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Abstract: This paper intends a short review of the research work done on the structural and electronic
properties of layered Indium Selenide (InSe) and related III–VI semiconductors under high pressure
conditions. The paper will mainly focus on the crucial role played by high pressure experimental
and theoretical tools to investigate the electronic structure of InSe. This objective involves a previous
revision of results on the pressure dependence of the InSe crystal structure and related topics such
as the equation of state and the pressure-temperature crystal phase diagram. The main part of
the paper will be devoted to reviewing the literature on the optical properties of InSe under high
pressure, especially the absorption experiments that led to the identification of the main optical
transitions, and their assignment to specific features of the electronic structure, with the help of
modern first-principles band structure calculations. In connection with these achievements we will
also review relevant results on the lattice dynamical, dielectric, and transport properties of InSe,
as they provided very useful supplementary information on the electronic structure of the material.

Keywords: InSe; layered semiconductors; III–VI semiconductors; high pressure; optical properties;
magnetoabsorption; electronic structure; lattice dynamics; dielectric properties; transport properties

1. Introduction

Layered Indium Selenide (InSe) has been the object of scientific interest for nearly 50 years.
Early studies focused on the investigation of the effect of crystal anisotropy on its transport and optical
properties [1,2]. The availability of high-quality large single crystals [3], and the possibility of n and p
doping [4], encouraged studies on its applications in photovoltaic solar energy conversion resulting in
solar cells with conversion efficiencies of up to 10% [5,6]. Later on, several groups showed possible
applications to nonlinear optical devices in the mid and far infrared spectrum [7]. The development of
the Van der Waals epitaxy in the early 1990s [8], with the increase in the thin film crystal quality, brought
some renewed interest in photovoltaic devices [9]. More recently, as the interest in 2D materials was
triggered by graphene’s remarkable properties [10], InSe has become the object of intensive research as
an ideal semiconductor for a large variety of single layer nano-devices [11–14].

The historical role of high pressure techniques in the investigation of the electronic structure of
semiconductors can be hardly overstated. As early as 1961, Paul’s empirical rule [15] on the pressure
coefficients of electronic transitions was a crucial tool to unravel the order of the conduction bands in
zinc-blende semiconductors. The development of the diamond anvil cell (DAC) [16], and the ruby
pressure scale [17,18], opened the way to the use of a large variety of optical spectroscopy and X-ray
structural techniques under high pressure conditions. Accurate optical absorption spectra could be
so obtained and quantitatively interpreted using sophisticated physical models, as reviewed by Goñi
and Syassen [19]. The use of DAC in third generation synchrotron radiation facilities also produced
very accurate X-ray diffraction and absorption spectra under high pressure, giving access to precise
Equations of State (EOS) and crystal phase diagrams, as reviewed by Nelmes and McMahon [20].
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Those experiment results have therefore become a rigorous experimental test for modern ab-initio
electronic structure calculations [21].

In this context, high pressure studies have been a tool of choice for investigating the electronic
structure of InSe and related III–VI layered semiconductors (GaS, GaSe, and GaTe). This paper reviews
the literature on this subject in the last 40 years. This review mainly focuses on InSe, but, when relevant
for the discussion, results on other III–VI semiconductors will be also presented. Section 2 is devoted
to results on the pressure evolution of InSe crystal structure, its EOS, and its pressure-temperature
crystal phase diagram. Section 3 will be devoted to studies on InSe electronic structure under pressure,
showing how optical absorption and reflection experiments have contributed to clarifying the nature
of electronic states and transitions, with the invaluable aid of ab-initio band structure calculations.
Section 4 will be devoted to the literature on the lattice dynamics of low and high pressure InSe phases.
Section 5 will discuss some results on the dielectric properties on layered InSe under pressure, and its
correlation to electronic transitions and ionicity of the material. Finally, Section 6 will review some
papers on the transport properties of InSe under high pressure, which have given supplementary
information on relevant aspects of its electronic structure.

2. Crystal Structure, EOS, and Pressure-Temperature Phase Diagram of InSe

At ambient conditions, InSe crystallizes in the layered rhombohedral phase [22], built as a stack
of 2D layers formed by two honeycomb In-Se sheets bound by strong In-In covalent bonds, as shown
in Figure 1a. As in other semiconductors of the III–VI family (GaSe, GaS), layers are bound by weak
Van der Waals forces. Several polytypes have been described, with different layer stacking sequence,
as shown in Figure 1b. Four stacking sequences have been detected for the related compound
GaSe [23]. InSe single crystals grown by the Bridgmann method [3] crystallize at ambient conditions
in the so-called γ-polytype (InSe-I), with two chemical formulas per primitive unit cell, which belongs
to the space group C3v (R3m) [22]. Most of the high-pressure experiments here discussed have been
obtained with γ-InSe samples. A few results on lattice dynamics in ε-InSe under high pressure will be
discussed in Section 4.
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Figure 1. Crystal structure of III–VI layered semiconductors: (a) structure of a single layer and
(b) stacking sequence of the single layers for three different polytypes.

A first approach to the EOS of γ-InSe at low pressure, through ultrasonic measurement, was
done by Gatulle et al. [24], who reported the pressure dependence of all elastic moduli, as well
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as the compressibility tensor, whose components are the linear compressibilities parallel (χ‖)
and perpendicular (χ⊥) to the c-axis. Values are given in Table 1, exhibiting a large anisotropy
ratio (χ‖/χ⊥ ≈ 7). It must be stressed that the compressibility values obtained from ultrasonic
measurements are affected by very large relative errors (Table 1).

In a paper on the optical properties of InSe and GaSe under pressure, Kuroda et al. [25] report the
pressure dependence of the c parameter of γ-InSe, as obtained from a non-published X-ray diffraction
(XRD) experiment in DAC. They assumed a Murnaghan-type [26] pressure dependence for the c
hexagonal unit cell parameter

c(P) = c0

(
1 +

B′0
B0

P
)− 1

3B′0 , (1)

In which B0 is the bulk modulus and B0
′ is its pressure derivative. By assuming B0 = 1/3χ‖

and taking the compressibility value from Ref. [22], they estimate the pressure derivative of the bulk
modulus B0

′ = 10.8, stressing that such high value illustrates the extremely nonlinear pressure behavior
of the material compression along the c-axis.

Schwartz et al. [27,28] reported for the first time the EOS and high-pressure crystal phase diagram
of γ-InSe up to 30 GPa. From a powder XRD experiment in DAC, using an X-ray tube as source,
they obtained the EOS of the layered phase and showed that it is stable up to 10 GPa (Figure 1a).
Experimental data were interpreted through the Murnaghan EOS [26]

V(P) = V0

(
1 +

B′0
B0

P
)− 1

B′0 , (2)

yielding the bulk modulus and its derivative given in Table 1. The anisotropy ratio of the low-pressure
compressibility tensor, χ‖/χ⊥, as obtained from the pressure dependence of the a and c parameters, is
much smaller than the one resulting from ultrasound experiments [24] (Table 1). Single crystal X-ray
diffraction [29] and X-ray in DAC, using a synchrotron source, provided a more detailed picture of
the low-pressure range of the EOS, as shown in Figure 1b. The values of the EOS parameters and
compressibility tensor so obtained are affected by smaller relative errors, as shown in Table 1. In the
low pressure range a larger compressibility is observed, as compared to the previous powder XRD
results [25,27,28], as shown in Figure 2b. It must be emphasized that, in spite of the dispersion of the
values given in Table 1, they are all compatible within the experimental error. When the low-pressure
compressibility is determined using XRD data for P < 1 GPa, the fitting procedure yields larger
compressibility values, closer to those of Reference [24] but with a very large relative error, larger than
50%, associated with the large relative errors of pressure, as determined through the ruby scale in the
very low-pressure range (P < 1 GPa) [17,18].

Table 1. Equation of state parameters and compressibility tensor for InSe crystal phases.

Crystal V0 (Å3) B0 (GPa) B0
′ χ⊥ (GPa−1) χ‖ (GPa−1) χ‖/χ⊥

γ-InSe 1 - 35(10) - 0.0033(19) 0.022(7) 6.7
γ-InSe 2 - - 10.8(8) 0.0033(19) 3 - -
γ-InSe 4 350.8 36(10) 4.05(30) 0.005(1) 5 0.014(2) 5 2.8
γ-InSe 6 350.4 24(3) 8.6(8) 0.0063(6) 0.016(2) 2.5

RS-InSe 4 190.5 51.2 4 - - -
MC(T)-InSe 7 207 44 5.4 - - -

1 Ultrasounds [24]; 2 XRD [25]; 3 taken from [24]; 4 powder XRD [27,28]; 5 estimated from Figure 1a in [28]; 6 single
crystal XRD [29]; 7 powder XRD [30].
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EOS of of InSe-I from single crystal diffraction (circles). Crosses represent the data of Figure 1a [29]. 
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[31]. (b) Relative variation of the layer thickness (intralayer) and the Van der Waals gap (interlayer) 
as a function of pressure [37]. 

As concerns InSe crystal phase diagram, Schwarz et al. [27,28] showed that, around 10 GPa at 
room temperature, InSe-I transits to a rock-salt (RS) cubic phase (InSe-III) that is stable up to 30 GPa 
(Figure 2a). The transition to the rock-salt phase was also detected by EXAFS measurements [31]. 
The comparison of Figures 2a and 3a illustrates the fact that, in spite of the volume collapse from the 

Figure 2. Results of XRD experiments in InSe-I DAC: (a) EOS of InSe-I and InSe-II from powder
diffraction. The x-axis corresponds to the pressure and the y–axis to the volume per formula [27].
(b) EOS of of InSe-I from single crystal diffraction (circles). Crosses represent the data of Figure 1a [29].

Results of X-ray absorption (XAS) [31] in DAC, using γ-InSe single crystals, added relevant
information concerning the evolution of the whole crystal structure. Figure 3a shows the pressure
dependence of the Se-In bond-length (dIn-Se), as obtained from XAS measurements. Compared with
the pressure dependence of the a-parameter [27–29], it turns out that the linear compressibility of a is
much larger than that of dIn-Se. This implies that the angle of the In-Se covalent bond with the layer
plane increases with pressure. The combined analysis of XRD and XAS results in DAC for other III–VI
layered compounds (GaS, GaSe. GaTe) [32–36] showed that this behavior can result in an unexpected
effect: the thickness of the layer can actually increase under pressure, as shown in Figure 3b [37]. This
behavior is very relevant to the discussion of the reliability of deformation potential models that were
proposed to give quantitative account of the extremely non-linear pressure dependence of the bandgap
in III–VI semiconductors, as we will discuss in Section 3.
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As concerns InSe crystal phase diagram, Schwarz et al. [27,28] showed that, around 10 GPa at
room temperature, InSe-I transits to a rock-salt (RS) cubic phase (InSe-III) that is stable up to 30 GPa
(Figure 2a). The transition to the rock-salt phase was also detected by EXAFS measurements [31].
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The comparison of Figures 2a and 3a illustrates the fact that, in spite of the volume collapse from the
layered to the rock-salt phase, the first neighbor distance increases as a result of the increase of the
first-neighbor coordination number.

The existence of a metastable phase introduces more complexity in the pressure-temperature
phase diagram of InSe. This phase was first synthesized by Vezzoli [38], who did not report its crystal
structure. A more systematic study by Iwasaki and coworkers [39,40] reported that InSe-I transforms
into a monoclinic (MC) structure material (InSe-II) with space group C2h (P2/m), at relatively low
pressure (1–3 GPa) and high temperature (500–700 K). This is an InS-like layered phase in which
all In-In covalent bonds are virtually parallel to the layer plane, as shown in Figure 4. InSe-II is
a semiconductor, which is metastable in ambient conditions [39–41].
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The P-T phase boundary between the rhombohedral and monoclinic phases of InSe was explored
by means of transport measurements under high pressure and temperatures [41], and by in-situ XRD
measurements at high pressure and temperatures [42] in a Paris-Edinburgh press. [43] An inverse
correlation was found between the pressure and temperature at which MC InSe-II grows from R
InSe-I [41,42]. While at pressures below 0.6 GPa the temperature must be 750 K, above 7 GPa,
only 400 K are needed for completing the phase transition.

Under high pressure, MC InSe-II progressively increases its symmetry and gradually approaches
a Hg2Cl2-like tetragonal phase (InSe-IV), with symmetry D4h (I4/mmm) [30]. This seems to be a second
order fully reversible phase transition, occurring at 19 GPa. The second sketch of the MC unit cell
shown in Figure 4 illustrates the similarity between the MC and T structures, and the fact that they
can transform into each other in a continuous way. InSe-IV was shown to be stable up to 30 GPa [41].
More recently it has been shown that, under further pressure increase, both RS InSe-III and T InSe-IV
transform into a cubic CsCl phase, InSe-V (Figure 4) [44].
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3. Electronic Structure under High Pressure

3.1. Optical Measurements and ab-Initio Band Structure Calculations

At ambient conditions InSe-I is a semiconductor with a bandgap of 1.27 eV, exhibiting intense
excitonic effects in its fundamental absorption edge [2,45], as also observed in ε-GaSe, with a direct
badgap of 2 eV at RT [46]. In β-GaS, with an indirect bandgap of 2.5 eV, the resonant direct exciton
(at 3 eV) is observed only at low temperature [47].

The pressure dependence of the absorption edge of these III–VI semiconductors was first
investigated by Besson and coworkers [47–49] by means of optical absorption measurements in
large volume piston cells, with the aim of extending Paul’s empirical rule [15] to non-tetrahedrally
coordinated semiconductors. These authors reported complex behavior including (i) a nonlinear
pressure dependence of the direct bangap, exhibiting a low-pressure interval with negative pressure
coefficient and then increasing with pressure after a minimum, as shown in Figure 5b; (ii) a large
negative pressure coefficient for the indirect gap of GaS; and (iii) a progressive widening and
disappearing of the exciton peak, as shown in Figure 5a. Concerning ε-GaSe, Panfilov et al. [50]
suggested that nonlinear behavior was the result of a phase transition to a different polytype occurring
at 0.6 GPa, a hypothesis that was not supported by later XRD experiments [32,34].
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edge of GaSe at different pressures [48]. (b) Pressure dependence of the direct gap shift for GaSe [48],
InSe [49], and GaS [47].

The nonlinearity in the pressure dependence of the bandgap was explained by the interplay between
intra- and inter-layer interactions, the latter dominating in the low-pressure range due to the large
compressibility of the interlayer distances, determined by Van der Waals interactions. The widening
and disappearance of the exciton absorption peak, i.e., the quick decrease of the exciton lifetime, was
explained by the strong carrier inter-valley scattering resulting from the direct-to-indirect crossover [47,48].

Attempts to give a theoretical account for this behavior were first done by means of empirical
pseudopotential band structure calculations [51] that correctly predicted the bandgap coefficients but could
hardly render a realistic description of the complex electronic structure of III–VI semiconductors. The first
investigation of γ-InSe band structure using modern ab-initio methods, based in density functional theory
(DFT) in the local density approximation (LDA), was done by Gomez da Costa et al. [52]. Results are shown
in Figure 6 (notice that, as explained in their paper, the authors shifted the conduction bands upwards to
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match the experimental value of the bandgap). Even if this band structure was reported after some of the
experimental papers that we will discuss later in this section, we will describe its main features so as to
facilitate the identification of the main electronic transitions involved in the optical absorption experiments.

The valence band maximum (VBM) and conduction band minimum (CBM) are at the Z point
of the first Brillouin zone (BZ) (also shown in Figure 6). This calculation gives account of the most
relevant features of InSe electronic structure and especially the unexpected anisotropy of the electron
and hole effective masses, which turns out to be smaller in the direction of the c-axis (Table 2).
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three lowest energy direct transitions [52].

Table 2. Electron and hole effective mass in γ-InSe.

Title me⊥/m0 me‖/m0 mh⊥/m0 mh‖/m0

Theory 1 0.18 0.11 5 0.11
Theory 2 0.12 0.03 3.1 0.03

Experiment 3,4 0.141(2) 0.081(9) 0.73(9) 0.17(3)
1 Empirical pseudopotential [51]; 2 ab-initio FTD-LDA [52]; 3 electrons, from cyclotron resonance experiments [53];
4 holes, from photoluminescence experiments [54].

Figure 6 also shows the assignment of the main direct transitions observed in the absorption
spectrum of γ-InSe, as well as the main orbital character and symmetry of the initial and final states.
It is relevant to notice that the fundamental transition is fully allowed only for polarization parallel to
the c-axis. In the framework of the k·p model [55], effective masses in a band extremum are inversely
proportional to the squared dipole matrix element with other extrema and proportional to the energy
difference between them. Effective mass values in Table 2 are then consistent with the observed features
of the main direct transition [2,45,56]. The low values of the electron and hole effective masses along
the c-axis are correlated to the strong allowed character of the fundamental transition for polarization
parallel to the c-axis. For polarization perpendicular to the c-axis transitions, E1 and E1

′ are allowed,
while the fundamental transition at Egd becomes partially allowed by spin-orbit interaction mixing
Se-pz states at the VBM with two deeper valence bands with Se-pxy character [52].

Further studies on γ-InSe and ε-GaSe absorption edge under pressure in DAC by Kuroda et al. [25]
confirmed the nonlinear behavior of the fundamental edge (B-edge in Figure 7, corresponding to transition
Egd in Figure 6), as well as the pressure-induced quenching of the exciton peak in both compounds.
The use of very thin samples also led these authors to investigate the behavior of a more intense direct



Crystals 2018, 8, 206 8 of 24

transition at larger photon energies (A-edge in Figure 7, corresponding to transition E1 in Figure 6),
assigned to a transition from a deeper valence band to the CBM, which exhibits a quasi-lineal pressure
dependence. The main features of ε-GaSe band structure can be imagined by folding γ-InSe bands along
the ΓZ direction and shifting the CBM by about 0.7 eV, which makes the direct transition in ε-GaSe very
close in energy to the indirect transition from the VBM to the conduction band minima at the Brillouin
zone edge (points A and B in Figure 6).

This paper was the first one to report that, while in ε-GaSe the energy difference EV1-EV2 increases
under pressure in the whole explored pressure range, in γ-InSe it slightly increases up to about 1 GPa
and then quickly decreases as pressure increases. This different behavior of EV1-EV2 is most probably
a consequence of the different symmetry of the ε and γ polytypes, leading to marked differences
between both compounds regarding the pressure effects on the shape of the VBM, as we will discuss
in Section 6. These authors also proposed a detailed empirical model including four deformation
potentials to give quantitative account of the nonlinear dependence of the fundamental gap.
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transition (A-edge) in GaSe (a) and InSe (b) [25].

In a paper on the pressure effects on the lattice dynamics and optical properties of ε-GaSe,
Gauthier et al. [57] reported a very detailed analysis of absorption edge that included a sound
decomposition of it in contributions of direct and indirect transitions, and allowed them to obtain the
pressure dependence of both the direct and indirect gaps (Figure 8a). The non-linearity of the pressure
dependence of the direct gap was also explained (like in [25,48]) by the interplay between intra- and
interlayer interactions. The direct gap contribution was analyzed by applying the Elliott-Toyozawa
models [58,59], that gives account of the effect of the electron-hole electrostatic interaction on the absorption
edge [58] and explains the widening of the exciton peaks from exciton-phonon scattering processes [59].
From that complete analysis, the authors obtained the pressure dependence of the direct exciton parameters
(binding energy and absorption peak width) and the direct transition dipole-matrix-element. Under
pressure, the matrix element linearly decreases (Figure 8b) as a consequence of the decrease of the
Se-pxy contribution to the VBM, consistently with the increase of EV1-EV2 reported by Kuroda et al. [25],
as discussed in the previous paragraph. The observed quick decrease of the exciton binding energy
(Figure 8b) was proposed to be due to the increase of the static dielectric constant, an issue that will be
discussed in Sections 4 and 5. The large increase of the exciton peak width was explained through the
pressure induced direct-to-indirect crossover, with a detailed discussion on the pressure dependence of the
different mechanisms intervening in the exciton scattering [46,60].
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Figure 8. (a) Pressure dependence of the direct and indirect absorption edges in GaSe. (b) Pressure
dependence of effective exciton Rydberg (exciton binding energy) and the dipole matrix element
(exciton absorption intensity) in GaSe fundamental edge [57].

The first full interpretation of the pressure evolution of γ-InSe absorption edge in terms of the
Elliot-Toyozawa model [58,59] was done by Goñi et al. [61] by means of low-temperature and high
pressure optical measurements in DAC. Figure 9a shows the pressure evolution of the absorption edge
of InSe at 10 K. Figure 9b shows the pressure dependence of the exciton binding energy.
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As previously found in GaSe, [57] and in spite of the expected increase of the effective mass
under pressure, the exciton binding energy decreases as pressure increases. This effect was attributed
to a large increase of the static dielectric constant under pressure. As we will discuss in Section 5,
this was later confirmed by capacitance measurements under high pressure. The authors also reported
a detailed analysis of the pressure dependence of the exciton peak width, which was explained through
a direct-to-indirect crossover attributed to the shift to lower energy of conduction band minima in
points A or B of the Brillouin zone in the band structure shown in Figure 6, analogously to the large
negative pressure coefficient of the indirect gap found in ε-GaSe [57] and β-GaS. [47] Below in this
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section we will discuss how this direct-to-indirect crossover in the conduction band is not enough to
give account of the exciton peak widening in the low-pressure range. Changes in the valence band
maximum at the Z point must also be taken into account.

A series of later experiments on the optical properties of γ-InSe under high pressure contributed
to improve the picture of its electronic structure with the crucial help of modern DFT-LDA ab-initio
electronic structure calculations. Ulrich et al. [62] reported the pressure dependence of the three direct
transitions described in Figure 6, as obtained from photo-modulated reflectance (PMR) measurements
in DAC. Figure 10a shows the PMR spectrum of InSe in the range of the high photon energy fully
allowed direct transitions E1 and E1

′, whose pressure dependence, along with that of the fundamental
gap is shown in Figure 10b. These results confirm the previously discussed ones by Kuroda et al. [23],
showing that E1 and E1

′ direct transitions do not exhibit the extreme nonlinear behavior of the
fundamental gap. From the pressure dependence of the three transitions given in Figure 10b, one can
determine the pressure dependence of the energy differences EV1-EV2 and EV1-EV3 between the upper
VBM and the second and third valence bands at the Z point. These energies correspond to E1-Egd and
E1
′-Egd. They slightly increase in the low-pressure range, but quickly decrease above 1 GPa. At 7 GPa

they are nearly 20% below their value at ambient pressure. As previously discussed, this behavior
increases the contribution of Se pxy states to the VBM.

Crystals 2018, 8, x FOR PEER REVIEW  10 of 25 

 

β-GaS. [47] Below in this section we will discuss how this direct-to-indirect crossover in the 
conduction band is not enough to give account of the exciton peak widening in the low-pressure 
range. Changes in the valence band maximum at the Z point must also be taken into account. 

A series of later experiments on the optical properties of γ-InSe under high pressure 
contributed to improve the picture of its electronic structure with the crucial help of modern 
DFT-LDA ab-initio electronic structure calculations. Ulrich et al. [62] reported the pressure 
dependence of the three direct transitions described in Figure 6, as obtained from photo-modulated 
reflectance (PMR) measurements in DAC. Figure 10a shows the PMR spectrum of InSe in the range 
of the high photon energy fully allowed direct transitions E1 and E1′, whose pressure dependence, 
along with that of the fundamental gap is shown in Figure 10b. These results confirm the previously 
discussed ones by Kuroda et al. [23], showing that E1 and E1′ direct transitions do not exhibit the 
extreme nonlinear behavior of the fundamental gap. From the pressure dependence of the three 
transitions given in Figure 10b, one can determine the pressure dependence of the energy differences 
EV1-EV2 and EV1-EV3 between the upper VBM and the second and third valence bands at the Z point. 
These energies correspond to E1-Egd and E1′-Egd. They slightly increase in the low-pressure range, but 
quickly decrease above 1 GPa. At 7 GPa they are nearly 20% below their value at ambient pressure. 
As previously discussed, this behavior increases the contribution of Se pxy states to the VBM. 

  
(a) (b) 

Figure 10. Optical properties of γ-InSe under pressure. (a) PMR spectra of γ-InSe at different 
pressures in the spectral range of direct allowed transitions. (b) Pressure dependence of the direct 
transitions in InSe [62]. 

The role of the direct-to-indirect crossovers in InSe was further investigated in a series of systematic 
experiments combined with DFT-LDA ab-initio calculations by Manjón et al. [63,64]. Through a detailed 
analysis of the absorption edge, illustrated in Figure 11a, it was shown that two different 
direct-to-indirect cross-over occur in InSe in the pressure range up to 4 GPa. These crossovers are 
consistently reflected in the shape of the absorption edge and in the pressure dependence of the exciton 
absorption width, which increases under pressure with two clearly defined onsets [64]. 

In this way, the pressure dependence of the fundamental direct gap (Z in Figure 11a) and the 
two indirect transitions (I1 and I2 in Figure 11a) could be determined, as shown in Figure 11b. 
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The role of the direct-to-indirect crossovers in InSe was further investigated in a series of
systematic experiments combined with DFT-LDA ab-initio calculations by Manjón et al. [63,64].
Through a detailed analysis of the absorption edge, illustrated in Figure 11a, it was shown that
two different direct-to-indirect cross-over occur in InSe in the pressure range up to 4 GPa. These
crossovers are consistently reflected in the shape of the absorption edge and in the pressure dependence
of the exciton absorption width, which increases under pressure with two clearly defined onsets [64].

In this way, the pressure dependence of the fundamental direct gap (Z in Figure 11a) and the two
indirect transitions (I1 and I2 in Figure 11a) could be determined, as shown in Figure 11b.
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Figure 11. InSe absorption edge under pressure. (a) Decomposition of the absorption spectrum in
direct and two indirect absorption contributions. (b) Pressure dependence of the direct and indirect
transitions in InSe and In0.86Ga0.12Se [64].

The band structure of γ-InSe was calculated using ab-initio DFT-LDA methods, including paths in
the BZ that had not been explored in previous calculations [62] but were included in later ones [65,66].
As pressure increases, the VBM undergoes a dramatic change: a new maximum develops, close to the
Z point, in the direction ZH. This maximum becomes the absolute VBM at about 2.5 GPa.

The transition assignment shown in Figure 12a was proposed by comparing the calculated
pressure dependence of the VBM and CBM at Z, the toroidal maximum, the CBM at H, and the
experimental pressure dependence of the direct and indirect transitions shown in Figure 11b.
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Figure 12. Band structure of γ-InSe under presssure. (a) Assignment of the indirect transitions [64].
(b) Constant energy surface plots around the toroidal valence band maximum, for a plane perpendicular to
the c-axis at the Γ point (upper figure) and a plane parallel to the c-axis at the Γ point (lower figure) [37].
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A detailed analysis of the new VBM at 4 GPa showed that it has quasi-cylindrical symmetry
around the c-axis and mirror symmetry with respect to the ZHL plane, giving rise to toroidal constant
energy surfaces [37].

This assignment is fully consistent with later experiments on intrinsic photoluminescence (PL)
under high pressure [67]. On the one side, the pressure dependence of the PL peak width clearly
exhibits two onsets, as shown in Figure 13a and previously observed for the exciton peak absorption
edge [64], corresponding to the direct to indirect crossovers, at the predicted pressures, as shown in
Figure 12a. On the other side, the exponential quenching of the intrinsic PL intensity for pressures
beyond 4 GPa, shown in Figure 13b, is consistent with the direct to indirect crossover occurring in the
conduction band at that pressure. As we will see in Section 6, this crossover is also responsible for the
behavior of the transport properties of n-type InSe under high pressure.
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Figure 13. Intrinsic photoluminescence in γ-InSe under high pressure. (a) Pressure dependence of the
PL peak width. (b) Pressure dependence of the photoluminescence peak intensity [67].

Further details on the electronic structure of InSe were obtained through magneto-optic
experiments at low temperature and high pressure [68,69].

Magneto-absorption oscillations in the absorption spectrum in pulsed magnetic fields up to
56 T [69] allowed for a detailed measurement of the of the Landau levels structure as a function of
pressure (Figure 14a). This led to the determination of the pressure dependence of the reduced effective
mass in the layer plane (mı⊥) that was shown to increase linearly with pressure. In the framework of
a simple k·p model [52], this is an unexpected behavior, as the effective mass should be proportional to
the bandgap and then exhibit its nonlinear behavior.
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Figure 14. Magnetoabsorption experiments in InSe. (a) Magnetoabsorption spectra at different
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field at which the exciton peak reappears as a function of pressure [69].
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This apparent inconsistency was explained through a k·p model adapted to the specific features of
InSe band structure [34,61,66]. Given that that most intense transitions for polarization perpendicular
to the c-axis are those named as E1 and E1

′ in Figure 6, the electron effective mass in the layer plane must
follow their pressure behavior and increase linearly as they actually do (Figures 7b and 10b) [25,62].

On the other side, a remarkable behavior of the exciton peak was observed at high pressure and
high magnetic field. In the absence of a magnetic field, the exciton peak is no longer observed at
4 GPa. Under high magnetic field, the exciton peak reappears, as shown in Figure 14b, indicating that
Landau levels associated with the toroidal valence band maximum shift to lower energies quicker
than those associated to the maximum at Z, that so becomes the absolute maximum. This behavior
indicates that the hole effective mass at the toroidal maximum is much smaller than the effective mass
at Z. The magnetic field at which the exciton peak reappears increases with pressure, as the inset
in Figure 14b shows. This effect allows for an estimation of the hole effective mass in the toroidal
maximum mhT < 0.03m0 [69].

It is important to notice that none of the ab-initio band structure calculations discussed in this section
gives quantitative account of the extreme non-linear behavior of the pressure dependence of the bandgap.
This seems to be related to the inability of DFT-LDA calculations to deal with Van der Waals interactions.
Several attempts to give quantitative account of the nonlinear behavior of the bandgap, based in empirical
deformation potential models, were proposed in References [25,57] or [61]. All these empirical models
share simple assumptions about intra and interlayer compressibilities that are hardly compatible with the
complex pressure behavior of the intralayer bond-lengths and bond-angles revealed by XRD diffraction
and absorption experiments under pressure, as discussed in Section 1.

3.2. Electronic Structure of High Pressure Phases

As regards the electronic structure of high pressure phases, RS-InSe was shown to be a metal,
as expected from the odd number of electrons per primitive unit cell and clearly confirmed by its
Drude-like plasma reflection in the near infrared [27,28], as shown in Figure 15a, with a plasma
frequency of about 2 eV, corresponding to a carrier concentration below 1022 cm−3.
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Figure 15. (a) Reflectivity versus photon energy in the plasma spectral range of RS-InSe [27].
(b) Absorption edge of monoclinic InSe under high pressure. Inset: pressure dependence of the
direct bandgap in MC InSe [41].

Both band structure calculations and optical measurements indicate that monoclinic InSe is
a semiconductor with a bandgap of the order of 1.6–1.8 eV at ambient pressure, as shown in
Figure 15(b) [41,70]. Band structure calculations predict a small band overlapping in tetragonal
InSe [41], but no bandgap closure was observed in the transition from the MC to the T phase [30].
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Also, as we will discuss in Section 4, no indication of metallization was observed in the Raman
effect spectrum at the transition pressure [30]. Thus, tetragonal InSe is most probably a low gap
semiconductor. As regards CsCl cubic InSe [44], it must necessarily be a metal, given its odd number
of electrons per primitive unit cell.

4. Lattice Dynamics under High Pressure

Raman effect experiments in III–VI layered materials under high pressure have been used as a tool
to investigate the structure stability and the evolution of the chemical bond anisotropy, especially the
relative intensity of intra- and interlayer bonds. Lattice dynamics of β-GaS and ε-GaSe under high
pressure was investigated by Polian et al. [71], Kuroda et al. [72], and Gauthier et al. [57]. The pressure
coefficients of phonon modes were found to be very dependent on their intra- or interlayer character.
The largest pressure coefficients were found for low-frequency, rigid-layer interlayer modes in which
restoring forces are mainly determined by weak Van der Waals bonds, whose strength quickly increases
under high pressure. The frequency of these modes, which only occurs in polytypes with two or more
layers per primitive unit cell, nearly doubles in the pressure range up to 6 GPa. [57,71]. This behavior
was also reported for ε-InSe in Raman effect measurements up to 1 GPa [73,74].

The first systematic study on γ-InSe lattice dynamics under pressure was carried out by
Ulrich et al. [75], as shown in Figure 16b. Later on, Choi and Yu [76] reported a Raman experiment
under pressure in ε-InSe, but they do not report the behavior of the low-frequency rigid-layer mode that is
the main signature of the ε-polytype. The primitive unit cell of γ-InSe contains only one layer per unit cell,
and it does not present the low-frequency rigid-layer mode. The lowest frequency mode is the E(1) mode
(Figure 16), a rigid-half-layer mode in which the restoring forces receive contributions from interlayer
forces and from In-In intra-layer bond bending.
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Figure 16. Phonons in γ-InSe. (a) Vibration schemes of the normal modes at the Γ point. (b) Pressure
dependence of the normal modes frequencies [75].

The pressure coefficient of this mode is remarkably low, as also reported for the similar modes in
β-GaS [71] and ε-GaSe [57]. This behavior indicates that the increase of the interlayer forces under
pressure is accompanied by a weakening of the In-In bond, suggesting the existence of some kind of
charge transfer from intra-layer covalent bonds to the interlayer space under high pressure. In the case
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of GaSe [57], this effect was proposed to be correlated to the observed marked decrease of the transverse
dynamic charge associated with the LO-TO splitting of polar phonons vibrating perpendicular to the
c-axis (E phonons). Based on this consideration, it was proposed that the transverse dynamic charge
of polar phonons vibrating parallel to the c-axis (A1 phonons) should dramatically increase under
pressure, resulting in a strong increase of the static dielectric constant for polarization parallel to the
c-axis [57,77]. This issue will be discussed in Section 5.

An ab-initio investigation of the lattice dynamics of γ-InSe under pressure was published by
Rushchanskii [78]. This calculation accurately predicts the experimental pressure dependence of the
Raman modes [75]. It is relevant to notice that the calculation underestimates the LO-TO splitting
of A1 polar mode at ambient pressure. Also, even if it predicts its increase under high pressure,
this pressure-enhanced LO-TO splitting is not be enough to reproduce the pressure increase of the
static dielectric constant under pressure predicted by the charge transfer model proposed by Gauthier
et al. [57,77].

The lattice dynamics of metastable and high-pressure phases of InSe have been investigated in
the context of the crystal phase transition from MC-InSe to T-InSe [30]. Figure 17a shows the vibration
scheme of Raman active modes in both crystal phases. Figure 17b shows the pressure dependence of its
frequencies and how four non-degenerate Raman active modes of MC-InSe (Ag-Bg modes) converge
into two doubly degenerate Eg modes in T-InSe.
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The fact that no discontinuity in the frequency or intensity of the Raman peaks is observed
through the monoclinic-to-tetragonal phase transition is consistent with the semiconductor character
of T-InSe, as previously discussed in Section 3.1.

5. Dielectric Properties under High Pressure

The pressure dependence of the electronic and lattice contributions to the static dielectric constant
in InSe and other layered III–VI materials has been investigated through different experimental
techniques. The pressure effect on the electronic contribution to the dielectric constant has been
determined through refractive index measurements under pressure.
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Polian et al. [78] used Brillouin effect experiments in DAC to measure the pressure dependence
of refractive index in β-GaS, for light polarization perpendicular (n⊥) and parallel (n‖) to the c-axis
(named no and ne respectively in Figure 18a), reporting a large increase of both indexes under pressure.
The pressure increase was shown to be much larger for n‖ and, as a result, at 15 GPa the difference
n⊥ − n‖ vanishes, as shown in Figure 18a.
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For ε-GaSe [57,72] and γ-InSe [80,81], the interference fringe pattern of the transmitted light was
used to determine the pressure dependence of the refractive index for polarization perpendicular
to the c-axis (n⊥). A large increase of n⊥ was found for both materials. Figure 18b illustrates those
findings. Results were interpreted in the framework of the Phillips-Van Vechten model [82,83] for
semiconductor dielectric response.

Once the large compressibility of these materials is taken into account, it turns out that the
electronic polarizability for light polarization perpendicular to the c-axis decreases under pressure
due to the positive pressure coefficient of the material Penn gap, i.e., the average most intense dipole
allowed transition between the valence and conduction bands [84].

Errandonea et al. [85–87] investigated the pressure dependence of the static dielectric constant for
polarization parallel to the c-axis (ε0‖) for the three compounds by means of capacitance measurements
on insulating samples, in Bridgman anvil cells, as shown in Figure 19a. The steep increase at 1.5 GPa
for β-GaS is related to a reversible crystal phase transition to a denser layered phase [23,88]. For this
polarization, the material compressibility accounts only for a small part of the large increase of the
static dielectric constant [87]. A large increase of the total polarizability must be assumed. Given that
Brillouin effect experiments in β-GaS confirm a large increase of n‖, it seems clear that the electronic
contribution is responsible for most of the increase of the static dielectric constant for polarization
parallel to the c-axis. The pressure behavior of the Penn gap for this light polarization was found to be
correlated to the pressure behavior of the indirect gap in the three compounds, as shown in Figure 19b.
It was proposed that the strong decrease under pressure of both electronic transitions has the same
origin: the quick shift to lower energies of a CBM that is the final state in both the indirect gap and the
Penn gap transitions [87].
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6. Electronic Transport Properties under High Pressure

The pressure behavior of electronic transport parameters of layered III–VI semiconductors
has been investigated through resistivity, Hall effect, and thermos-power measurements under
high pressure. Given the extrinsic character of most samples in these materials, obtaining reliable
information on intrinsic parameters (like effective masses or impurity ionization energies) or specific
features of the electronic structure involves very systematic experiments, using well characterized
samples with carrier concentration extending over several order of magnitude.

In the case of n-type InSe doped with Sn, a clear correlation was found between the ambient
pressure carrier concentration and its pressure behavior, with a more accused, pressure-induced
exponential quenching of the free carrier concentration for larger carrier concentrations at ambient
pressure, as shown in Figure 20a [89–91]. This behavior could be consistently explained by assuming
the existence of an electron trap associated with an excited minimum of the conduction band, moving
down with a pressure coefficient of −100 meV/GPa, and trapping the free electrons as they enters the
forbidden band and cross the Fermi level, as shown in Figure 20b.
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Figure 20. (a) Pressure dependence of the transport parameters (resistivity, electron concentration,
and electron mobility) in Sn-doped n-type γ-InSe. (b) Pressure dependence of the Fermi level and
the deep trap (both with respect to the conduction band minimum) as determined from the data in
Figure 20a [90].

This picture is consistent with the findings of the pressure-induced changes in the band structure
of γ-InSe discussed in Section 3.1. Optical measurements and ab initio band structure calculations
showed a direct to indirect crossover in the conduction band [64]. Impurity levels associated with
the different minima in the conduction band have different ionization energies. Given that all band
structure calculations [64–66] predict a large electron effective mass for the zone-edge excited minimum
of the conduction band, moving downwards under pressure (minimum at B in Figure 12a), its related
donor can reasonably be assumed to be a deep level. Then, it can be assimilated into an electron
trap moving down in energy, trapping free electrons as it approaches the Fermi level, as depicted in
Figure 20b. This also explains why the electron trapping onset occurs around 1.2 GPa, a pressure lower
than the direct to indirect crossover pressure (4 GPa).

It is also relevant to mention that transport measurements have also been used to investigate
precursor effects of the structural phase transitions. It was noticed [90] that at about 4.5 GPa, some
irreversible changes occur in the material, which were detected first in the transport properties as
an irreversible increase of the carrier concentration, as shown in Figure 20a. Then, at about 7 GPa,
dark lines start appearing in the monocrystalline samples [92] and a new Raman active mode is
observed, which remains at ambient pressure after the pressure down-stroke [75,92]. All these effects
can be considered as precursor effects of the crystal phase transition to the RS phase occurring at
10 GPa [27–29]. The appearance of these dark lines was attributed to a local increase of the pressure,
associated with the stress field of edge dislocations. Along the edge dislocation lines, the rhombohedral
phase would become locally unstable at a lower macroscopic pressure [92].

Transport measurements in p-type InSe were also shown to be consistent with the findings of the
pressure-induced changes occurring in the band structure around the VBM at the Z point, unraveled
by optical measurements and band structure calculations.
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The hole concentration in p-type γ-InSe samples doped with different acceptors has been reported
to increase by a factor 40 between 1 and 3 GPa, while the hole mobility increases by a factor 2, as shown
in Figure 21 [93–96]. The onset pressure at which the hole concentration starts rising (1 GPa) is
practically the same as the onset pressure at which the width of the exciton absorption peak [61,64] and
the width of the PL peak [67] start increasing. The behavior of hole transport parameters (concentration
and mobility) is consistent with the emergence of a new VBM with a larger effective density of states
and lower effective mass. These are distinctive features of the toroidal VBM are shown in Figure 12.
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In contrast, both the hole concentration and mobility increase monotonously under pressure
in p-type ε-GaSe and do not exhibit any dramatic changes (Figure 21). Ab-initio band structure
calculations [32,94] do not show any trace of a toroidal maximum or any other dramatic modification
of the VBM (occurring at the Γ point) in ε-GaSe, at 7 GPa [94], or at 16 GPa [32]. The different pressure
behavior of the VBM in ε-GaSe with respect to γ-InSe has been attributed to differences in the band
mixing and dipole matrix elements between the highest energy valence bands imposed by symmetry
elements of the P6m2 group (to which ε-GaSe belongs) [94].

7. Conclusions and Perspectives

In spite of the remarkable advances here reviewed, some relevant features of the electronic
structure of InSe and related III–VI semiconductors are not yet well understood. Concerning ab-initio
band structure calculations, as we stressed in Section 3, they give a quantitative account of the linear
pressure dependence of the main electronic transitions in the high pressure range but fail to predict the
extremely non-linear behavior of some physical parameters in the low pressure range. The problem
stems from the well-known inability of DFT-LDA ab-initio calculations to deal with van der Waals
interactions. New techniques, like the so called van der Waals corrected-DFT [97–99], which were
successfully applied to layered materials like graphene or MoS2, do not seem to have yet been used to
investigate III–VI layered materials.
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From an experimental point of view, the main structural feature of InSe and related compounds
(the weakness of the inter-layer forces) makes it especially difficult to prepare thin samples with faces
containing the c-axis. This has led to a lack of results for the pressure dependence of some important
physical parameters like the absorption coefficient for polarization parallel to the c-axis, the static
dielectric constant for polarization perpendicular to the c-axis, and the electron and hole mobility
along the c-axis.

We will finally mention some perspectives on the investigation of impurity levels, a crucial issue
for the design of electronic devices. Shallow donors [100] and acceptors [54] in InSe are quite well
characterized at ambient pressure. High pressure studies on impurity levels here reviewed [89–96]
are based on transport measurements and do not give direct information on the internal electronic
structure of impurity levels, as the one provided by Fourier transform infrared spectroscopy (FTIR) in
DAC. FTIR spectroscopy investigations would also provide information on the pressure behavior of
relevant band structure parameters, like carrier effective mass tensors. In an extended spectral range,
FTIR experiments in DAC would also serve to complete the understanding of high pressure lattice
dynamics of III–VI materials by exploring the pressure behavior of polar phonons, for which Raman
Effect measurements give relatively limited information, as we have seen in Section 4.

In summary, this review has shown that high pressure experimental techniques and ab-initio
band structure calculations have been an exceptional tool, leading to a deep understanding of the
electronic structure of InSe and related III–VI layered semiconductors.
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