. For the
Co(II) coordination compound, the ν(Co–O) and ν(Co–N) frequencies are observed at 463 and 519 cm−1,
respectively [74,81].

Table 4. Major IR bands for H4L and its Co(II) coordination compound(cm−1).

Compound ν(O–H) ν(C=N) ν(Ar–O) ν(Co–O) ν(Co–N)

H4L 3373 1630 1260 – –
Co(II) 3421 1592 1255 463 519

3.3. UV–Vis Spectroscopy

The UV–vis spectra of H4L and its Co(II) coordination compound were measured in
1×10−6 mol·L−1 CH2Cl2 solution. It is noteworthy that the absorption peaks of the Co(II) coordination
compound are evidently different from those of H4L (Figure 6). Electronic absorption spectrum of H4L
composes of two relatively intense peaks centered at 275 and 299 nm, attributed to the intra-ligand π–π*
transitions of the benzene rings and the C=N bonds, respectively. Compared with H4L, the absorption
peaks of the Co(II) coordination compound appears at 277 and 311 nm, which are bathochromically
shifted by ca. 2 and 12 nm, exhibiting the Co(II) ions have coordinated with H4L. The new peak
of the Co(II) coordination compound appears at ca. 385 nm, attributed to L→M charge-transfer
transition [82,83].



Crystals 2018, 8, 144 9 of 15

Crystals 2018, 8, x FOR PEER REVIEW  8 of 14 

 

Table 3. Putative hydrogen bondings (Å), (°) in the Co(II) coordination compound. 

D–H···A d(D–H) d(H···A) d(D···A) ∠D–H···A Symmetry Code 
C12–H12···O13 0.93 2.35 3.275(5) 171 −1/2+x,–1/2+y,z 

O9–H9···O2 0.85 1.77 2.616(4) 171  
O10–H10···O11 0.82 1.99 2.759(5) 157  

O14–H14A···O12 0.82 1.90 2.718(5) 175 −x,y,1/2 − z 
C2–H2···O11 0.93 2.46 3.191(5) 135  
C8–H8B···O9 0.97 2.45 3.291(6) 145  

C17–H17C···O3 0.96 2.19 2.543(8) 100  

3.2. IR Spectroscopy 

IR spectra (Table 4) of H4L and its corresponding Co(II) coordination compound exhibit different 
bands in the region of 400–4000 cm−1. H4L shows a characteristic C=N stretching band at 1630 cm−1, 
while the C=N stretching band of the Co(II) coordination compound appears at 1592cm−1 [64]. For the 
ligand H4L, the Ar–O stretching band appears at 1260 cm−1, which is observed at 1255 cm−1 for the 
Co(II) coordination compound. The characteristic C=N and Ar–O stretching frequencies are shifted 
to lower frequencies, exhibiting that the Co–N and Co–O bonds are formed [69,71]. The O–H 
stretching frequency of H4L appears at 3373 cm−1, whereas the Co(II) coordination compound shows 
a stretching band at 3421 cm−1, which is attributed to vibrations of the coordinated methanol 
molecules. For the Co(II) coordination compound, the ν(Co–O) and ν(Co–N) frequencies are observed at 
463 and 519 cm−1, respectively [74,81]. 

Table 4. Major IR bands for H4L and its Co(II) coordination compound(cm−1). 

Compound ν(O–H) ν(C=N) ν(Ar–O) ν(Co–O) ν(Co–N) 
H4L 3373 1630 1260 – – 

Co(II) 3421 1592 1255 463 519 

3.3. UV–Vis Spectroscopy 

The UV–vis spectra of H4L and its Co(II) coordination compound were measured in 1×10−6 
mol·L−1 CH2Cl2 solution. It is noteworthy that the absorption peaks of the Co(II) coordination 
compound are evidently different from those of H4L (Figure 6). Electronic absorption spectrum of 
H4L composes of two relatively intense peaks centered at 275 and 299 nm, attributed to the intra-
ligand π–π* transitions of the benzene rings and the C=N bonds, respectively. Compared with H4L, 
the absorption peaks of the Co(II) coordination compound appears at 277 and 311 nm, which are 
bathochromically shifted by ca. 2 and 12 nm, exhibiting the Co(II) ions have coordinated with H4L. 
The new peak of the Co(II) coordination compound appears at ca. 385 nm, attributed to L→M charge-
transfer transition[82,83]. 

 
Figure 6. UV–vis spectra of H4L and its Co(II) coordination compound in CH2Cl2 (1 ×10−6M). 

300 350 400 450

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
bs

or
ba

nc
e  

Wavelength（nm）

 H
4
L

 Coordination Compound

311

299

385

277

275

Figure 6. UV–vis spectra of H4L and its Co(II) coordination compound in CH2Cl2 (1 ×10−6M).

3.4. Fluorescence Properties

The fluorescence properties of H4L and its corresponding Co(II) coordination compound were
studied are depicted in Figure 7. H4L displays strong emission peak at ca. 412 nm upon excitation
at 271 nm, and it should be attributed to the intra-ligand π–π* transition. The Co(II) coordination
compound displays lower photoluminescence with maximum emission at ca. 360 nm. Compared
with H4L, emission intensity of the Co(II) coordination compound evidently reduces, showing that
the Co(II) ions possess a certain degree of fluorescence quenching, which makes the conjugated
system larger, and also indicates it may be a purple device. The solid-state fluorescence spectra of
the ligand H4L and its Co(II) coordination compound are depicted in Figure 8. Compared to liquid
fluorescence spectroscopy, the ligand H4L and its corresponding Co(II) coordination compound have
strong fluorescence in solid-state fluorescence spectroscopy.
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4. Conclusions

In summary, we have synthesized and characterized a nonsymmetrical Salamo-type
N2O2 ligand, and obtained an unprecedented hexanuclear Co(II) coordination compound,
[{Co3(HL)(MeO)(MeOH)2(OAc)2}2]·2MeOH. X-ray crystal structure analysis of the Co(II) coordination
compound revealed that each Co(II) is hexacoordinated, and possesses distorted CoO6 or CoO4N2

octahedrons. The Co(II) coordination compound possesses a 2D layered structure through
intermolecular C–H···O interactions. In addition, the fluorescence properties indicate that coordinated
Co(II) ions resulted to the fluorescence quenching of H4L.
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