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Abstract: Octacalcium phosphate (OCP) has attracted much attention as an artificial bone substitute
because of its excellent osteoconductive and bone replacement properties. Although numerous
studies have investigated OCP powder fabrication, there are only a few studies on OCP block
fabrication. Therefore, in this study, the feasibility of optimizing dicalcium hydrogen phosphate
dihydrate (DCPD) blocks, as a precursor for OCP block fabrication, under a pH 6 adjusted acetate
buffer solution at 70 ◦C for 2 days was investigated. When a DCPD block was immersed in acetate
buffer, the block was partially converted to OCP, with a large amount of dicalcium hydrogen
phosphate anhydrate (DCPA), and its macroscopic structure was maintained. When the DCPD
block was immersed in a Ca-containing solution, it was converted to mainly hydroxyapatite (HAp)
with DCPA. On the other hand, when the DCPD block was immersed in a PO4-containing solution,
the block was converted to OCP, and its macroscopic structure was maintained. In other words,
the PO4-induced calcium phosphate with a Ca/P molar ratio lower than 1.0 may represent an
intermediate phase during the compositional transformation from a DCPD block to an OCP block
through the dissolution–precipitation reaction.

Keywords: octacalcium phosphate (OCP); dicalcium hydrogen phosphate dihydrate (DCPD);
dissolution-precipitation reaction; non-stoichiometric treatment; bone substitute; bioceramics

1. Introduction

Octacalcium phosphate (OCP: Ca8(HPO4)2(PO4)4·5H2O) has attracted much attention as an
artificial bone substitute because of its excellent properties [1–4]. When a bone defect was reconstructed
with OCP granules, OCP exhibited much higher osteoconductivity and bone replacing ratio than
those of hydroxyapatite (HAp: Ca10(PO4)6(OH)2) and β-tricalcium phosphate (β-TCP: Ca3(PO4)2),
which are the typical artificial bone substitutes [1]. Note that OCP is replaced by the bone faster than
β-TCP [3]. Although the reasons for the superior properties of OCP as an artificial bone substitute
are not fully understood, being a precursor phase to the bone may be one of the reasons. Despite the
usefulness of OCP, it is not used as a clinical bone substitute. One of the reasons for this is the absence
of OCP blocks. In other words, OCP is only available in the powder form, at the maximum ranging
sub-mm in size by simple precipitation method [5–7].

Recently, we successfully established that OCP blocks could be fabricated through a
dissolution–precipitation reaction from a calcium sulphate hemihydrate (CSH: CaSO4·1/2H2O) block
used as a precursor in a PO4-containing solution [8,9]. However, little is known about the fabrication
of OCP blocks using a precursor through a dissolution–precipitation reaction. For example, only CSH
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blocks have been found to be a useful precursor. Therefore, another ceramic block is evaluated as a
precursor for OCP block fabrication. However, residual SO4 might be a serious challenge from the
viewpoint of chemically pure OCP block fabrication.

The dicalcium hydrogen phosphate dihydrate (DCPD: CaHPO4·2H2O) block was evaluated as
a precursor of OCP. DCPD contains both Ca and PO4, whereas CSH contains only Ca. Therefore,
a feasibility study of the DCPD block can be regarded as an initial step towards the feasibility study
of calcium phosphate as a precursor for OCP block fabrication. Furthermore, unlike CSH, residual
ions—in this case, SO4—could be avoided when a DCPD block is used as the precursor.

When the CSH block is used as a precursor, it is clear that a PO4-containing solution should be
used in the dissolution–precipitation reaction for OCP block fabrication, because CSH contains only
Ca for OCP. In contrast, when the DCPD block, which contains both Ca and PO4, is used as a precursor
for OCP block fabrication, there may be no need to supply any Ca or PO4 from the solution, which
seems to supply Ca because of stoichiometry of DCPD (Ca/P = 1.00).

In this study, therefore, the effect of Ca and PO4 in the solution on the compositional
transformation from the DCPD block to the OCP block through a dissolution–precipitation reaction
was investigated using a Ca- and PO4-free weakly acidic buffer solution as the control.

2. Materials and Methods

2.1. Fabrication of Dicalcium Hydrogen Phosphate Dihydrate Blocks

DCPD blocks were fabricated by setting the reaction of α-tricalcium phosphate (α-TCP: Ca3(PO4)2,
α-TCP-B, Taihei Chemical Inc., Osaka, Japan) and H3PO4 (Wako Pure Chemical Co., Osaka, Japan).
Approximately 0.15 g of α-TCP powder was placed in a plastic separated-type mold (ϕ6 mm × 3 mm);
onto the α-TCP powder was dropped 0.15 mL of 2.0 mol/L H3PO4, and the mixture was left standing
for 30 min to stimulate the following chemical Reaction (1):

Ca3(PO4)2: α-TCP + H3PO4 + 6H2O→ 3CaHPO4·2H2O: DCPD (1)

Then, the reaction product was eventually dried at room temperature. The set α-TCP powder is
called DCPD block for convenience (see Results).

2.2. Compositional Transformation from the Dicalcium Hydrogen Phosphate Dihydrate Block to an Octacalcium
Phosphate Block through Dissolution–Precipitation

All the chemicals were purchased from Wako Pure Chemical Inc., Osaka, Japan. Three mother
solutions, namely a 1.0-mol/L acetate buffer solution, a 1.0-mol/L phosphate solution, and a
1.0-mol/L Ca solution, were prepared; the pH values of these solutions were adjusted to 6.0 at
70 ◦C. To prepare the immersing solution for the reaction, we mixed these mother solutions according
to the solution recipe.

An acetate buffer solution (1.0-mol/L acetate) with pH 6.0 at 70 ◦C as a mother solution was
prepared from CH3COOH and NaOH. A phosphate solution was prepared by mixing NaH2PO4 and
Na2HPO4 so that the pH of the solution would be 6.0 at 70 ◦C. A Ca solution was made by mixing
CaCl2 and NaOH in such a way that the pH of the solution would be 6.0 at 70 ◦C. All phosphate and
Ca solutions used for immersion contained 0.2 mol/L of acetate buffer solution for pH stabilization,
with phosphate or Ca under a weak acidic condition. Therefore, the initial pH of all solutions for
immersion was adjusted to 6.0 at 70 ◦C.

Eight DCPD blocks were immersed in 15 mL of the solutions at 70 ◦C for 2 days. The final pHs
of the solutions were recorded with a pH electrode (LAQUA ToupH 9615S-10D with pH meter D-72,
Horiba Co., Kyoto, Japan). The treated samples were washed in distilled water several times to remove
the residual solutions, then placed in a dry oven at 37 ◦C for one day for drying.
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2.3. Characterization and Mechanical Properties of Dicalcium Hydrogen Phosphate Dihydrate and Octacalcium
Phosphate Blocks

For XRD analysis, the blocks were ground into a fine powder by an agate mortar and pestle.
XRD patterns were recorded with a diffractometer (40 kV and 40 mA: D8 Advance, Bruker AXS
GmbH, Karlsruhe, Germany; and 40 kV and 15 mA: MiniFlex600, Rigaku Co., Tokyo, Japan) using
monochromatized X-rays (CuKα: λ = 0.1542 nm). The diffraction angle was continuously scanned for
2θ values ranging from 3◦ to 70◦ at a scanning rate of 2◦/min.

The integral strength of intensities of each peak (Ix: x = phase) in the obtained XRD patterns of
the samples were calculated by quantitative analysis with the software PDXL2 (Rigaku Co., Tokyo,
Japan). The relative rate of the yield of calcium phosphate in each sample was calculated by the d(100)
of OCP at ~4.7◦, d(100) of hydroxyapatite [HAp: Ca10(PO4)6(OH)2] at ~10.5◦, d(100) of DCPD at ~11.6◦,
and d(120) of dicalcium hydrogen phosphate anhydrate [DCPA: CaHPO4] at ~30.2◦. The reason why
the d(100) of HAp at ~10.5◦ instead of the d(003) of HAp at ~32.7◦ is adopted as the strongest peak of
HAp is to avoid the overwrapping of peaks of other calcium phosphate. The proportion of each phase
(Rx: x = phase) in the samples is given by Equation (2):

Rx = Ix/(IDCPD + IDCPA + IOCP + IHAp) (2)

The mechanical strength of the block was evaluated in terms of its diametral tensile strength
(DTS). After drying the samples at 37 ◦C for 24 h, the diameter and thickness of the block were
measured using a micrometer (MDC-25MU, Mitutoyo Co. Ltd., Kawasaki, Japan). The samples were
crushed with a universal testing machine (AGS-J, Shimadzu, Kyoto, Japan) at a constant crosshead
speed of 1 mm/min. The mean DTS value for the five samples was calculated and expressed as the
mean ± standard deviation.

3. Results

Figure 1 shows the typical photographs of (a) the DCPD block, as well as the block after immersion
in (b) a pH-6 acetate buffer solution, (c) a 0.5 mol/L PO4 solution, (d) a 1.0 mol/L PO4 solution,
(e) a 0.5 mol/L Ca solution, and (f) a 1.0 mol/L Ca solution, at 70 ◦C for two days. The DCPD blocks
maintained their shapes during the solution immersion treatment, except for the case of immersion in
the pH-6-adjusted 1.0 mol/L Ca solution.
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Figure 1. Photographs of the dicalcium hydrogen phosphate dihydrate (DCPD) block (a) before
immersion, and after immersion in a (b) pH-6 acetate buffer, (c) 0.50 mol/L PO4 solution, (d) 1.00 mol/L
PO4 solution, (e) 0.50 mol/L Ca solution, and (f) 1.00 mol/L Ca solution, all at 70 ◦C for 2 days.
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Figure 2 shows the typical XRD patterns of (a) the DCPD block, and (b) the block after immersion
in the pH-6 acetate buffer solution, as well as immersion in the same solution containing (c) 0.25-mol/L
PO4, (d) 0.50-mol/L PO4, (e) 1.00-mol/L PO4, (f) 0.25-mol/L Ca, (g) 0.50-mol/L Ca, and (h) 1.00-mol/L
Ca. The XRD patterns of the DCPD block obtained after the setting reaction of α-TCP powder and
H3PO4 exhibited a typical DCPD pattern without any other peaks. When the DCPD block was
immersed in the pH-6 acetate buffer solution without Ca or PO4, its composition included a mixture of
OCP and DCPA, and the block’s macroscopic structure was retained. In the PO4-containing solutions,
the DCPD block was converted to OCP, although a small amount of DCPA was formed after two days
of immersion. Interestingly, in Ca-containing solutions, a small amount of OCP was formed and the
composition of the DCPD block changed to HAp.
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Figure 2. XRD patterns of DCPD block (a) before immersion and (b) after immersion in pH-6
acetate buffer solution, as well as after immersion in the same solution containing (c) 0.25-mol/L
PO4, (d) 0.50-mol/L PO4, (e) 1.00-mol/L PO4, (f) 0.25-mol/L Ca, (g) 0.50-mol/L Ca, and (h) 1.00-mol/L
Ca. : DCPD (PDF card No. 11-293),
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H: hydroxyapatite (HAp) (PDF card No. 55-592), and �: dicalcium hydrogen phosphate anhydrate
(DCPA) (PDF card No. 9-80). ↓ indicated unidentified peaks (HAp or OCP).

Figure 3 shows the ratio of the yields in each sample, calculated from the intensity of each calcium
phosphate peak.

Table 1 shows the final pH values of the pH-6 solution as a function of Ca or PO4 concentration
after the DCPD block was immersed in the solution at 70 ◦C for 2 days. When the DCPD block
was immersed in a pH-6 solution without Ca or PO4, the pH dropped to 5. Similarly, the pH of the
solution dropped to ~5 when the DCPD block was immersed in the Ca solution, regardless of its
concentration. In contrast, a negligible pH change was observed when the DCPD block was immersed
in the PO4 solution.
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Figure 3. Phase rate of calcium phosphate yields in the samples. White: DCPD. Light grey: DCPA.
Dark grey: HAp. Black: OCP.

Table 1. Final pH values of a pH-6 acetate buffer solution with PO4 or Ca at 70 ◦C for 2 days.

Concentration (mol/L)
Final pH Final pH

PO4 Ca

0.00 5.03 5.03
0.25 5.96 4.94
0.50 6.06 5.02
1.00 6.09 5.17

Figure 4 shows the typical SEM images of (a, b) the DCPD block and (c, d) the DCPD block
immersed in the pH-6 buffer solution, (e, f) the DCPD block immersed in 1.0 mol/L PO4 solution, and
(g, h) the DCPD block immersed in 1.0 mol/L Ca solution. The DCPD block consisted of rhombohedral
plate-like crystals ~50 µm in length, ~20 µm in width, and 1–5 µm in thickness. When the DCPD block
was immersed in the pH-6 buffer solution, the rhombohedral plate-like crystals disappeared, and the
crystals became ~10 µm in length, 1–2 µm in width, and ~100 nm in thickness, with nanometre-sized
fibre-like crystals. When the DCPD block was immersed in the PO4 solution, however, the crystals
became elongated and ribbon-like. In addition, when the DCPD block was immersed in the Ca solution,
the crystals of the block become nanometre-sized and fibre-like.
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adjusted solution, (e,f) pH-6 adjusted 1.00 mol/L PO4 solution, and (g,h) pH-6 adjusted 1.00 mol/L Ca
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Figure 5 shows DTS values of the DCPD block and the block after immersion in the pH-6 buffer,
PO4, and Ca solutions at 70 ◦C for two days. Although after treatment the DTS values of the samples
were significantly higher than those of the DCPD block, there was no significant difference among all
the treated samples, except for the DCPD block immersed in the 1.0 mol/L Ca solution, which could
not maintain its shape.Crystals 2018, 8, x FOR PEER REVIEW  6 of 8 
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Figure 5. Diametral tensile strength (DTS) values of the DCPD block before and after immersion in a
pH-6 acetate buffer solution with PO4 or Ca at 70 ◦C for 2 days.

4. Discussion

The obtained results clearly indicate that the PO4 concentrate solution has an advantage with
respect to OCP formation from DCPD. On the other hand, the Ca concentrate solution has an advantage
with respect to the formation of a mixture of HAp and DCPA from DCPD. The stoichiometric Ca/PO4

rates of DCPD and OCP are 1.00 and 1.33, respectively [10,11]. Therefore, based on the stoichiometric
law, it seems consistent to add Ca for OCP fabrication from DCPD. However, the obtained results clearly
indicate that supplying PO4 is the key for converting from DCPD to OCP, even though the Ca/PO4 of
the reaction system was significantly different from the stoichiometric chemical composition.

Many studies have been conducted on OCP formation and the dynamics of OCP in solution.
OCP is not directly formed from the ions in the aqueous solution, but rather via several precursor
phases, such as amorphous calcium phosphate (ACP; at least six forms) through solid–solid phase
conversion instead of a dissolution–precipitation reaction [12–20]. Therefore, it is suggested that the
property of the precursor, in this case the physicality of ACP, strongly affects the formation of OCP.

Habraken et al. [21] indicated that when OCP, in this case Ca-deficient OCP, was formed in
weakly acidic to weakly basic solutions, ACP with a low Ca/PO4 ratio (0.3–0.4) (assembly of ≥86%
Ca(HPO4)3

4−/Ca(H2PO4)(HPO4)2
3− and ≥14% CaHPO4/CaH2PO4

+) formed as a precursor phase,
and OCP formed via ACP through structural phase transformation.

Based on the Habraken’s concept, when the PO4 concentration in the systems is increased, the
amount of the precursor ACP and the final amount of OCP are increased. Therefore, DCPD was
likely consumed and converted completely to OCP in solutions containing high amounts of PO4 ions.
Our foundation suspended this foundation. Furthermore, it was suggested that the DCPD blocks
collapse in solutions with high Ca concentrations, as a result of the PO4 removal process.

This study focuses on fabricating a highly pure OCP block for clinical use. For such a use, residual
ions such as SO4

2− might be a serious limiting factor. DCPD is a suitable precursor because the
components of DCPD are essentially the same as those of OCP. Therefore, unlike calcium sulfate, it
might be possible to obtain pure OCP blocks. Although the fabricated OCP blocks did not contain
residual calcium phosphate, our study shows pure OCP blocks which are suitable for direct clinical use.
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5. Conclusions

The effect of Ca or PO4 on OCP block formation from the DCPD block in weakly acidic solutions
was investigated. Phosphate solutions were induced in the conversion of DCPD blocks into the desired
OCP blocks via the dissolution–precipitation reaction. This was unexpected given the stoichiometric
ratio of Ca/P in OCP, and suggests that PO4 is the essential ingredient for the fabrication of OCP and
HAp via the dissolution–precipitation reaction.
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