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Abstract: We review the recently developed models for load fluctuations in the displacement
controlled mode and displacement jumps in the load controlled mode of indentation. To do this,
we devise a method for calculating plastic contribution to load drops and displacement jumps
by setting-up a system of coupled nonlinear time evolution equations for the mobile and forest
dislocation densities by including relevant dislocation mechanisms. These equations are then coupled
to the equation defining constant displacement rate or load rate. The model for the displacement
controlled mode using a spherical indenter predicts all the generic features of nanoindentation such as
the elastic branch followed by several force drops of decreasing magnitudes and residual indentation
depth after unloading. The stress corresponding to the elastic force maximum is close to the yield
stress of an ideal solid. The predicted numbers for all the quantities match experiments on single
crystals of Au using a spherical indenter. We extend the approach to model the load controlled
nanoindentation experiments that employ a Berkovich indenter. We first identify the dislocation
mechanisms contributing to different regions of the F− z curve as a first step for obtaining a good fit to
a given experimental F− z curve. This is done by studying the influence of the parameters associated
with various dislocation mechanisms on the model F− z curves. The study also demonstrates that
the model predicts all the generic features of nanoindentation such as the existence of an initial elastic
branch followed by several displacement jumps of decreasing magnitudes and residual plasticity
after unloading for a range of model parameter values. Furthermore, an optimized set of parameter
values can be easily determined that give a good fit to the experimental load–displacement curves
for Al single crystals of (110) and (133) orientations. Our model also predicts the indentation size
effect in a region where the displacement jumps disappear. The good agreement of the results of the
models with experiments supports our view that the present approach can be used as an alternate
method to simulations. The approach also provides insights into several open questions.

Keywords: plastic deformation; dislocation mechanisms; nonlinear dynamical approach; intermittent
plastic flow; indentation hardness

1. Introduction

The fact that mechanical properties of small volume systems are different from the bulk has been
evident in a number of early studies. For instance, the high strength of whiskers is due to the absence
of dislocations [1,2]. Similarly, the grain boundary strengthening mechanism is due to the fact that
dislocation motion is limited by the grain size, and the dynamic friction (wear) is controlled by the
plastic deformation of micrometer or sub-micrometer asperities [3]. There has been a spurt of activity
in size dependent studies on plastic deformation of small volume systems in the last three decades due
to technological importance as well as the scientific challenges it offers. For instance, intermittent flow
is observed when the diameter of micrometer rods are below a certain value while it is smooth when it
is large implying the instability manifests when the aspect ratio is reduced [4–6]. Similar intermittent
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plastic flow in the form of load fluctuations or displacement jumps is reported when the indentation
depth is less than 100 nm both in thin and bulk samples [7–12]. Thus, nanoindentation experiments fall
into the class of experiments where plastic instability manifests due to small deformed volume [7–12].

Traditionally, two modes of nanoindentation experiments are employed, namely, load/force
controlled (LC) mode or displacement controlled (DC) mode [7,9,11,13–15]. In both modes, experiments
measure the force response of the sample (to the applied force) as a function of indentation depth.
While several load drops of decreasing magnitudes are seen in the DC mode experiments [7,9,11,13–15],
several displacement jumps of decreasing magnitudes are seen beyond the elastic limit in the LC mode
experiments [10,12,14,16,17]. The maximum load on the elastic branch is close to the theoretical yield
stress. In both modes, residual plasticity is seen after unloading the indenter. While the presence of
surface defects, oxide coatings, precipitates, etc. complicate the interpretation of the results, careful
and controlled experiments on well-prepared single crystals have demonstrated that the above generic
features are reproducible [11,14,15,18]. Since the deformed volume prior to the onset of intermittent
plastic flow is a few nm3, the standard explanation for the high yield strength is the low probability of
finding dislocations in such small deformed volumes. The sequence of load drops in the DC mode and
displacement jumps in the LC mode beyond the elastic branch have been considered as signatures of
instabilities triggered by bursts of plasticity.

Three distinct types of studies have provided much insight into the nanoindentation process,
namely, bubble raft indentation[10], colloidal crystals, which are soft matter equivalent of the crystalline
phase [19], and in situ transmission electron microscope studies. The latter, in particular, has been
useful in visualizing the dislocation nucleation mechanism in real materials [20]. Finally, considerable
theoretical understanding has come from various types of simulation studies such as molecular
dynamics (MD) simulations [21–26], dislocation dynamics simulations and multiscale modeling
simulations (using MD together with dislocation dynamics simulations) [26]. While there are a number
of MD simulations for the DC mode, there are no simulations of any kind that predict displacement jumps
reported in the LC mode experiments.

However, a serious limitation of these simulations is the limited size of the simulated volumes and
short time scales used. More importantly, the indentation rates are often several orders of magnitude higher
than those in experiments, raising questions of relevance of these simulations to real materials [23,27].
Furthermore, simulation approaches cannot employ experimental parameters such as the indentation rates
or the geometrical parameters defining the indenter, thickness of the sample, etc. As a result, the predicted
values of load, indentation depth, etc. differ considerably from those reported by experiments.

The above limitations of simulation methods prompted us to develop an alternate framework that
has the ability to adopt laboratory time and length scales to predict numbers that agree with experiments.
The purpose of this paper is to review the recently introduced dynamical approach and the models
that predict the results for the DC and LC mode nanoindentation experiments [28,29]. The approach is
based on our previous experience in modeling a significantly more complex spatio-temporal instability,
namely, the Portevin–Le Chatelier (PLC) effect seen in bulk samples of dilute alloys under constant
strain rate conditions [30–34]. The approach is applicable to ideal single crystals without any kind
of defects.

Our approach to nanoindentation is based on two observations. First, the sequence of load
drops (in the DC mode) and the sequence of displacement jumps (in the LC mode) seen beyond the
elastic branch are triggered by collective dislocation activity. Second, the intermittent deformation
is a signature of an instability. The most suitable mathematical platform for describing instabilities
and collective behavior of constituent entities is nonlinear dynamics. Furthermore, since the basic
defects contributing to plastic flow are dislocations, a proper description of collective dislocation
behavior demands that we include all the relevant dislocation mechanisms contributing to the bursts
of plasticity. On the basis of these observations, we recently developed a novel approach [28,29] by
combining the power of nonlinear dynamics with a method for calculating the plastic contribution to
the indentation depth. The latter is calculated by developing time evolution equations for the mobile
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and forest dislocation densities based on the knowledge of the dislocation mechanisms contributing
to plastic flow [28,29]. In addition, the approach allows us to employ experimental indentation rates,
the geometrical parameters defining the indenter, thickness of the film, etc. The efficacy of the approach
is illustrated by developing a model for the DC mode nanoindentation experiments (carried out using
a spherical indenter) [28]. The model predicts all the generic features of the DC mode with numbers
matching experimental results on single crystals of gold [11,15]. We have also developed a model for
predicting the displacement jumps in the LC mode indentation even though the exercise is even more
challenging due to the conceptual difficulty in enforcing a constant load rate during displacement
jumps. Indeed, this difficulty appears to be the reason for a complete absence of any kind of simulations
to explain the displacement jumps in the LC mode. Since we plan to get a good fit to the experimental
F− z plots [12], we first study the influence of the parameters associated with dislocation mechanisms
on the model F− z curves with a view to identify the dislocation mechanisms that control different
regions of the F − z curve. The study further demonstrates that the model predicts all the generic
features of nanoindentation such as the existence of an initial elastic branch followed by several
displacement jumps of decreasing magnitudes and residual plasticity after unloading for a range of
values of model parameters associated with the dislocation mechanisms. This also helps us to obtain optimized
parameter values that give a good fit to the experimental load–displacement curves for Al single
crystals of (110) and (133) orientations [12]. While hardness is not well defined at nanometer scales
where displacement jumps dominate, for larger indentation depths where intermittency disappears,
the hardness decreases with depth. Thus, indentation size effect is also predicted. These results also
justify our expectation that the present approach can be used as an alternate method to simulations in
modeling nanoindentation instabilities. These studies also provide insights into several open questions
related to the collective behavior of dislocations: (a) Which dislocation mechanisms determine the
first and subsequent load drops or displacement jumps? (b) Can all load drops and displacement
jumps be explained on the basis of a common physical and mathematical mechanism? (c) What
physical and mathematical mechanisms contribute to the decreasing magnitudes of the load drops or
displacement jumps?

2. Insights from Simulations on Nanoindentation

At the outset, it must be mentioned that, apart from bubble raft simulation [10], only MD
simulations predict load drops in DC mode of nanoindentation. There are no MD simulations (or any
other for that matter) for the displacement jumps in the LC mode. In general, simulation methods
have always served the purpose of understanding dislocation mechanisms underlying the evolution
of complex dislocation microstructures in various dislocation mediated plasticity. The purpose of this
section is to briefly summarize the results of MD simulations and multiscale modeling method, and
discuss their advantages and limitations.

In the context of simulating the DC mode nanoindentation instability, MD simulations have
played an important role in providing a good understanding of initial stages of plastic deformation.
However, because of the limited volume that can be simulated, subsequent evolution of the plastic zone
becomes prohibitive as indentation proceeds. This has motivated researchers to develop a multi-scale
modeling method that uses MD results as a starting point for understanding further evolution of
dislocation microstructure using discrete dislocation dynamical (DDD) simulations in conjunction
with finite element methods (FEM).

The suitability of these simulations depends on the stage of evolution of dislocation microstructure
that is being targeted. Here, we note that the load drops manifest at a few tens of nm scale
corresponding to the initial stages of dislocation microstructure. Furthermore, the initial indented
volume prior to the onset of plasticity is of the order of 10 nm3. On the other hand, typical dislocation
density in a well grown single crystals is ∼1010/m2. Thus, the probability of finding a dislocation is
close to zero. The nucleated dislocation loops act as the trigger for the pop-in events and therefore
represent elastic to plastic transition. Then, MD simulations are best suited for this initial stages of
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deformation. The typical size of the simulated volume is a few million atoms. However, they are
clearly not suitable for simulations when describing further development of plastic zone (beyond say
50 nm). A multi-scale method has been developed by Chang et al. [26] that incorporates MD results
into discrete dislocation dynamic(DDD) simulations in conjunction with finite element methods to
take into account the boundary conditions relevant for the loading condition.

There are a number of MD simulations that capture the evolution of dislocation microstructure to
various degrees [21,23–26]. Features that emerge from these simulations include the nucleation
of dislocation loops, their expansion and interaction, detachment from the source, and their
propagation [26].

Almost all studies use a spherical indenter, which is modeled using a repulsive potential. Different
kinds of potentials have been used (to simulate the desired crystal) in MD simulations. Typical large
MD simulations use a million atoms and the radius of the indenter can range from about 0.8 nm
to 15 nm [21,23–26]. Typical rates of indentation are ∼0.1 Å/step with each step typically a few ps
duration required to attain minimum energy configuration. Typical indentation depths are about 10 Å
and the force is ∼0.1 µN to a few µN.

For illustration, we use the results of Van Vliet et al. [23]. These authors use Ercolessi–Adamssi
potential to simulate Aluminum. The load–displacement curve with several load drops is shown
in Figure 1a. Due to the inherent advantage of MD simulations, dislocation activity (see Figure 9
of Ref. [23]) can be correlated with the load drops in the load–displacement curve. As can be seen,
nucleation occurs at 20 nN, which corresponds to a nucleation stress of σm ∼ 3.4 GPa. The glide
loops expand along {111} planes. In addition to nucleation, other dislocation mechanisms the authors
realize are the formation of sessile locks, cross-slip, and propagation after detachment from the
source. The maximum depth of indentation is 20 Å. One can also notice small scale fluctuations
in the load–displacement curve, an effect well known in MD simulations, even in the context of
MD simulations of equilibrium properties. Such fluctuations tend to smooth out as the system size
is increased.

In the following, we briefly summarize the results of the multi-scale modeling approach due to
Change et al. [26]. To begin with, we briefly recall their MD results. They use an Embedded-atom
method type of interatomic potential typical to several other MD simulations. The authors use a
repulsive sphere that is pressed into the sample at a rate of 0.1 Å at each step of a few ps duration.
The top surface is traction-free and the atoms located on the bottom surface are fixed. Periodic
boundary conditions are applied in the direction perpendicular to the indentation axis. Figure 1b
shows the load–displacement curve with several pop-in events. The first load drop has been identified
with the nucleation of three prismatic interstitial dislocation loops. The nucleation occurs at 1 nm and
subsequent evolution of dislocation microstructure with indentation depth consists of expansion of
the loops, their multiplication followed by detachment from the surface (see Figure 2a–f of Ref. [26]).

The DDD simulations employed by the authors use an Edge-screw code with an FEM solver.
The FEM is used to compute the highly heterogeneous stresses during the indentation process.
The information about nucleation of dislocation loops seen in MD simulation are incorporated by a set
of rules that specify the shape of loops and position of the loops to be introduced in the simulation cell.
The imposed displacement rate determines the number of loops introduced. The load–displacement
curve using a spherical indenter of radius R = 150 nm is shown in Figure 2. The figure shows the total
load, load contribution from dislocations and the MD result extrapolated to the maximum depth of
100 nm. The evolution of dislocation microstructure becomes increasingly complex as illustrated in
Figure 3a–d. For details, see Chang et al. [26].
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Figure 1. (a) Load–displacement curve obtained using MD simulations. Reproduced with permission
from Van Vliet et al. [23]; (b) load–displacement curve obtained using MD simulations. Reproduced
with permission from H-J. Chang et al. [26].
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Figure 2. Load–displacement curve from DDD simulations using a spherical indenter of radius
R = 150 nm. Region I is elastic, region II obtained from the DDD simulations is seen to follow the MD
results and region III corresponds to the evolution beyond the MD region. Reproduced with permission
from Chang et al. [26].

(a) (b)

(c) (d)

Figure 3. Dislocation microstructure evolution obtained from DDD simulations of Chang et al. (a)
Nucleation of prismatic dislocation loops at early stages of indentation process. (b) Propagation of
nucleated dislocation loops followed by initial stages of multiplication. (c), (d) Further multiplication
of dislocations and formation of junctions. Reproduced with permission from Chang et al. [26].
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As can be seen, a major advantage of the MD simulations is their ability to include a range of
dislocation mechanisms starting from the nucleation of dislocations, their multiplication, formation
of locks, junctions, propagation of loops, etc. [21,23–26]. Note that these dislocation mechanisms are all
used in our model. The most obvious limitation of MD simulations is the limited volume they can
simulate. This also means that the maximum radius of a spherical indenter is also limited. This also
means that the predicted depths at which nucleation occurs is typically 6–10 Å significantly smaller
than 65 Å in experiments [11,15]. One other important limitation is the length and time scales that
are inherent to the small scale simulations. The relaxation time scale to attain the minimum energy
configuration is typically a few ps. This coupled with the fact that the loading rates are a fraction of
an Å means that the imposed displacement ∼m/s. This is at least 108 orders higher than that used in
experiments by Kiely et al., who use 0.5 Å/s [11,15]. On the other hand, while DDD simulations are
useful in tracking further development of dislocation microstructure, these simulations do not model
the intermittent region. These limitations prompted us to devise an alternate framework that can use
experimental conditions such as the imposed rates, geometrical parameters defining the indenter and
other experimental parameters.

3. Background Material

This review specifically targets two most popular quasi-static modes of indentation, namely,
the displacement controlled indentation where imposed displacement is increased at a constant
rate and load controlled mode where the load is increased at a constant rate. These two modes of
indentation are primarily chosen because the equations governing the DC and LC modes take a simple
form compared to the dynamic loading mode, not considered here. The simplicity of these equations
helps us establish a good correlation between imposed rates and plastic response of the material. In
addition, for each of these modes of indentation, we can use different types of indenters. Here, we
consider (a) spherical indenter for the DC mode with a view to compare the model results with those
of Kiely et al. [11,15]), and (b) Berkovich indenter in the LC mode so as to compare our model results
with Gouldstone et al. [12]. Here, we consider a single crystal without surface defects, inclusions,
precipitates, etc. (Other complications in nanoindentation such as pile-up and sink-in effects are
beyond the scope of our approach.). We begin by collecting relevant background material.

In our approach, the indentation depth z measured from the undeformed surface z = 0 is a
dynamical variable, i.e., a variable that evolves with time. The total indentation depth z is the sum of
elastic indentation depth ze and plastic depth zp. Then,

z = ze + zp. (1)

The elastic depth is essentially known since it is governed by the indenter specific load–depth
expression. However, calculating the plastic displacement zp has been the obstacle for developing any
nanoindentation model. The strength of our approach is that it provides a way of calculating zp by
first calculating the plastic strain rate ε̇p(t) using the Orowan equation [35]. This also means that we
use strain as a fundamental variable that can be calculated. Noting that plastic deformation occurs
within the sample of thickness T, we define the strain variable ε = z

T . Then, we have the total strain
ε = εe + εp, where εe and εp refer, respectively, to the elastic and plastic components of the strain.
Taking the time derivative, we have

ε̇ =
ż
T

=
że

T
+

żp

T
= ε̇e + ε̇p. (2)

Then, Equation (1) takes the form

z = ze + T
∫

ε̇P(t)dt. (3)
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Note that z is well defined for any T. The plastic strain rate itself is given by the Orowan
expression [35]

ε̇p(t) = bV(σ)ρm(t). (4)

Here, b is the magnitude of the Burgers vector, V(σ) is the mean velocity of dislocations, ρm the
mobile dislocation density and σ the stress. It is clear that this requires calculating ρm as a function
of time. This is obtained by developing the time evolution equations for the mobile ρm and forest ρ f
densities and coupling them to equations defining the DC or the LC modes of indentation.

Note that Equation (4) is a function of stress. Therefore, σ must be expressed as a function of the
load F and area A supporting the load since both evolve with time during indentation. This requires
expressions for the load F(z) and area A(z) as a function of z. Both are indenter specific.

3.1. Displacement Controlled Indentation Using a Spherical Indenter

Since we plan to address nanoindentation experiments on single crystals of Au carried out in
the DC mode using a spherical indenter [11,15], we first recall a few equations. Consider a spherical
indenter of radius R. Then, force response of a sample is given by the Hertzian expression

F =
4
3

E∗R1/2z3/2
e . (5)

Here, E∗ is the effective modulus of the indenter and the sample given by

1
E∗

=
1− ν2

s
Es

+
1− ν2

i
Ei

, (6)

where ν and E refer to the Poisson’s ratio and Young’s modulus of the sample s and indenter i.
Pile-up and sink-in effects are routinely seen in indentation experiments. In terms of material

property, pile-up or sink-in effects depend on the ratio of the elastic modulus to the yield tress and
strain hardening property of the material [13]. Pile-up is characterized by larger contact area compared
to the ideal case while a sink-in effect is characterized by a smaller contact area. Thus, ze

zec
, the ratio

of the indentation depth ze measured from z = 0 to the contact depth zec , is taken as a measure of
pile-up or sink-in effects. Thus, area–depth relations are usually expressed in terms of contact depth
zec measured from the contact point.

The area expression for a spherical indenter is given by

AH(ze) = πRzec . (7)

Note that Equations (5) and (7) are equations obtained in mechanical equilibrium and therefore
do not have any time dependence at this point. However, once these equations are used in equations
governing the loading condition and evolution equations for dislocation densities, they acquire
time dependence.

Now, consider a spherical indenter of radius R driven into a sample of thickness T at a rate ṙ (m/s).
Rearranging Equation (2) and substituting, ż = ṙ and żp = Tε̇p, the machine equation corresponding
to the DC mode nanoindentation reads

że = ṙ− Tε̇p. (8)

Note that this equation is applicable to any indenter. For a spherical indenter of radius R used by
Kiely et al. [11,15], we can express ze in terms of F. Then, Equation (8) takes the form

d
dt
[

3F
4E∗R1/2 ]

2/3 = ṙ− Tε̇p. (9)

This equation is the force response of a sample subjected to constant displacement rate.
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3.2. Load Controlled Indentation Using a Berkovich Indenter

Now, consider the LC mode nanoindentation using a Berkovich indenter with a view to compare
our model results with the LC mode experiments on single crystals of Al that employs a Berkovich
indenter [12]. Since our equations are functions of stress, the first step is to adopt phenomenological
expressions for the load the area supporting the load as functions of indentation depth for a Berkovich
indenter. Here, we use the phenomenological expression for the load [12] given by

F = 2.189E∗[1− 0.21νs − 0.01ν2
s − 0.41ν3

s ]z
2
e = CE∗z2

e . (10)

Unlike Equation (7), the area function for a non-ideal Berkovich indenter is complicated due to
the complicated geometry of the blunted the tip of the indenter [36–39]. Several expressions have
been suggested in the literature for the area of a non-ideal Berkovich indenter. The most general
form is the power law expression A = ∑n=0 cnz2/2n

[37]. The calibrated shape of the tip of the
indenter can be approximated by a spherical shape with a nominal radius R determined by SEM
measurements [23,38,39]. Here, we follow Bei et al. The area of a blunted Berkovich indenter is taken
to be sum of the area of an ideal Berkovich indenter and the area of a spherical indenter of radius
R. Using the area of a sharp Berkovich indenter given by AB = 24.54z2

ec , the area function of a real
Berkovich intender is given by

A(zec) = 24.54z2
ec + 2πRzec . (11)

Bei et al. [38] show that Equation (11) fits the measured area closely for Cr3Si single crystals.
The geometry of the indenter also provides a relationship between ze and the depth from the contact
point zec , i.e., ze = ze(zec) [38]. A linear relation between ze and zec , i.e., ze = szec holds for the range of
indentation depths used in nanoindentation studies.

While Equations (7) and (11) strictly hold in the elastic region only, we assume that they hold
over the entire duration of indentation that includes the elasto-plastic region. i.e., A(ze)→ A(ze + zp).
Indeed, in MD simulations, the measured area increases in steps at each burst of plasticity (see [23]).
This assumption is further supported by the fact that the load increases after every load drop or
displacement jump. This can only happen if the area supporting the load increases abruptly to make
contact with the indenter surface after every load drop or displacement jump.

For the LC mode of indentation, the equation for a constant load rate is given by

dF(z)
dt

= Ḟ0 = constant, (12)

where Ḟ0 is the constant load rate. (In experiments, the maximum desired load is achieved in a
predetermined number of steps.) This equation is valid for any indenter. For the Berkovich indenter,
the expression for the load given by Equation (10) is used.

It is worthwhile to comment on the possible influence of the pile-up or sink-in effects on the
properties addressed in present context of intermittent indentation process. It is clear that, since the area
supporting the load is larger (pile-up) or smaller (sink-in) than the ideal case and the area expression
is a function of zec , the pile-up or sink-in effects are incorporated in the scale factor, s in ze = szec .
However, the measured area (or equivalently the scale factor s) is seldom given in experiments on
nanoindentation instabilities. Thus, one needs to use a judicious choice of s. Since the focus of the
work is in formulating a theoretical basis for describing the two (DC and LC mode) nanoindentation
instabilities, any judicious choice of the scale factor, s that accounts for all aspects relating to intermittent
indentation process is adequate. We shall later comment on hardness calculation in the two modes
of nanoindentation instabilities. However, since pile-up or sink-in effects require spatial degrees of
freedom for their characterization, calculating pile-up or sink-in effects independently is beyond the
scope of our approach since our approach does not include spatial degrees of freedom.
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4. Dynamical Approach to Modeling Nanoindentation Instabilities

The basic premise of our approach is that specimen or volume averaged dislocation densities are
adequate to describe the measured load-indentation depth curves. This is based on the observation
that experimental load–displacement curves are also specimen averages of the dislocation activity in
the sample. For the same reason, experimental F− z curves do not have any information about the
inhomogeneous nature of the plastic deformation occurring within the sample. Thus, as long as we
include all relevant dislocation mechanisms contributing to bursts of plasticity, it should be possible to
model the time development of the load and indentation depth.

Further support for this premise comes from the fact that similar time evolution equations for the
volume averaged dislocation densities have been effectively used in the literature to explain the temporal
aspects of several spatio-temporal plastic deformation instabilities and patterns [30,32,34,40–43]. For example,
the ’storage recovery’ model for the evolution of the forest dislocation density (with respect to shear
strain or time) has been used to obtain good insight into several characteristic features of dislocation
cell pattern seen in stage III deformation of F.C.C materials [40]. The equation successfully predicts
a number of experimental results such as the saturation stress, the hardening rate in the stage II, etc.
Similarly, the temporal aspects of the PLC effect manifesting in the form of three types of serrations
found with increasing strain rate has been well captured by the Ananthakrishna (AK) model that uses
three types of volume averaged dislocation densities (see, for instance, Refs. [30,32,41,42]). Similar
volume averaged dislocation densities have also been used to explain the stress–strain curve for
a smooth yield phenomenon in the context of acoustic emission [34]. The same type of approach
has been used to explain the inverse power law dependence of the yield stress on the diameter of
nano-pillars [43]. All these phenomena are spatio-temporal in nature, yet using time dependent equations
have proved quite effective in predicting the salient features. While this kind of mean field approach is
not common in the plasticity area, it is routinely used in several areas of physics, chemistry and
engineering [44,45].

General Form of Time Evolution Equations for Dislocation Densities

Following our earlier publications [28–30,32–34,41,46], we develop the time evolution equations
for the mobile ρm and forest ρ f densities based on relevant dislocation mechanisms contributing to
the plastic flow. Dislocation mechanisms can be broadly categorized into dislocation production and
transformation mechanisms. The former includes dislocation nucleation and multiplication. (In our
model, all mechanisms leading to the line length increase are regarded as dislocation multiplication
processes). Furthermore, since the sample is expected to be dislocation free within the initial indented
nanometer volume, nucleation of dislocation loops has to occur before their multiplication. A few
simulations [16,21,23,26] also show detachment of the loops from the source followed by their
propagation to the boundary (see Figure 9 of Ref. [23] and Figure 5 of Ref. [26].). Each of these
dislocation mechanisms can only be activated beyond a certain threshold stress. We denote the
threshold stresses for nucleation, multiplication and propagation, respectively, by σn, σm and σp.
The rate of nucleation of dislocations per unit area is given by νn

πb2 exp (σ/σn). For the sake of simplicity,
we assume that a single loop is nucleated, i.e., νn

πb2 = 1.
The rate of multiplication of dislocations is traditionally written as θVm(σ)ρm, where Vm(σ)

represents the average velocity of dislocations [47] and θ the inverse of an appropriate length
scale [28,30]. Commonly used phenomenological expressions [28,29,48] are

Vm(σ) = V0exp[
σ− hρ1/2

f

σm

]
, (13)

and

Vm(σ) = V0
[σ− hρ1/2

f

σm

]m. (14)
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In Equations (13) and (14), hρ1/2
f is the back stress with h = αGb, α∼0.3 and G is the shear

modulus. In Equation (14), m is the velocity exponent. We shall use Equation (13), for the DC mode
experiments using a Spherical indenter and Equation (14) for the LC mode where a Berkovich indenter
is used.

In time sequence, detachment of dislocations from their source and their subsequent propagation
to the boundary follows dislocation multiplication. The rate of propagation of dislocation loops is
proportional to the time required for dislocations of velocity vp(σ) to reach the boundary taken to
be located at z = T. Then, νp =

vp
T . We shall also assume that vp(σ) obeys a power law of the

form vp = vp0 [
σ
σp
]p, where p is an exponent. Then, νp =

vp0
T [ σ

σp
]p = νp0 [

σ
σp
]p. Note that vp(σ) is the

propagation velocity of dislocations through an undeformed part of the specimen. Therefore, p is
necessarily different from the exponent m in Vm(σ).

As dislocations multiply, they begin to interact with each other to form junctions. As discussed in
a number of earlier publications, two distinct types of short range interactions can be identified that
act as the source for the growth of the forest density ρ f . These act as loss terms to the mobile density
ρm [28,30,33,34,42,49]. When two dislocations moving in nearby glide planes approach a minimum
distance (typically a few nanometers), they can form dipoles. The corresponding loss term to ρm is
βρ2

m. Then, βρ2
m is a source (storage) term for the growth of ρ f . Here, β is a ’rate constant’ that has the

dimension of the area covered per unit time. A mobile dislocation can annihilate a forest dislocation.
This is represented by f βρmρ f . The parameter f is a dimensionless constant typically ∼10−2–10.
This is a common loss term for both ρm and ρ f . Finally, unlike the dipole source term that has a fixed
short range interaction of a few nanometers, there is another source term for ρ f whose interaction range
evolves with deformation. This happens when dislocations moving in different glide planes intersect
each other to form junctions. This can be written as Λρmρ f . Here, Λ refers to the mean separation
between the junctions that also evolves with deformation (or time) since ρ f itself evolves with time.
Noting that the mean distance between the forest dislocations is proportional to 1/ρ1/2

f , we may write

Λ = δρ−1/2
f . Here, δ is taken to be a constant. Then, the loss term for ρm is δρmρ1/2

f . Clearly, this is a
gain term to ρ f . (δ has the dimension of velocity.) This storage term represents the forest mechanism.
The storage and recovery terms (δρmρ1/2

f and f βρmρ f , respectively) are the only mechanisms used in
the storage-recovery model (except for the difference in the notation) [40]. Collecting the loss and gain
terms for ρm and ρ f , the time evolution equations can be written as

ρ̇m =
νn

πb2 exp
σ

σn
+ θVm(σ)ρm − νp0 ρm

[ σ

σp

]p
− βρ2

m − δρmρ1/2
f − f βρmρ f , (15)

ρ̇ f = βρ2
m − f βρmρ f + δρmρ1/2

f . (16)

The first two terms in Equation (15) refer respectively to the nucleation and multiplication of
dislocations. The third term represents loss to the boundary due to propagation of dislocations.
The next three terms are the dislocation transformation terms. Note also that, unlike the common loss
term f βρmρ f in Equation (15) and (16), βρ2

m and δρmρ1/2
f are the storage terms for the forest density

that contribute to the growth of ρ f . Thus, a competition between the parameters f β corresponding
to the common loss term, and the parameters corresponding to storage terms, β and δ, control the
relative magnitudes of ρm and ρ f .

5. A Dislocation Dynamical Model for Load Fluctuations Using a Spherical Indenter

We now recast the general form of Equations (15) and (16) suitable for the DC mode indentation
using a spherical indenter [28] and compare the predicted results with the results for single crystals of
gold [11,15]. This means that we use Equation (13) for Vm(σ) and express σ = F/AH in Equations (15)
and (16) using Equations (5) and (7). A few comments are in order at this point. Indentation is carried
out on Au samples that have high E∗/σy ratio. Therefore, one expects pile-up effects are seen. However,
micrograph Figure 1b of Ref. [11,15] shows a mild pile-up effect. The pile-up effect is reflected in
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the increased area (with respect to an ideal spherical indenter) given by AH = πRzec in terms of
contact depth zec . However, no information is available about the measured area or the scale factor s
in ze = szec . Moreover, intermittent indentation process is seen until the maximum depth of 25 nm
where hardness is ill defined as we shall see. For these reasons, we have used s = 1 in the following
calculations. However, it must be stated that the basic results and conclusion remain valid for any s.

Then, the evolution equations for ρm and ρ f for the Hertzian indenter of radius R take the form

dρm

dt
= νn

πb2 exp
F

πR[ze+zp ]
σn

+ θV0ρmexp
F

πR[ze+zp ]
−hρ1/2

f

σm
− βρ2

m − f βρmρ f − δρmρ1/2
f

− νp0ρm

[ F
πR[ze+zp ]

σp

]p
,

(17)

dρ f
dt = βρ2

m − f βρmρ f + δρmρ1/2
f . (18)

These equations are coupled to the machine equation (Equation (9)) expressed in terms of load
and area. Then, we have

d
dt

[
3F

4E∗R1/2T3/2

]2/3
=

ṙ
T
− bρmV0exp

{ F
πR[ze + zp]σm

}
. (19)

Equations (17) and (18) and Equation (19) constitute a coupled set of nonlinear equations for the
nanoindentation problem.

5.1. Estimation of Parameters

Since there are several parameters, we begin by summarizing the estimated values of all the
parameters detailed in Refs. [28,29]. Note that the model parameters can be classified as experimental
and theoretical. As mentioned in the Introduction, since we work at laboratory (length and time) scales,
we can directly adopt experimental parameters such as indentation rate ṙ, R, T, E∗, b and h. For the
present case, we use the experimental parameters used in Ref. [11] corresponding to the gold samples.
For this case, the imposed experimental displacement rate is 0.5 Å/s while the imposed rate in MD
simulations are several orders higher [21–26].

The model has several theoretical parameters. A comment is desirable in this context.
In dislocation based plasticity models, the number of parameters is determined by the number of
dislocation mechanisms required to model the phenomenon. Thus, the more complex the phenomenon,
the more the number of dislocation mechanisms and the more the number of parameters. For instance,
the AK model [30,32,33,46,50] for the complex spatio-temporal PLC instability has ten parameters.
Even in simple models such as the storage recovery model [40] and the model for plastic deformation
of micro-pillars [43], there are three and six respectively. In the present case, we have ten parameters
corresponding to six dislocation mechanisms [28,29].

Now, consider estimating the theoretical parameters θV0, f β, δ and νp0 . Estimation of the
parameter values for the two nanoindentation models has been carried out in detail in Refs. [28,29].
Very briefly, θV0 is the basic time scale for the growth of the mobile dislocation density that determines
the plastic flow. We set θV0 = 1 to ensure that it matches the experimental time scale. (Here we use
V0∼10−6 m/s and θ∼106/m). The three threshold stresses σn, σm and σp are fixed based on the basis
of other studies or on physical grounds. The nucleation threshold is known to be σn∼E∗/10. Similarly,
the threshold for multiplication of dislocations is typically σm∼E∗/300. As for the propagation
threshold σp, since the propagation can only occur after dislocation multiplication, we assume σm < σp.
The upper limit of the velocity prefactor vp0 in the expression for propagation velocity is limited by V0.
While the exponent value p is not known, we fix it to be p = 1.

As for the parameters f β and δ, we have demonstrated that the orders of magnitudes of these
two parameters are determined once the asymptotic (long time) values of the two densities are given
or vice versa [28,29]. See Ref. [28,29] for details.
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A further requirement on the allowed ranges of parameter values is that Equations (17)–(19)
should exhibit an instability. Since these equations form a coupled set of nonlinear equations, such
equations often exhibit instabilities for a domain of values of the model parameters. As demonstrated
in Ref. [28], the stability matrix corresponding to the steady state of Equations (17)–(19) exhibits a pair
of complex conjugate roots with a negative real part. Thus, the DC mode nanoindentation is a transient
instability rather than a true instability. Indeed, this is the underlying mathematical mechanism for the
decreasing magnitudes of the load drops. (See also Appendix of Ref. [28]). The instability domain
of parameter values has been determined numerically. The analysis shows that the instability occurs
over a wide range of values of the parameters [28]. In general, the physically relevant values of the
parameters form only a small subset of the instability domain. The precise values of the parameters
used in the our calculation are given in the Table 1.

Table 1. Parameter values used for the model. The experimental parameters used are drawn from
experiments on single crystals of Au [11].

E∗ (GPa) σn (GPa) σp (GPa) σm (GPa) v0 (m/s)

75 7.5 1.91 0.955 10−6

ṙ (Å/s) R = T (Å) δ (m/s) β (m2/s) f

0.5 1075 3.92× 10−6 10−13 2.5

5.2. Results

Equations (17)–(19) have been solved using an adaptive time step Runge–Kutta solver (ODE15S
MATLAB, (MathWorks, Natick, MA, USA)) with initial conditions ρm = 0 and ρ f = 0 consistent
with the absence of dislocations in the indentation volume. Using the parameters given in Table
1, we calculate the load as a function of indentation depth. A plot of F − z is shown in Figure 4a.
The loading run is shown by the blue curve and the unloading run by the red curve. It is clear that a
large load drop is seen after the initial Hertzian response. The load maximum on the Hertzian branch
is F = 15.1 µN and the first load drop is ∼10.6 µN. These values are close to the experimental values of
15 µN and 10 µN, respectively [11]. Subsequent load drops show a decreasing trend as in experiments.
The corresponding stress as a function of z is shown in Figure 4b. The maximum stress on the Hertzian
branch is ≈7.5 GPa (see Figure 4b), the same as used in experiment [11].
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(b)
Figure 4. (a) Plots of load as a function of z for the loading (blue) and unloading (red) runs;
(b) corresponding plot of stress. Parameters used are given in the Table 1, after [28].
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Our approach automatically allows us to calculate ρm and ρ f as a function of time or as a function
of depth. Two features are evident from the plot of ρm − z shown in Figure 5a. First, the nature of
ρm is of burst type with the bursts occurring at each load drop with successive bursts decreasing
rapidly from an initial high value of ∼7 × 1013/m2. Second, the duration of the bursts is very short
with the durations of the successive bursts increasing concomitantly. The large magnitudes of ρm bursts
together with their short durations are the characteristic features of collective behavior of dislocations. Another
conclusion that can be drawn is that collective effects become weaker with successive load drops
and are eventually lost as is clear from the decreasing magnitudes and increasing durations of the
bursts of ρm. In contrast, the corresponding forest density ρ f increases in steps (not shown, see
Figure 2b of [28]). The magnitude of the steps decrease with z, eventually reaching a near saturation
level. The positions of these steps are found to be well correlated with the positions of the ρm bursts.
The stepped increasing nature of ρ f and their decreasing magnitudes is due to the fact that a large
part of ρm bursts are transformed to ρ f . This also implies depletion of the peak heights of ρm and
consequent decrease of the stepped growth of ρ f .
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Figure 5. (a) Plot of ρm verses z. Inset in (a) shows bursts of ρm beyond the second; (b) plot of log(ε̇p)
as a function of z. Continuous line corresponds to ṙ/T = 4.65× 10−4s−1. Parameters used are given in
the Table 1, after [28].

Now, consider the physical mechanism underlying the load drops. To understand this, we have
calculated the plastic strain rate ε̇p as a function depth. This is shown in Figure 5b. As can be seen,
these bursts of ε̇ occurs whenever ε̇p exceeds ṙ

T , the imposed rate. It may also be noted that these
bursts are well correlated with the bursts of ρm as should be expected. The decreasing peak heights of
ρm or the load drops or ε̇p is not due to the increasing back stress, but due to the depletion of ρm as the
indentation proceeds (see for details Ref. [28]).

Since our approach is based on dislocation mechanisms contributing to plastic flow, we can
calculate the residual indentation depth by unloading the indenter from any point on the F− z curve.
When the indenter is unloaded beyond the first force drop, we find that the residual indentation depth,
and consequently the residual imprint area is finite, another important feature of nanoindentation
experiments. The red curve in Figure 4a shows the unloading curve of the indenter from the point
marked • (after the fifth force drop). The residual imprint area is πa2∼18.78× 10−16 m2, a value
comparable to the estimated residual contact area (from Figure 2a of Ref. [11]). Note however that
the values of residual indentation depth zpr at the bottom of a load drop and the top of the following
loading branch are nearly the same, but their load values are different. In contrast, zpr is different for
points on the top and bottom of a load drop. Thus, assuming hardness is defined as the ratio of the
load to the residual imprint area, hardness assumes two values and therefore is not well defined in
the intermittent region. As a consequence, pile-up or sink-in effects are not relevant in the region of
intermittent nanoindentation.
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5.3. Summary and Discussion

In summary, we have demonstrated that the model not only predicts all the generic features of
nanoindentation but also predicts numbers that match the experimentally measured load, stress, depth
of indentation, the maximum stress on the Hertzian branch and residual plasticity under unloading.
The good match between the numbers predicted by model and experiments can be attributed partly to
the fact that our approach allows for a direct adoption of experimental parameters such as ṙ, R, T, b, E∗

and h = αGb and partly to the fact that we have included all the relevant dislocation mechanisms
contributing to the intermittent indentation process. Indeed, the strength of our approach lies in
providing an innovative method for calculating zp from the evolution equations for ρm (and ρ f )
through the Orowan expression for the plastic strain rate.

Our model also provides insight into the physical and mathematical origin of the decreasing
magnitudes of the load drops, a feature seen in experiments and in our model. This feature is not
due to the back stress σb = αGbρ1/2

f since the peak value of ρ f ranges from ∼5 to ∼7 × 1013 m−2

giving σb∼40–47 MPa. At a physical level, this is purely due to the fact that every time there is a
burst of ρm, much of it is transformed to ρ f depleting ρm as indentation proceeds. Note also that
there is no reverse transformation of ρ f to ρm. Such a reverse transformation is improbable due to
the high stress required to break the junction. At a mathematical level, nanoindentation is a transient
instability. The physical consequence of this is reflected in the decreasing magnitudes of bursts of ρm

and consequent load drops.

6. A Dislocation Dynamical Model for Displacement Jumps Using a Berkovich Indenter

For the LC mode indentation, we plan to address experimental results on Al single crystals using
a Berkovich indenter. For this, we use appropriate expressions for the velocity of dislocation, the load,
and the area specific to Berkovich indenter in Equations (15) and (16). For this case, we use the velocity
expression given by Equation (14). Then, using this and Equations (10) and (11) in Equations (15) and
(16), we obtain the evolution equations:

ρ̇m = νn
πb2 exp

[
z2

ec
σn

C‘E∗

[
α1(zec+(zp/s))2+α2(zec+(zp/s))

] ]+ θV0ρm

[ C‘E∗z2
ec

[α1(zec+zp/s)2+α2(zec+zp/s)]
−hρ1/2

f

σm

]m

− νp0 ρm

[
z2

ec
σp

C‘E∗
[α1

(
zec+zp/s

)2
+α2(zec+zp/s)]

]p
− βρ2

m − δρmρ1/2
f − f βρmρ f ,

(20)

ρ̇ f = βρ2
m − f βρmρ f + δρmρ1/2

f . (21)

Using the scale factor s between ze and zec , Equation (12) takes the form

d(C‘E∗zec
2)

dt
= Ḟ0. (22)

Note that we have assumed that the area-depth relation holds for the elasto-plastic region,
i.e., A(z) = A(zec + zpc), where zpc is the contact depth contribution from plastic deformation.

The contribution arising from the plastic displacement zp is calculated by integrating

żp = TbV0ρm

[ C‘E∗z2
ec

[α1(zec+zp/s)2+α2(zec+zp/s)] − hρ1/2
f

σm

]m
. (23)

Note that we have used zpc = zp/s. Using the value of νs = 0.33 in Equation (10) and using the
value of s = 1.6 obtained by using Equation (8) of Ref. [38], we get C‘ = 5.12704.

Equations (20)–(23) constitute a coupled set of nonlinear ordinary differential equations for the
LC mode nanoindentation problem. Such equations often exhibit instabilities for a domain of values of
the model parameters. (See also Appendix of Ref. [28] where details of the stability analysis are given).
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In the present case, the instability domain of parameter values has been determined numerically.
This shows that the instability occurs over a wide range of values of the parameters [29]. In general,
the physically relevant values of the parameters form only a small subset of the instability domain.
In the following, we briefly summarize the range of physically allowed values determined in Ref. [29].

6.1. Estimation of Parameters

As in the case of the DC mode indentation model [28], we adopt experimental parameters such
as E∗, Ḟ0, R, b, T and h = αGb and other shape parameters defining the Berkovich indenter geometry
for single crystals of Aluminum [12]. The ranges of the parameters have been determined in our
earlier publications [28,29] and is listed in Table 2. Very briefly, the nucleation stress σn∼E∗/10,
the multiplication stress σm∼E∗/300− E∗/100, the propagation stress σp < σm. Parameter ranges of
β, δ and f have been determined along the lines mentioned for the DC mode in Section 5.1.

Recall that, for the LC mode, we have used the power law expression for the dislocation
velocities given by Equation (14). This contains another parameter, namely, the velocity exponent m.
This expression has been suggested on the basis of fits of dislocation velocities for bulk specimens
subject to various loading conditions such as tensile and pulse loading using transmission electron
microscopy, etch-pit technique, and slip line cinematography. (See Figure 19 of Ref. [48]). Under
these conditions, stress is nearly uniform within the sample. Equation (14) is valid for single and
groups of dislocations. Since the value of m depends on the material, the allowed range of values
of m is difficult to estimate on physical grounds, particularly when conditions of deformation are
very different (as for nanoindentation) from the conditions where it is measured. On the other hand,
often, an inverse correspondence of the velocity exponent m with strain rate exponent n in n = [ dlnσ

dlnε̇ ]

is suggested. For single crystals of Al, the value of n is ∼0.02 or less. This implies that the range of
values of the velocity exponent m can be as high as 50. However, this correspondence breaks down
in nanoindentation experiments at indentation depths ∼50 nm where displacement jumps dominate.
Moreover, at such small length scales, it is well known that the yield stress increases rapidly, which is
also suggestive of the fact that m values for bulk may not be valid for small indentation depth. In view
of this, we have used m to range from 2–15.

Similarly, the exponent p (in the expression for velocity of propagation) is taken to be in the range
from 1–10. However, p turns out to be an insensitive parameter. The range of values of the parameters
are listed in Table 2.

Interestingly, it is possible to calculate the depth at which nucleation occurs given σm and R the
nominal radius of the blunted tip of the indenter or vice versa [29]. This is given by

zec(tn)
[
1− σn

E∗
24.54
s2C

]
=

2πR
s2C

σn

E∗
. (24)

(Here, s = 1.6.) Thus, the maximum elastic indentation depth ze(tn) with nucleation occurring at time
tn is completely determined by σn/E∗ and R or vice versa. Note that this statement is independent of the
mode of deformation. Thus, Equation (24) allows determination of either σn or ze(tn) given the other
assuming R is given by experiments. For example, if we use σn/E∗ = 1/10 and R = 40 nm (taken from
Ref. [12]), we get zn = 14.9 nm (see Table 2). Furthermore, given a value of σn, we can use ze(tn) in
Equation (10) to determine F. Then, Equation (12) determines the time t = tn at which the nucleation
occurs. Thus, both F and ze(tn) are also uniquely determined by Equation (24).

We can take the arguments further to show that the first displacement jump is controlled by[
(σn/σm)

]m. To do this, we note that dislocations are nucleated only when the stress σ exceeds the
nucleation stress σn. On the other hand, the magnitude of the displacement jump or load drop is
directly controlled by [σn/σm]mρm(t = tn), where ρm(t = tn) is the dislocation density at the nucleation
point. Note that we have made use of the fact at nucleation σ = σn and that σn is much larger than
σm. Therefore,

[
(σn/σm)

]m determines the magnitude of the first displacement jump or vice versa.



Crystals 2018, 8, 200 16 of 26

However, since σn is already determined, σm and m are completely determined by the magnitude of
the first displacement jump. (See Ref. [29] for details.)

One interesting consequence of this is that the first displacement jump (or load drop) can only
exist provided the elastic branch exists or nucleation should occur prior to the jump. This can be seen
by noting that the factor [σn/σm]mρm(t = tn) that controls the magnitude of the first displacement
jump decreases as we decrease σn and eventually vanishes as σn → 0. (Note that the elastic branch
gets shorter and shorter is equivalent to σn → 0.)

Table 2. Range of parameter values in the model equations using Berkovich indenter keeping the
nominal tip radius R = 40 nm and σn = 7.0 GPa.

E∗ (GPa) σm (GPa) σp (GPa) Ḟ0 (µN/s)

73.7 0.7− 1.0 σm − 6.5 0.3

vp0 (m/s) β (m2/s) δ (m/s) f

10−9–5 × 10−6 10−13 (0.01–4) × 10−6 10−2–10

6.2. Results

Equations (20)–(23) are solved using adaptive step Runge–Kutta solver (MATLAB ‘ODE 15s’)
with initial conditions ρm = 0 and ρ f = 0 to mimic the absence of dislocations in the indented volume.

6.3. Influence of Parameter Variation on the Model Force–Displacement Curves

The two main objectives, namely, to build a model for the LC mode indentation that would
predict all the generic features of the LC mode experiments and to examine the ability of the model to
provide a good fit to a given experimental load–displacement data require that we first identify the
dislocation mechanisms (or equivalently the corresponding rate constants) controlling the different
regions of the load–displacement curve. Towards this end, we begin by investigating the influence of
each of these parameters on the model F− z curves. Recognizing that it is a multi-parameter space,
it is convenient to fix the parameters at specific values (for instance, those listed in Table 3) and study
the influence of each of the parameters on the model F− z curve. The study helps us to evaluate the
relative importance of various dislocation mechanisms. In addition, the general trends of the influence
of the parameters on the model F − z curves would also be helpful to obtain an optimized set of
parameters that provides a good fit to a given experimental F− z curve.

Table 3. Optimized parameter values used for obtaining the best fit with the experimental
load–displacement curve for single crystals of (110) orientation [12]. Other parameters are fixed at
σn = 7.0 GPa, σm = 0.91 GPa and m = 11. Although the parameters σp, vp0 and p have little influence on
the model F− z curves, the values cited are the values used for numerical fit with the experiment.

σp (GPa) vp0 (m/s) p β (m2/s) δ (m/s) f

1.5 4× 10−7 4 10−13 1.58× 10−6 10

Recall that the analysis reported in the previous section demonstrates that σn can be taken to be
fixed. Thus, we first consider the influence of σm on the model F− z curve with all other parameters
fixed as in Table 3. (Note that σm and m together specifies the dislocation multiplication mechanism.
Therefore, while studying the influence of one, the other must be held fixed). Noting that, for small
volume systems, σm is larger than the bulk value, we have varied σm from ∼E∗/100 to E∗/70. Plots
of the F− z curves for E∗/σm = 105, 92, 82 and 74, are shown in Figure 6a. It is clear that increasing
σm decreases the magnitude of the first displacement jump and also the secondary jumps. More
importantly, the model F− z curves for all values of σm exhibit displacement jumps of decreasing magnitudes,
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a characteristic feature of the LC mode indentation. Note that the load remains practically constant
during the first displacement jump.

Now, consider the influence of the velocity exponent m on the model F− z curve. Plots of F− z
curves for m = 4, 8, 10 and 12 are shown in Figure 6b. The figure shows that the higher the value of m,
the larger is the first displacement jump while the subsequent displacement jumps decrease marginally.

Note also that increasing σm and increasing m have the opposite effect on the magnitude of the
first displacement jump. This feature can be easily understood by noting that the first displacement
jump is determined by [ σn

σm
]m. Clearly, as σm increases, the factor [ σn

σm
]m decreases while it increases

with increasing m values. The opposing influence of σm and m on the model F− z curves turns out to be very
helpful in obtaining the optimal values of σm and m that match the magnitude of the first displacement jump for
a given experimental data, in particular while fitting the experimental plots of single crystals of Al.

We have also examined the influence of δ (in the range δ = 0.06 to 3.16× 10−6 m/s ) for a range
of f values in the interval 10−2 to 10. (Note that we can vary the product f β or vary f keeping β fixed).
For small f , say 0.01 (or 0.1), as we vary δ, the model F− z curves exhibit several displacement jumps
of decreasing magnitudes as can be seen in Figure 6c. Similarly, we have studied the influence of f
on the model F− z curve keeping δ fixed in the range δ = 0.06 to 3.16× 10−6 m/s . Plots of the F− z
curves for various value of f are shown in Figure 6d. Again, all model F− z curves exhibit several
displacement jumps of decreasing magnitudes. Furthermore, this study also shows that while larger
values of δ lead to more rapid increase in the load after each displacement jump, larger f leads to
larger displacement jumps with smaller load increase. Note the opposing trends of the influence of f
and δ on the F− z curves.

On the other hand, several other parameters σp, p and νp0 have very little influence on the model
F− z curves. This is fortuitous considering the fact that these parameters were difficult to estimate.

In conclusion, the study of the influence of the parameters on the model F− z curve demonstrates
that for a wide range of values of the parameters, the model F− z curves capture the characteristic features of
the LC mode nanoindentation. In addition, the study determines the relative importance of different
dislocation mechanisms, or equivalently, the relative importance of the corresponding parameters on
the nanoindentation process.
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Figure 6. Variation of one parameter keeping other parameters fixed as in Table 3. The direction of
the arrow in each of these plots represents increasing values of the parameters. (a) plots of load as a
function of z for σm/E∗ = 1/105, 1/92, 1/82 and 1/74; (b) plots of F− z curves for velocity exponent
m = 4, 8, 10, 12; (c) plots of F − z curves for four values of δ = (0.06, 0.158, 0.32, 3.16) × 10−6 m/s
keeping f = 0.01; (d) plots of F− z curves for f = 0.01, 5, 10 for δ = 1.58× 10−6 m/s, after [29].
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6.4. Determination of Optimal Parameter Values for Best Fit to Experimental Load–Displacement Curve

The results of the previous section will now be used to obtain an optimized set of parameters that
give best fit to the desired experimental load–displacement curve. The following four results from
the previous section will be used for this purpose: (a) There is a range of values of the parameters
in the instability domain for which the model F − z curves exhibit all the characteristic features of
experimental F − z curves. This also implies that one should expect to find an optimized set of
parameters within this range that fit the experimental data; (b) The study identifies three dislocation
mechanisms contributing to the load–displacement curve in a sequential way. The maximum elastic
depth ze(tn) at which the nucleation occurs is determined by Equation (24). The nucleation stress σn is
determined by the maximum elastic depth zn or vice versa; (c) The magnitude of the first displacement
jump is determined by [σn/σm]m. However, since σn is already determined, σm and m are completely
determined by the magnitude of the first displacement jump; and (d) The rest of the F− z curve with
multiple displacement jumps is determined by f and δ given the maximum experimental load and
indentation depth.

We shall use this information to fit the load–displacement curve for single crystals of Al for (110)
orientation [12]. In experiments, the thickness of the samples used are 400, 600 and 1000 nm, and the
radius of the indenters used are 50, 100, 150 nm. For the (110) case, we have used T = 400 nm and
R = 40 nm. To do this, we shall use the following data extracted from the experimental F− z curve
(Figure 7 of Ref. [12]) to determine the optimal parameters for the best fit. The maximum depth on the
elastic branch is ze(tn) ≈ 14 nm and the first displacement jump of ∆z1 ≈ 33 nm. The maximum load
and maximum displacement are respectively Fmax ≈ 44 µN and zmax ≈ 60 nm. Using ze(tn) ≈ 14 nm
(and R = 40 nm) in Equation (24) gives the nucleation stress σn = 7.0 GPa. Now, consider finding
the optimal values of σm and m. Noting that increasing σm decreases the first displacement jump and
increasing m increases the magnitude of the first displacement jump, and using ∆z1 ∼ 33 nm gives
σm = 0.91 GPa and m = 11. (Indeed, a careful perusal of the plots shown in Figure 6a,b also suggest
value close to these values). These values give a good fit to the experimental F − z curve until the
end of the first displacement jump as is clear from Figure 7a. (Model F − z curve is shown by the
continuous line. Points marked • in the figure are experimental points extracted from Figure 7 of
Ref. [12].)

We now consider getting a good fit to the rest of the experimental curve until Fmax ≈ 44 µN
and zmax ≈ 60 nm. Recall that the portion of the F− z curve beyond the first displacement jump is
controlled by f and δ, and therefore we need to find the optimized values of f and δ subject to the
condition that the model Fmax and zmax match closely the experimental values. To do this, we use the
fact that δ and f have opposing influence on the model F− z curve. Then, the values of f and δ that
satisfy this condition are listed in Table 3.

Figure 7a shows the model F − z curve (continuous curve) obtained by using the optimized
parameter values along with the experimental points •. It is clear from the figure that the experimental
points fall on the predicted curve except for the last few nanometers. The magnitudes of the successive
displacement jumps decrease and so do the magnitudes of the load steps. Note also that the predicted
load remains practically constant during the first displacement jump unlike in experiments where it
decreases from 29.5 to 28.5 µN [12]. The latter can be attributed to the inability to enforce constant load
rate in experiments during the displacement jump.

Following the above procedure, we have also attempted to get the best fit to the experimental
F− z curve for Al single crystals of (133) orientation. Both the model F− z curve (continuous curve)
and experimental points • are shown in Figure 7b. As can be seen, the fit is very good. Thus, the model
captures not just the generic features of the experimental F− z curve for a range of parameter values, the model
F− z curve corresponding to the optimized parameter values provide very good fit to the experimental data.
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Figure 7. (a) plot of model F− z curve (continuous curve) for Al single crystal of (110) orientation along
with experimental points (•) extracted from Ref. [12], after [29]; (b) plot of F− z curve (continuous
curve) t for Al single crystal of (133) orientation along with experimental points (•) [12]. Original
contribution of the authors.

Our approach allows us to compute the stress as a function of time or indentation depth. This is
shown in Figure 8a corresponding to the (110) orientation. As can be seen, the maximum stress on
the elastic branch ∼ 7.1 GPa is close to the theoretical strength of the material. Thereafter, the stress
relaxes largely during the first displacement jump. However, it must be noted that this relaxation
occurs in a short duration of time, which also corresponds to the duration of the first displacement
jump. Subsequently, the stress relaxation slows down eventually reaching the asymptotic value of
∼1 GPa. Note that this value is higher than the multiplication threshold stress σm = 0.91 GPa.
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Figure 8. (a) Plot of stress as a function of z corresponding to the (110) orientation corresponding
to Figure 4a; (b) plot of ρm as a function of time corresponding to Figure 4a. The inset in (b) shows
secondary bursts on an expanded scale. Note that the first burst of ρm is nearly 50 times the second,
after [29].

As emphasized earlier, the first displacement jump beyond the elastic branch is triggered by the
abrupt multiplication of the nucleated dislocations. Figure 8b shows the plot of the mobile density
as a function of time. As can be seen, the first burst is large (ρm ∼ 2.5× 1014/m2) and its duration
is short. The magnitudes of successive bursts decrease rapidly to a value 2.3× 1011 m−2 with their
durations increasing as is clear from the inset of Figure 8b. These features are characteristic features of
collective dislocation activity. The decreasing magnitudes of the ρm bursts and increasing duration of
these bursts clearly suggests that collective effects become weak and eventually disappear in the region
where displacement jumps disappear. From a physical point of view, the decreasing magnitudes of
the burst of ρm is caused by the common loss term, f βρmρ f that depletes both ρm and ρ f while the
storage terms βρ2

m and δρ1/2
f ρm depletes ρm. The net effect is that both ρm and ρ f decrease to their

asymptotic values.
Since our approach is based on dislocation mechanisms, we can calculate the residual indentation

depth by unloading the indenter. This also allows us to calculate the hardness as the ratio of the
load to residual imprint area. However, experimental load-depth plots for Al are limited to depths
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where displacement jumps dominate and therefore hardness is not well defined. On the other hand,
model calculation can be performed for indentation depths where displacement jumps disappear.
Hardness in this regime is shown in Figure 9a. It is clear that hardness decreases as a function of depth.
In experiments, small pile-up is visible in the micrograph shown in Figure 9 of Ref. [12]. However,
the authors do not report hardness and therefore no comparison is possible. We emphasize that the
decreasing trend of H is not altered for other values of s. Thus, our model predicts the indentation-size
effect as well. The asymptotic values of H = 1.98 GPa is almost twice the stress at large z (see Figure 8a).

Here, a few comments are in order on the existing models for hardness and our own radically
different approach for calculating hardness. All traditional models of hardness are based on extending
the Taylor relation for hardness to include the additional resistance arising from geometrically
necessary dislocations (GNDs). The Nix–Gao model and its variants are based on Taylor relation,
and therefore these models do not calculate hardness as a function of indentation depth, because, this
amounts to calculating the density of geometrically necessary dislocations (GNDs) and statistically
stored dislocations (SSDs) as a function of indentation depth. Indeed, these models use GNDs and
SSDs (or equivalently asymptotic hardness and the slope of hardness as a function of indentation
depth) as fitting parameters to experimental data.

We have recently extended our approach to calculate hardness as a function of indentation
depth from small depths ∼nm to few µm [51]. While the traditional models are based on Taylor
relation for flow stress, a property that reflects the resistance to dislocation motion, our approach
relies on calculating residual indentation depth, a property that is a measure of ease of dislocation
motion. Our model includes GNDs in addition to mobile and forest dislocations (or equivalently SSDs).
The model [51] predicts all the characteristic features of hardness such as the decreasing nature of hardness
with increasing depths, square of the hardness scaling inversely with indentation depth larger than 150 nm
and its deviation for smaller depths. In addition, we have obtained good fits to the two widely cited
hardness data for strain hardened polycrystalline Cu [52] and single crystals of Silver [53]. To the best
of our knowledge, this is the first indentation size effect model that calculates hardness as a function of
indentation depth independently.
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Figure 9. (a) Hardness calculated by unloading the indenter from points that have nearly the same
load values but two distinct values of zpr and points that have two distinct values of the load for nearly

the same value of zpr; (b) plot of dA(z)
dt as a function of time. The red line corresponds to the rate of area

increase due to applied force rate Ḟ0
σm

= 3.3× 10−16/m2. The inset shows that the A increases in steps,
after [29].

6.5. Physical and Mathematical Mechanisms for the Pop-in Events

One important feature of the LC mode nanoindentation is the existence of several displacement
jumps of decreasing magnitudes. While the origin of displacement jumps is attributed to bursts of
plasticity, explaining the decreasing magnitudes of the displacement jumps quantitatively has remained
a puzzle. Clearly, this feature can be addressed within the scope of our model since the displacement
jumps are controlled by bursts of ρm. Recall that studies on the influence of the parameters on the
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model F− z curves (Section 6.3) has demonstrated that three different dislocation mechanisms operate
in a time sequence. The initial elastic branch is controlled by nucleation of dislocations while the first
displacement jump is controlled by the multiplication of the nucleated dislocations. On the other
hand, the subsequent displacement jumps of decreasing magnitudes are controlled by the storage and
recovery dislocation mechanisms. While the magnitudes of the displacement jumps are determined by
the magnitudes of ρm bursts, these themselves decrease. The latter is due to the fact that a large part of
every ρm burst is transformed to ρ f . Furthermore, noting that the stress relaxes largely during the first
displacement jump, the magnitudes of subsequent bursts of ρm are determined by the excess stress
above σm. Then, the decreasing over stress leads to decreasing magnitudes of the secondary ρm bursts.
This in turn implies decreasing magnitudes of the displacement jumps. This explanation should be
contrasted with the one suggested in the literature, namely, increasing back stress. This is not the case
since the back stress σb = αGbρ1/2

f is ∼25 MPa even when ρ f assumes a peak value of ∼3× 1013/m2.

6.6. Common Mechanism Underlying All Displacement Jumps

Recall that, in the DC mode of indentation, the load drops occur whenever the plastic displacement
rate żp exceeds the applied displacement rate ṙ as is clear from the Equation (19). The equation explains
all load drops on the same footing. However, an equivalent mechanism is absent for the case of the
LC mode nanoindentation. In view of this, we attempt to explain all displacement jumps on the basis
of a common dynamical mechanism. Some insight can be obtained by examining the stress plot in
Figure 8a together with the F − z plot in Figure 7a. Figure 8a shows that the stress relaxes mostly
during the first pop-in event itself, eventually reaching its asymptotic value of ∼1 GPa. However,
this value is larger than the dislocation multiplication stress σm = 0.91 GPa. Since the stress remains
higher than σm even after the first displacement jump, one should expect a continuous increase in ρm

or equivalently a continuous increase in zp. In contrast, Figure 7a shows that the load increases quite
sharply beyond the first displacement jump suggesting a dominant elastic contribution. This raises a
question as to why the load should increase in a near elastic manner when the stress remains higher
than σm? As we shall see, this question is also relevant for subsequent displacement jumps.

To see this, recall that both load and area evolve with time. The area increase can occur either
due to imposed loading rate or due to plastic displacement rate. However, the time scales of these
two processes are very different. While the load increases linearly, the rate of area increase Ȧ arising
from plastic deformation can be very short as is clear from the short time scale of ρm bursts. From a
dynamical point of view, this observation suggests that, while the underlying dislocation mechanisms
for the first and secondary displacement jumps are different, we can describe all displacement jumps
as resulting from a competition between the two well separated time scales, namely, the slow time
scale corresponding to Ḟ0 and the fast time scale corresponding to ρm bursts. The rate of area change
arising from imposed load rate Ḟ0 is given Ḟ0

σm
, where σm is a natural choice for converting the applied

load rate to the rate of area increase. Figure 9b shows a plot of Ȧ(z) as a function of time, which
increases in bursts due to ρm bursts. Also shown is the rate of area increase due to applied load rate
Ḟ0
σm

= constant (red line). It is clear that, whenever Ȧ(z) overshoots Ḟ0
σm

, we see a displacement jump
(triggered by bursts of ρm) that is almost fully plastic. Otherwise, the elastic component dominates
over the plastic contribution. This feature is very similar to the mechanism underlying the force drops in the
DC mode of indentation where a force drop occurs whenever the plastic displacement rate exceeds the applied
displacement rate. Note that the duration of the first burst of Ȧ(z) (due to the first burst of ρm) is very
short while the durations of the subsequent bursts get longer and longer until the magnitudes of Ȧ(z)
and Ḟ0

σm
are comparable. Figure 9b can also be used to obtain quantitative estimates of the magnitudes

of the load steps seen in Figure 7a. (See Ref. [29] for details.)
The above analysis demonstrates that the mathematical mechanism causing the instability is a result of

a competition between the slow applied time scale corresponding to load rate (strictly Ḟ0
σm

) and another fast time
scale corresponding to Ȧ(z)(controlled by bursts of ρm). The existence of one slow loading time scale and
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one fast time scale of response are typical of all relaxational oscillations (see Refs. [30,44,45]). However,
in the present case, the instability is a transient one as is clear from the decreasing magnitudes of the
displacement jumps and load steps. The analysis also demonstrates that imposing a constant load rate
would be sufficient to trigger displacement jumps provided it is much larger than the short duration
of ρm bursts. However, in experiments, enforcing constant force rate condition during displacement
jumps may not be easy due to finite response time of the machine.

6.7. Conclusions

In summary, the model for the LC mode nanoindentation predicts all the generic features such as
the existence of an elastic branch followed by several displacement jumps of decreasing magnitudes,
and residual plasticity under unloading for a range of values of the parameters. Furthermore, the predicted
values of the load, the magnitudes of displacement jumps, etc. are also similar to those seen in
experiments. The study of the influence of the parameters on the model F− z curves show that the
elastic depth is determined by σn/E∗ and the magnitude of the first displacement jump is controlled
by the ratio of the nucleation stress to the multiplication stress, more precisely (σm/σn)m. Subsequent
displacement jumps are controlled by the storage and recovery mechanisms. This identification
also allows us to determine the optimized parameters that fit closely the experimental F− z curves
corresponding to single crystals of Al for (110) and (133) orientations.

Even though the underlying dislocation mechanisms for the first and subsequent jumps are
different, we have demonstrated explicitly that all displacement jumps result whenever the short
duration bursts of area increase due to plastic deformation exceed the slow rate of area increase due
to applied load rate. Otherwise, elastic response dominates. Note that the short duration of bursts
of ρm is also a signature of collective behavior of dislocations. The mathematical mechanism for the
instability is attributed to the competition between the slow time scale corresponding to the load rate
and the fast time scale corresponding to bursts of mobile density. More specifically, the decreasing
magnitudes of the displacement jumps or the load steps are signatures of transient nature of the
instability. The underlying physical mechanism for decreasing magnitudes of the displacement jumps
is the depletion of the mobile density that transforms to the forest density during the short duration of
ρm bursts.

7. General Conclusions on the Dynamical Approach to Nanoindentation

The present dynamical approach has been developed as an alternate approach to simulations with
a view to overcome their inherent limitations. While these methods have been routinely used due to
their ability to include a range of dislocation mechanisms [21–26], this advantage is offset by the serious
limitations due to the short time scales inherent to several simulations and their inability to adopt
experimental parameters, particularly the imposed rate of deformation. Consequently, the predicted
numbers differ considerably from those reported by experiments. Our idea is to develop an alternate
method to overcome the above limitations by devising a method that employs experimental parameters
such as the rates, the geometrical parameters defining the geometry of the indenter, thickness of the
film, etc., to predict numbers that match the experiments. The fact that the load drops or displacement
jumps are signatures of an instability arising from collective dislocation activity motivated us to
use nonlinear dynamics to model the nanoindentation instabilities. This also means that a natural
interpretation of the dislocation densities used in the model is that they represent collective modes of
the plastic deformation (as in the case of the AK model for the PLC effect).

The fact that the two models predict all the generic features with the predicted numbers matching
those from experiments is clearly a support for both the dynamical approach and the dislocation
mechanisms used. In this context, the success of the models in predicting all the generic features along
with good fits to the two experimental data sets must be viewed against the background of the absence
of simulations of any kind for the LC mode nanoindentation experiments. The fact that the model
F− z curves exhibit the characteristic features of the experiments for a range of parameter values can
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only be attributed to the fact that our approach allows for a direct adoption of the experimental parameters.
More importantly, the strength of our approach lies in providing an innovative method for calculating
the contribution from plastic deformation to the total indentation depth using the time evolution
equations for ρm and ρ f . Note that obtaining a good fit to experiments requires that we match the model
time and length scales with those in experiments. Noting that the total indentation depth is the sum of
the elastic and plastic contributions, this match has been accomplished by demanding that the basic
time scale for the growth of mobile density (that determines the extent of plastic deformation) matches
the experimental time scale, i.e., we demand θV0 is set to unity. (Note that imposed deformation such
as the displacement rate or load rate or strain rate, are measured per second). This allows us to match
the model zmax with that in experiment. Note that matching model Fmax with that in experiment is
straightforward since it is determined by load-elastic depth expression. Thus, our approach provides a
consistent scheme to match the model time scale and length scale with those of the experiments. Note
that the maximum depth is essentially determined by the plastic contribution to the depth.

One important consequence of our ability to calculate the plastic contribution to the indentation
depth is that for larger depths where the load drops or displacement jumps disappear, the model
predicts that hardness decreases with depth. Indeed, since our model uses dislocation density for the
calculation of plastic contribution, our method provides a way to describe indentation size effect and
constitutes an alternate approach to the strain gradient theories [54–57].

This kind of dislocation density based approach opens-up the possibility of studying
nanoindentation on experimental length and time scales that cannot be achieved in finer scales
simulation techniques. Furthermore, unlike simulations that require heavy computational resources,
the model equations can be solved on a desktop computer.

The results predicted by the models for the DC mode and LC mode nanoindentation, in particular,
the good fit to the two experimental load–displacement curves for the LC mode indentation where
no simulations exist, clearly supports our view that the proposed method can be used as an alternate
approach to simulation methods. This view is further supported by the success of the recent dislocation
mechanism based dynamical model for calculating hardness as a function of indentation depth.
The Indentation size effect model predicts all characteristic features of hardness in addition to providing
good fits to the two widely used hardness data on cold worked polycrystalline Cu [52] and single
crystals of Ag [53].

The approach may be criticized for ignoring the spatially inhomogeneous nature of the
deformation. (Note that, although the indentation depth z is used as a dynamical variable, the
model does not explicitly include spatial degrees of freedom.) Therefore, it might come as a surprise
that, despite the absence of spatial degrees of freedom in the model, the model F− z curve matches the
experimental data very well. To appreciate this, it is important to recognize that dislocation densities
used here represent the spatial/sample averages over the indented volume. They also represent
collective dislocation modes that are responsible for load drops or displacement jumps. Much the
same way, all experimentally measured quantities such as the force, stress, depth of indentation,
residual plasticity under unloading, etc. are also the volume averages of the dislocation activity in
the sample. Since both theoretically computed and experimentally measured quantities represent
sample averages, the good match is not all that surprising. Moreover, it is well known that averages are
quite insensitive to the details of the distribution. This statement is applicable to spatial averages as
well. However, if spatial degrees of freedom are introduced, displacement jumps will exhibit some
stochasticity, i.e., displacement jumps as well as the steps on force will be different in different runs.
This is a general result in dynamical systems that has been well illustrated in the case of the PLC effect
(see Ref. [30,33] and in particular Figure 2.1a of Ref. [42]). Inclusion of spatial degrees of freedom for
the present problem is nontrivial since this involves a moving boundary that goes by the name Stefan’s
problem in mathematics. Finally, it would be interesting to explore the possibility of using the current
approach along with finite element methods that calculate the stress distribution under the indenter.
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This then would allow the possibility of obtaining spatial distribution of the dislocation activity in
the sample.
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