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Abstract: Unlike conventional bulk or film materials, one-dimensional (1D) semiconducting zinc
oxide (ZnO) nanostructures exhibit excellent photoelectric properties including ultrahigh intrinsic
photoelectric gain, multiple light confinement, and subwavelength size effects. Compared with
polycrystalline thin films, nanowires usually have high phase purity, no grain boundaries,
and long-distance order, making them attractive for carrier transport in advanced optoelectronic
devices. The properties of one-dimensional nanowires—such as strong optical absorption,
light emission, and photoconductive gain—could improve the performance of light-emitting diodes
(LEDs), photodetectors, solar cells, nanogenerators, field-effect transistors, and sensors. For example,
ZnO nanowires behave as carrier transport channels in photoelectric devices, decreasing the
loss of the light-generated carrier. The performance of LEDs and photoelectric detectors based
on nanowires can be improved compared with that of devices based on polycrystalline thin
films. This article reviews the fabrication methods of 1D ZnO nanostructures—including chemical
vapor deposition, hydrothermal reaction, and electrochemical deposition—and the influence of
the growth parameters on the growth rate and morphology. Important applications of 1D
ZnO nanostructures in optoelectronic devices are described. Several approaches to improve the
performance of 1D ZnO-based devices, including surface passivation, localized surface plasmons,
and the piezo-phototronic effect, are summarized.

Keywords: zinc oxide; one-dimensional nanostructure; light-emitting diode; photodetector; localized
surface plasmon; piezo-phototronic effect

1. Introduction

The small size of one-dimensional (1D) nanomaterials leads to unique electrical, mechanical,
chemical, and optical properties that are attractive for application in nanoscience and nanotechnology.
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In particular, 1D zinc oxide (ZnO) is a representative nanomaterial with excellent properties, such as
ultrahigh intrinsic photoelectric gain and multiple array light confinement. Thus, ZnO nanomaterials
have been well studied in recent years with the goal of constructing advanced optoelectronic devices
with improved performance [1]. It is anticipated that 1D ZnO nanomaterials could be used as an
important basic unit of nanostructured systems. Several types of 1D ZnO nanostructures have
been reported, including nanowires [2–6], nanorods [7–9], nanobelts [10–13], and nanotubes [14–16].
Considering actual application requirements, 1D ZnO nanomaterials are usually considered an ideal
medium to construct optoelectronic devices. The performance of optoelectronic devices could be
improved using 1D ZnO nanomaterials because of their excellent properties, such as carrier transport
with high mobility, efficient light confinement, and light emission. Thus, 1D ZnO nanowires are
usually used in devices for applications such as light emission, photon detection, and biochemical
sensing. In addition, nanowire-like structures could be considered as an ideal system for physical
studies investigating the carrier transport, light confinement, and energy loss behaviors of 1D
confined objects. Therefore, 1D ZnO nanowires are favorable not only for examining the basic
phenomena of low-dimensional systems, but also for constructing new types of nanodevices that
exhibit high performance.

As a member of the II-VI family, ZnO possesses properties such as a wide direct band gap of
3.37 eV, large exciton binding energy of 60 meV at room temperature, and suitable features for feasible
production of nanomaterials. Potential applications of ZnO materials include optical waveguides [17],
varistors [18], solid-state lighting [19], gas sensors [20], and transparent conductive films. Because of its
wide band gap, ZnO is a promising candidate material for use in solid-state optoelectronics that emit
in the blue or ultraviolet (UV) spectral range, including lasers. In addition, the large exciton binding
energy of ZnO means that it can display efficient excitonic emission even at room temperature [21].

Various fabrication methods of 1D ZnO nanomaterials have been developed, such as vapor
transport [5], hydrothermal reaction [8,11,16,22], electrodeposition [12,23], chemical vapor deposition
(CVD) [24,25], molecular beam epitaxy [26], and pulsed laser deposition [27]. These methods can
be used to obtain samples on substrates such as Si, quartz, and sapphire. Each method has its
specific merits and inevitable weaknesses. The gas vapor approaches can fabricate high-quality
single-crystalline ZnO nanostructures. However, these processes require high temperatures (about
450–1000 ◦C) and often have other limitations, including poor sample uniformity, narrow substrate
choice, and low product yield. Solution processing is one of the most commonly used methods
to prepare 1D ZnO nanomaterials because of its low cost, controllability, and compatibility with
large-area manufacturing.

Compared with other 1D nanomaterials, ZnO has three prominent advantages: first, it is
a semiconductor with a piezoelectric effect, which is the basis for electric mechanical coupling
sensors and inverters; second, the biosecurity and biocompatibility of ZnO is relatively high,
so it can be used in medicine; third, ZnO has the largest range of known nanostructures,
including nanowires [2–6], nanorods [7–9], nanobelts [10–13], nanotubes [14–16], nanoplates [28–30],
nanospheres [31], nanotrees [32], nanoleaves [33], and nanosails [34]. In addition, ZnO tetrapod [35],
microrod/microwire [36,37], porous array [38], matrix [39], and 3D network nanostructure [20,40]
have been obtained. At present, many researchers are focusing on constructing devices based on
ZnO nanomaterials. New devices based on 1D ZnO nanomaterials are constantly being developed,
such as room-temperature lasers, light-emitting diodes (LEDs), photodetectors, sensors, and transistors.
These devices containing 1D ZnO nanomaterials exhibit better performance than that of devices
with thin films and bulk materials. The excellent performance of new devices based on 1D ZnO
nanomaterials reveal their great potential for applications in many fields.

Previously, there were some review articles about ZnO nanostructure, for example, Wang et al.
reviewed various nanostructures of ZnO using solid-vapor phase technique, growth mechanisms, the
application of nanobelts in nanosensors, field effect transistors, and nanoresonators [1]. Yi et al.,
reviewing the fabrication method and doping of ZnO nanorods, also discussed the properties
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related to ZnO nanorods, including luminescence, field emission, electron transport, as well as
various applications [41]. Wang comprehensively reviewed various ZnO nanostructures fabricated
by wet chemical methods, their doping and alloying, patterned growth, application in catalysis,
surface modification, sensing, optoelectronic, and so on [42]. The review mainly focuses on the effect
of growth conditions on 1D ZnO nanostructures and achievements of 1D ZnO-based photodetectors
and LEDs, and, in particular, the promising approaches to improve the performance of LEDs
and photodetectors.

In this review, we briefly introduce the properties of ZnO, review the growth methods of 1D
ZnO nanomaterials, and describe the progress and current status of photoelectric devices (LEDs and
photodetectors) based on 1D ZnO nanomaterials. Section 2 provides a brief introduction to the basic
properties of 1D ZnO nanostructures. Section 3 covers the fabrication of 1D ZnO nanostructures,
including CVD, hydrothermal reaction, and electrodeposition, and describes the influence of growth
parameters on the growth rate and morphology of 1D ZnO nanostructures. Finally, we focus on
LEDs and photodetectors based on 1D ZnO nanomaterials. The recent achievements of ZnO-based
photodetectors and LEDs with different device structures and promising approaches to improve the
performance of LEDs and photodetectors—including surface passivation, localized surface plasmons
resonance (LSPR), and the piezo-phototronic effect—are discussed.

2. Basic Properties of ZnO

ZnO is II-VI compound semiconductor with direct wide band gap of 3.37 eV at room temperature.
ZnO has three typical crystal structures: wurtzite, zinc blende, and rock salt. The thermodynamically
stable phase of ZnO at ambient temperature and pressure is wurtzite. The zinc blende structure can be
stabilized by growth on cubic substrates. The rock-salt structure can be fabricated at high pressure [21].

Wurtzite ZnO has a hexagonal structure with lattice parameters a and c and belongs to the P63mc
space group. The lattice parameter a mostly ranges from 0.32475 to 0.32501 nm, and c typically
ranges from 0.520642 to 0.52075 nm [43]. The deviation of ZnO lattice constants from the ideal
values is probably caused by the presence of point defects, such as zinc antisites, oxygen vacancies,
and dislocations [21]. As illustrated in the schematic of the wurtzite ZnO structure shown in
Figure 1, both Zn and O atoms arrange in a hexagonal close-packed (hcp) pattern and are stacked
alternately along the c-axis. Furthermore, each kind of atom is surrounded by four atoms of the
other kind, and the O2− or Zn2+ of two adjacent layers form a tetrahedral structure. The resulting
non-centrosymmetric structure of wurtzite ZnO can result in piezoelectricity and the thermoelectric
effect. A ZnO single crystal exhibits very strict crystallographic polarity. The polar plane of such a
crystal is the basal plane, which is composed of the Zn (0001) plane and O (0001) plane, inducing a
normal dipole moment, spontaneous polarization along the c-axis, and a distinct surface energy [1,21].

Figure 1. Schematic illustration of the wurtzite ZnO structure.
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3. Growth of ZnO Nanostructures

ZnO probably possesses the richest variety of reported nanostructures, which are typically
categorized into three groups: zero-dimensional, 1D, and two-dimensional. The four most
common types of 1D ZnO nanostructures are nanowires [2–6], nanorods [7–9], nanobelts [10–13],
and nanotubes [14–16]. Many approaches have been used to fabricate 1D ZnO nanostructures, such as
CVD [4–6], hydrothermal processing [8,11,16,22], electrochemical deposition [12,23], and magnetron
sputtering [44], with and without a catalyst.

3.1. Chemical Vapor Deposition

CVD is the one most commonly used methods to synthesize 1D ZnO nanostructures. In the CVD
synthesis process, ZnO powder, Zn powder, or another Zn compound is used as the raw material
after evaporation, reduction/oxidation, decomposition/combination, and other physical and chemical
changes. The growth process is commonly carried out in a horizontal tube furnace, which consists of a
horizontal tube heater, an alumina or quartz tube, a gas supply, and a control system. The fabrication
of 1D ZnO nanostructures by CVD is generally affected by the synthesis parameters, such as the
growth temperatures of the source and substrate, the distance between the source and substrate,
heating rate, carrier gas (including gas species and flow rate), tube diameter, pressure, and atmosphere.
Usually, the vapor–liquid–solid (VLS) process is used for 1D ZnO nanostructure growth via CVD,
which requires a catalyst such as gold (Au) [5], copper (Cu) [45], stannum (Sn) [46], or cobalt (Co) [47].
The liquid droplet serves as a preferential site for absorption of the gas-phase reactant until the droplet
is saturated and then becomes the nucleation site for crystallization. During growth, the catalyst
droplet regulates the growth direction and controls the diameter of the nanowire [1]. Control of the
nanowire diameter has also been achieved by varying the Au layer thickness. As shown in Figure 2,
when the Au film coated on a substrate was 5 nm thick, the ZnO nanowires had diameters of 80–120 nm
and lengths of 10–20 µm. When the Au film was 3 nm thick, the ZnO nanowires had diameters of
40–70 nm and lengths of 5–10 µm [5]. In addition to using external catalysts, Zn itself can act as a
catalyst under certain conditions to prepare 1D ZnO nanostructures [48].

Figure 2. Scanning electron microscopy (SEM) images of ZnO nanowires grown on silicon substrates
coated with gold films with a thickness of (a) ~5 nm and (b) 3 nm [5]. Reproduced with permission.

The influence of different catalyst thin films on the morphology and even nucleation process of
ZnO nanomaterials varies. Osgoods et al. systematically studied ZnO nanowire growth using diverse
metal catalysts (Au, Ag, Ni, and Fe) and substrates (Si, sapphire) with different structures and crystal
orientation. SEM images of the nanowires are shown in Figure 3 [41–49]. The ZnO nanowires grew
through the vapor–solid mechanism in the case of an iron (Fe) catalyst and via the VLS process using
Au, Ag, or Ni as the catalyst. The ZnO nanostructures grown using different catalysts possessed
differences in not only size and the ratio of length to diameter, but also the atomic composition ratio of
Zn to O. Thus, the relative intensity of the oxygen vacancy-related emission in photoluminescence
spectra of nanostructures grown on different thin films varied.
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Figure 3. SEM images of ZnO nanowires fabricated on (a) Au-coated Si (111) and (b) Au-coated a-plane
sapphire; (c) a-plane (110) sapphire coated with a 2.5 nm Ag film and (d) c-plane (001) sapphire coated
with a 2.5 nm Ag thin film. SEM images (tilt angle of 60◦) of ZnO nanowires grown on (e) an a-plane
(110) sapphire substrate coated with a 2.5 nm Fe thin film and (f) a-plane sapphire with a 2.5 nm Ni
thin film [49]. Reproduced with permission.

A ZnO thin film or other transition layer can be prepared on the substrate to facilitate the
nucleation growth of 1D ZnO nanostructures. Fang et al. [6] demonstrated that ZnO thin films
fabricated by electron-beam evaporation can provide nucleation sites to control the growth direction of
ZnO nanowires. In addition, the density of ZnO nanowires could be adjusted by varying the thickness
of the ZnO thin film, as shown in Figure 4. Yang and coworkers fabricated radial ZnO nanowire arrays
on Si substrates with an amorphous carbon thin layer without a metal catalyst [50].

Figure 4. SEM images of ZnO nanorods grown on (a) a silicon wafer and (b) a ZnO nanostructured
thin film [2]. Reproduced with permission.
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3.2. Hydrothermal Method

The hydrothermal method is a very powerful technique for the growth of 1D ZnO nanomaterials,
which involves chemical reaction of substances in solution at a certain temperature and pressure
to fabricate the nanomaterials. This technique enables the synthesis of most materials with the
required physical and chemical properties. Compared with other conventional preparation methods,
the hydrothermal method has many advantages, such as low cost, simplicity, limited pollution,
good nucleation and shape control, and low-temperature (<200 ◦C) growth at higher pressure in
the presence of an appropriate solvent. In addition, the size distribution of materials obtained by the
hydrothermal technique is uniform, with hardly any aggregation. The shape and size of the prepared
materials are influenced by several processing parameters, such as the molar ratio and concentration
of the reactant, temperature, and reaction time.

Vayssieres et al. [2,51] first used the hydrothermal method to fabricate ZnO nanorods in 2001.
Equimolar mixed solutions of zinc nitrate (Zn(NO3)2) and hexamethylenetetramine (C6H12N4, HMT)
with different concentrations (1–10 mM) were heated at a constant temperature of 95 ◦C for several
hours. The products were cleaned and then dried to give ZnO nanorod arrays. Various materials were
used as substrates in their hydrothermal growth of ZnO nanostructures; for example, polycrystalline
fluorine-doped tin oxide (FTO)-coated glass, single-crystalline sapphire, and Si/SiO2 wafers with
ZnO thin films. The experiments showed that the diameter of ZnO nanorods was controlled by the
concentration of the precursors. As the concentration of the solution was lowered from 10 to 1 mM,
the diameter of the nanorods decreased from 100–200 nm to 10–20 nm. SEM images of the ZnO
nanorods fabricated by the hydrothermal method are shown in Figure 4. In this approach, only two
kinds of chemical solutions with good solubility are needed. The two solutions can readily mix
uniformly and promote ZnO formation, greatly simplifying and lowering the cost of the experimental
process. The simple setup for hydrothermal growth of ZnO nanostructures is also beneficial to improve
the purity of products and study the influence of synthetic parameters on nanostructure formation.

The method developed by Vayssieres and colleagues has since been greatly improved and remains
in common use because of its simplicity. To improve the quality of the product and the controllability of
the deposition process, a crystalline seed layer can be prepared on the substrate prior to hydrothermal
growth. In 2003, Yang’s group grew uniform ZnO nanowires on various substrates (e.g., Si (100) wafers
and flexible polydimethylsiloxane films) using a two-step hydrothermal method [52]. The first step
involved the preparation of a seed layer of ZnO nanocrystals with a diameter of 5–10 nm, which were
spin-cast several times on the substrate to give a seed-layer thickness of 50–200 nm. The second step
was ZnO nanowire growth by the hydrothermal method. The substrate with a seed crystal layer
was placed in an open crystallizing dish filled with an equimolar solution of zinc nitrate hydrate and
methenamine or diethylenetriamine (0.025 M) at 90 ◦C. Other research groups have prepared seed
crystals using techniques such as pulsed laser deposition [14], magnetron sputtering [53], the sol–gel
method [22,54], and atomic layer deposition [55]. Using small, homogeneous ZnO nanocrystals as
a seed layer can provide nanowires that are small in diameter, well aligned, and in intimate contact
with the substrate. In addition, the existing seeds could bypass the nucleation step, promoting growth
on the seeds rather than nucleation in the homogeneous bulk solution. ZnO nanowires tend to grow
wherever there are ZnO seeds; therefore, the density of nanowires is usually quite high [42]. As a
result, the density of ZnO nanowires can be controlled by the thickness of the seed layer [22].

Although it is practical and effective to prepare ZnO nanostructures by the hydrothermal method
using Zn(NO3)2 and HMT as raw materials, this approach does have shortcomings. For example,
it is difficult to obtain ZnO nanomaterials with a large ratio of length to diameter. To increase
the aspect ratio of the ZnO nanostructures, poly(ethylenimine) can be added to the reaction
solution [56]. The addition of a low concentration of sodium citrate can alter the morphology of
the ZnO nanorods. Sun et al. [57] prepared ZnO nanorods via cetyltrimethylammonium bromide
(CTAB)-assisted hydrothermal oxidation of Zn metal at 180 ◦C. CTAB played important roles in the
growth of ZnO nanorods, affecting the erosion process and growth orientation.
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Kim et al. [8] prepared single-crystalline vertically aligned ZnO nanorod arrays on various
substrates (Si, SiO2, and FTO glass) using a polymer-templated hydrothermal method at a low
temperature of 93 ◦C. To ensure that the ZnO nanorods grew along the c-axis [0001] direction and to
minimize the crystal mismatch with the substrate, a c-oriented ZnO seed layer was first fabricated
by the sol–gel method. The morphologies of the resulting nanostructures could be transformed
from rodlike to pencil-like, needle-like, tubelike, treelike, and spherelike by exploiting the structural
polarity of the ZnO nanorods and adjusting the growth parameters, including the seed layer, pH,
and temperature, as summarized in Figure 5. Thus, Kim and coworkers developed a simple process to
obtain ZnO nanorods with controllable size, density, and lattice.

Figure 5. (a) Overview of the preparation process of periodic ZnO nanorods on various substrates
(Si (100), SiO2, and FTO glass); (b) high-resolution SEM images of the various ZnO nanostructures
obtained using different reaction parameters [8]. Reproduced with permission.

3.3. Electrochemical Deposition

Electrochemical deposition has been widely used to obtain uniform and large-area growth of ZnO
nanostructures [58]. Electrochemical deposition has many advantages, such as scalability, low cost,
and easy handling [59]. Compared with ordinary chemical solution methods (e.g., hydrothermal
methods), electrochemical deposition includes an external driving electric field in the reaction process,
thus promoting reactions that are otherwise nonspontaneous. A standard three-electrode system
with a saturated Ag/AgCl electrode as the reference electrode, Pt as the counter electrode (anode),
and growth substrate as the working electrode is the typical setup for electrochemical deposition.
In this case, the substrate serves as the cathode, so it must be conductive regardless of whether it is
flat or curved. The substrate cathode is placed parallel to the anode in an aqueous solution of zinc
salt (electrolyte). The chemical reaction is carried out in an electrolytic cell placed in a water bath to
maintain a constant temperature.

Various groups have fabricated 1D ZnO nanostructures on FTO [60,61], indium-doped tin oxide
(ITO) [62], polycrystalline Zn foil [63], and Si [64] substrates. Mari et al. [65] studied the influence
of the bath temperature, current density, and deposition time on the growth rate of ZnO nanorods.
Their results showed that the length of the nanorods increased with the current density and deposition
time. Temperature had the opposite effect: the nanorods were longer when the deposition temperature
was low. Xu and coworkers investigated the morphological control of ZnO nanostructures induced by
addition of different capping agents, such as potassium chloride (KCl), ammonium fluoride (NH4F),
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ammonium acetate (CH3COONH4), and ethylenediamine (EDA) [62]. The morphology of the ZnO
structures evolved from hexagonal rods to rhombohedral rods and woven nanoneedles upon varying
the compositions of the mixed capping agents, as depicted in Figure 6.

Figure 6. SEM images of the ZnO nanostructures formed by electrochemical deposition in solutions
containing (a) 0.05 M Zn(NO3)2; (b) 0.05 M Zn(NO3)2 + 0.06 M KCl; (c) 0.05 M Zn(NO3)2 + 0.02 M
NH4F; (d) 0.05 M Zn(NO3)2 + 0.2 M NH4F; (e) 0.05 M Zn(NO3)2 + 0.013 M ethylenediamine (EDA);
and (f) 0.05 M Zn(NO3)2 + 0.06 M KCl + 0.01 M EDA [62]. Reproduced with permission.

Generally, zinc chloride (ZnCl2) is used as the Zn2+ precursor when ZnO is deposited from
the reduction of O2 or H2O2. Zaera et al. [66] examined the effect of chloride (Cl−) concentration,
which was mainly supplied by the KCl supporting electrolyte, on the mechanism of ZnO nanowire
growth driven by O2 reduction. The rate of oxygen reduction decreased with rising Cl− concentration,
and the deposition rate and dimensions of ZnO nanowire arrays could be tuned by varying the
Cl− concentration of the solution, as shown in Figure 7. The effect of different anions (Cl−, SO4

2–,
and CH3COO−) on the reduction of dissolved O2 in the deposition solution has also been studied [67].
The observed differences in the O2 reduction rate were explained by the different adsorption behaviors
of the anions. Therefore, the different adsorption behaviors of the anions on ZnO surfaces could affect
the generation rate of hydroxide ions and influence the morphology and growth rate of the ZnO
nanowires. It was also demonstrated that the diameter and length of ZnO nanowires could be adjusted
by varying the type of anions in the deposition solution. In particular, the nanowires grown in the
presence of Cl− and CH3COO− possessed low and high aspect ratios, respectively.
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Figure 7. Cross-sectional SEM images of ZnO nanowire arrays obtained by electrochemical deposition
using KCl concentrations of (a) 5 × 10−2 M; (b) 1 M; (c) 2 M; and (d) 3.4 M [66]. Reproduced
with permission.

ZnO nanowires can also be fabricated by electrochemical deposition assisted by templates,
including anodic aluminum oxide (AAO) [68–70], polycarbonate membranes [71,72], and porous
films. AAO templates are widely used in the preparation of ZnO nanowires because of their simplicity
and suitability for large-area, well-distributed nanowire fabrication. AAO templates can be prepared
through a two-step anodization process [68,70]. The AAO template can be removed after nanowire
growth, leaving the free-standing nanowires. Yi et al. [68] synthesized Zn nanowires consisting of
the wurtzite hcp-Zn phase by electrodeposition on an AAO template with nanometer-sized pores.
ZnO nanowires were then obtained by annealing the Zn nanowires at different temperatures for
10 h. Research has shown that this technique can provide not only ZnO nanowires, but also other
semiconductor oxide nanostructures. However, ZnO and Al2O3 are amphoteric oxides, which makes
the selective removal of the AAO membrane from the ZnO nanowires difficult. Polycarbonate
membrane templates can be easily dissolved in chloroform, which makes them attractive to prepare
free-standing 1D ZnO nanostructures. Wang and colleagues fabricated randomly distributed ZnO
nanowires using a polycarbonate template [71]. Zeng et al. fabricated ZnO nanowire lines and bundle
arrays on polystyrene (PS) template, as sown in Figure 8. The density of ZnO nanowires on Si substrate
with 200 nm PS sphere template has decrease tendency with the heating time [73].
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Figure 8. SEM images of 200 nm polystyrene (PS) sphere monolayer templates (a) and ZnO
nanowires grown on 200 nm PS sphere template with beating time of 0 min (b); 3 min (c); 5 min
(d), respectively [73]. Reproduced with permission.

4. Applications of 1D ZnO Nanostructures

4.1. Light-Emitting Diodes

An important feature of 1D ZnO nanomaterials is their excellent light transmission characteristics,
which makes them attractive for use in high-efficiency UV LEDs and laser devices. ZnO nanomaterials
display a direct wide band gap and large exciton binding energy at room temperature. UV LEDs
have practical applications in solid-state lighting, UV photolithography, high-density data storage,
and biomedical analysis [74]. The basis of LED construction is formation of a p–n junction.
Unintentionally doped ZnO usually presents n-type conductivity. It is difficult to obtain p-type
ZnO of high quality because of its low dopant solubility, deep acceptor level, and self-compensation
effect. Therefore, the initial ZnO LEDs were constructed with other p-type semiconductors to form
p–n heterojunctions that exhibited electroluminescence (EL). In the early stages, ZnO light-emitting
devices were mainly based on thin films. After the thin-film LEDs were realized, many researchers
shifted their attention to the study of LEDs containing 1D ZnO nanomaterials.

In 2006, Chang and coworkers fabricated a heterojunction device consisting of a
ZnO nanowire array on an n-GaN film on a sapphire substrate and the p-type polymer
poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS). This hybrid LED exhibited
multiple EL peaks at forward bias, including ZnO band edge emission at about 383 nm and other
peaks centered at 430, 640, and 748 nm [75]. Zhang et al. [76] synthesized an n-type ZnO nanowire
array on a p-type GaN film by CVD to produce a hybrid LED with high brightness. UV–blue EL
emission was observed from the heterojunction diode, which displayed a blue shift as the forward
bias increased. Tang et al. [77] fabricated an LED based on single n-ZnO/p-AlGaN heterojunction
nanowires. A schematic illustration and SEM image of their LED are displayed in Figure 9a,b,
respectively. When the injection current was 4 µA, UV EL emission with a peak at 394 nm was
observed, as shown in Figure 9c.
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Figure 9. (a) Schematic illustration of the ZnO/AlGaN heterojunction light-emitting diode (LED);
(b) SEM image of a single ZnO nanowire embedded in Au/Ti electrode films; (c) electroluminescence
(EL) spectra of the LED at different injection currents. Insets: (upper) SEM image of a single nanowire;
(lower) CCD image of the LED at an injection current of 4 µA [77]. Reproduced with permission.

Heterojunction diodes have been fabricated using n-type ZnO nanomaterials and
p-type organic/inorganic materials such as GaN [78–80], AlGaN, Si [81,82], MgZnO [83],
NiO [84], Cu2O, SiC, N,N′-di(naphth-2-yl)-N,N′-diphenylbenzidine (NPB) [85], PEDOT/PSS [75],
and [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) [86]. Representative results
for heterojunction LEDs containing 1D ZnO nanostructures, along with a brief description of the
corresponding device structure, applied bias, and EL performance, are summarized in Table 1.

Table 1. 1D ZnO nanostructure-based heterojunction LEDs.

Device Structure Turn-On
Voltage

Threshold Voltage
of Emission Bias/Current Wavelength of

EL Peak Ref.

ZnO nanowire arrays/P-GaN 3 V 4.4 V 5–7 V/0.5–1.5 mA 397 nm [78]

ZnO nanowire arrays/P-GaN 3 V 4.4 V 6.5 V/2.6 mA 397 nm [79]

n-GaN/ZnO nanorod/P-GaN 5 V 6 V 382 nm, 430 nm [80]

Sb-doped p-ZnO nanowire
arrays/n-GaN 3.74 V 4.0 V 16 V 391 nm [87]

n-ZnO/p-AlGaN 2 V 4 µA 394 nm [77]

ITO/n-ZnO nanorod array/p+-Si 5 V (5 mA) 6 V 9.5 V/29.5 mA 450 nm, 700 nm [81]

n-ZnO nanorod/p-Si 9.5 V 387 nm, 535 nm [88]

p-Zn0.68Mg0.32O:N/n-ZnO nanowire 4.2 V 5 mA/125 mA cm2 390 nm [83]

p-NiO/n-ZnO nanowire 2.5 V 7 V 15 V 385 nm, 570 nm [84]

ZnO nanowire/polymer
(PEDOT/PSS) <3 V 3 V 383, 430, 640,

748 nm [75]

ZnO nanorod/NPB 22 mA/cm2 342 nm [85]

ZnO nanorods/MEH-PPV 28 V 380, 580, 615,
640, 747 nm, [86]

Many research groups are committed to obtaining p-type ZnO materials and have observed
EL emission from ZnO p–n homojunctions. To date, p-type ZnO nanostructures have been
realized by doping ZnO with group-V elements, including N [89], P [74,90], As [91,92],
and Sb [93]. However, there have been relatively few reports of p–n homojunction LEDs based on 1D
ZnO nanostructures.

Sun and coworkers obtained p-ZnO by As ion implantation into as-grown ZnO nanorods and then
constructed ZnO nanorod homojunction LEDs [92]. A schematic illustration of the homojunction LED
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is presented in Figure 10a. At forward bias, UV emission originating from free-exciton recombination
centered at about 380 nm was dominant, and a weak broad peak centered at about 630 nm was
observed in EL spectra collected at room temperature. The second harmonic of UV emission centered
at about 760 nm was also detected, as displayed in Figure 10b. The same group also used P as an
acceptor dopant to fabricate ZnO nanorod homojunction LEDs by P ion implantation [74]. Strong UV
emission attributed to near-band-edge emission and weak visible emission related to deep-level defects
were observed from both devices at forward bias.

Figure 10. (a) Schematic illustration of an As-doped p-ZnO/n-ZnO nanorod homojunction LED; (b) EL
spectra of a ZnO nanorod homojunction doped with As+ at 50 keV and 1014 cm−2 [92]. Reproduced
with permission.

However, there are some problems associated with heterojunction and homojunction LEDs based
on 1D ZnO nanostructures, which can prevent the development and application of ZnO-based LEDs.
For example, the heterostructured devices suffer from p-ZnO doping and large lattice mismatch.
A Schottky-type LED based on Au/ZnO nanowires was constructed to overcome these issues [94].
A schematic illustration of the LED is shown in Figure 11a. The EL spectra in Figure 11b reveal that
the LED displayed excitonic EL emission at about 380 nm at high forward bias.

Figure 11. (a) Schematic illustration of the Au/ZnO nanowire Schottky LED; (b) EL spectra of the
Schottky LED operating under different injection currents. Inset is a photograph of the device operating
at an injection current of 70 mA [94]. Reproduced with permission.

Although there have been some encouraging achievements in LEDs based on 1D ZnO
nanostructures, there are still some problems like the degradation of efficiency and stability caused
by surface defects, surface adsorption, the low quality of p-type ZnO, and/or a high content of
heterointerface defects. Surface passivation has been recognized as a promising approach to improve
the EL performance of ZnO-based LEDs. In this approach, a dielectric/semiconductor material is
coated on the surface of the 1D ZnO nanomaterial to form a core/shell nanostructure. Liu et al. [95]
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fabricated two types of LEDs on p-GaN films using MgZnO-coated and bare ZnO nanorod arrays
as active layers, as shown in Figure 12a. The EL performance of two types of LEDs is compared
in Figure 12b. A strong emission peak at 387 nm was present in the EL spectra of both devices.
The EL intensity of the MgZnO-coated LED was much higher than that of the uncoated one, which was
attributed to the enhancement of the radiative recombination of the ZnO nanorods caused by the
effective passivation of dangling bonds on the nanorod surface and the carrier confinement effect
offered by the MgZnO coating. The stability of both devices exposed to ambient air for over a
year at the same injection current of 5 mA was investigated at regular intervals; the results are
displayed in Figure 12c. The ZnO near-band-edge UV emissions of both devices gradually decayed
over time, but the decay rate of the uncoated device was faster than that of the MgZnO-coated LED.
Therefore, the MgZnO-coated device exhibited higher stability than that of the uncoated one because
surface adsorption on the nanorods was suppressed by the MgZnO coating. SiO2 [96] and MgO [97]
can also be used as passivation materials to improve the performance of 1D ZnO nanostructure LEDs.

Figure 12. (a) Schematic illustration of an MgZnO-coated ZnO nanorod/p-GaN film LED; (b) EL
spectra and Gaussian deconvolution analysis of the LEDs with and without an MgZnO coating under
an injection current of 3.5 mA at room temperature; (c) EL spectra of LEDs with (right) and without
(left) an MgZnO coating after exposure to air for different periods at an injection current of 5 mA [95].
Reproduced with permission.

Another effective approach to improve the luminous efficiency of LEDs is to introduce LSPs
into the LED structure. Semiconductor excitons/photons can be resonantly coupled with the metal
LSPs and then scattered/re-emitted into free space as radiation. This approach provides additional
recombination/extraction pathways, which can increase the spontaneous radiation rate, internal
quantum efficiency, and light extraction efficiency of the LEDs. Liu and coworkers fabricated ZnO
nanorod array/p-GaN film heterostructure LEDs embedded in an Ag nanoparticle/polymethyl
methacrylate (PMMA) composite [98]. A typical cross-sectional SEM image and schematic illustration
of such an LED are shown in Figure 13a,b, respectively. The UV emission from ZnO excitons
was enhanced more than 13-fold in EL spectra (Figure 13c). Lu et al. [99] constructed an Al
nanoparticle-decorated n-ZnO nanorod/p-GaN film LED. They obtained 30-fold EL enhancement
compared with that of the device without Al nanoparticles because of the effect of Al LSPs.
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Figure 13. (a) Cross-sectional SEM image and (b) schematic illustration of a ZnO nanorod
array/p-GaN film heterostructure LED embedded in a Ag nanoparticle/polymethyl methacrylate
(PMMA) composite; (c) EL spectra of LEDs with different Ag nanoparticle concentrations in PMMA
at an injection current of 5 mA at room temperature. C0 = 6.5 × 1015 cm−3 [98]. Reproduced
with permission.

To further improve the performance of LEDs, the two methods mentioned above can be combined.
Zhang et al. [100] fabricated LSP-enhanced waveguide-type UV LEDs via sputtering Ag nanoparticles
onto ZnO/MgZnO core/shell nanorod array/p-GaN film heterostructures. After decoration with
Ag nanoparticles, the UV emission intensity of the ZnO/MgZnO core/shell nanorod array showed a
~9-fold enhancement compared with that of the device without Ag nanoparticles because of coupling
with LSPs. The next year, the same group constructed LSP-enhanced UV LEDs by spin-coating Ag
nanoparticles on ZnO/SiO2 core/shell nanorod array/p-GaN heterostructures; a schematic diagram
of this LED structure is illustrated in Figure 14a [96]. The EL intensity was enhanced when both Ag
nanoparticles and a SiO2 spacer layer were coated on the surface of the ZnO nanorods, as shown in
Figure 14b. The effect of the SiO2 spacer-layer thickness on the UV emission intensity was investigated.
A maximum EL enhancement of ~7-fold was obtained when the thickness of the SiO2 spacer layer
was 12 nm. In contrast, a maximum PL enhancement of ~3.5-fold was achieved when the SiO2

spacer layer was 16 nm thick. The EL enhancement was attributed to the combined effects of
internal quantum efficiency improvement caused by exciton–LSP coupling and extraction efficiency
enhancement induced by photon–LSP coupling.

Figure 14. (a) Schematic diagram of a localized surface plasmon (LSP)-enhanced ZnO/SiO2 core/shell
nanorod array LED; (b) room-temperature EL spectra of bare and Ag-decorated ZnO core/shell
nanorod arrays with different SiO2 shell thicknesses under an injection current of 5 mA [96].
Reproduced with permission.
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A near-UV LED based on a ZnO nanorod/MEH-PPV heterostructure using a ZnS layer as a
buffer layer was reported by Wang and colleagues [101]. The intensity of near-UV EL was enhanced
10-fold compared with that of that of the device without a ZnS layer. In particular, the turn-on
voltage was obviously decreased. In addition, the ZnS layer could induce recombination center
of carriers, which regulated the EL wavelength of the heterojunction. Wei et al. [102] fabricated
ZnO nanowire/p-GaN heterojunction LEDs containing ZnS particles to sensitize the ZnO nanowires.
Localized states formed at the ZnO/ZnS interface, generating a built-in electric field, which captured
electrons and holes at the ZnO/ZnS interface, where they recombined to result in EL emission
from ZnO. Moreover, the piezo-phototronic effect can improve the efficiency of flexible ZnO
nanowire/p-polymer hybridized LEDs [103,104]. Wang et al. [104] fabricated a hybrid LED based on a
ZnO nanowire/p-polymer heterostructure. The external quantum efficiency of the hybrid LED at least
doubled upon applying strain, reaching 5.92%.

4.2. Photodetectors

UV photodetectors are important photoelectric devices that occupy an indispensable position
in today’s information society. UV photodetectors are widely used in the military (e.g., UV
control and guidance, UV alarms, and UV resistance), as well as in civil fields such as fire alarms,
UV communication, ozone hole detection, and water purification. Therefore, the further development
of UV detection technology has important implications in modern national defense and daily life.
The importance and universality of UV photodetectors in military and civilian fields also make them a
focus of current research.

ZnO has a wide direct band gap at room temperature of about 3.37 eV, along with high chemical
and thermal stability, strong ability to resist radiation damage, and low content of electron-induced
defects. Because of these favorable features, ZnO is widely used in UV detectors. Early ZnO
UV detectors were mainly based on membrane structures [105]. However, with the development
of low-dimensional materials, photodetectors based on 1D nanomaterials have attracted interest.
Compared with UV detectors based on thin films and bulk materials, those based on 1D ZnO
nanostructures display higher responsivity and internal photoconductive gain. This is because 1D
nanomaterials have a large surface-to-volume ratio and the presence of deep-level surface trap states
can prolong the lifetime of photogenerated electrons and holes. In addition, the low dimensionality of
the active area can shorten the transit time of carriers [4,106]. There are several types of photodetector
structures, such as photoconductive, metal–semiconductor–metal (MSM), Schottky [107], and p–n
junction [108–110] photodetectors.

In 2002, Yang and coworkers first detected the UV response of an individual ZnO nanowire [111].
The conductance of a single ZnO nanowire was very sensitive to UV light. The resistivity of a ZnO
nanowire reversibly changed by 4–6 orders of magnitude under UV illumination. In 2007, Soci et al. [4]
reported a UV photodetector based on a single ZnO nanowire with an internal photoconductive gain
as high as ~108. While the photoconductive detector showed slow response times because of possible
persistent photoconductivity effects, it usually worked with an external power source.

To realize ZnO-based UV photodetectors with high sensitivity and fast response time, a Schottky
contact instead of an ohmic contact was adopted [107,112–115]. For example, Zhou and coworkers
fabricated a Schottky junction-type photodetector that used ZnO nanowire and Pt metal electrode to
form Schottky contact [98]. The UV sensitivity of the photodetector was enhanced by ~104, and its
recovery time was markedly shortened from ~417 to ~0.8 s, as shown in Figure 15.
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Figure 15. (a) The current of a ZnO nanowire UV detector as a function of the wavelength of
incident light. Insets are an optical microscope image (upper) and schematic structure (lower) of
the Schottky-type ZnO nanowire device; (b) current–voltage characteristics of the photodetector in
the dark and under 365 nm UV illumination; (c) time dependence of the device photocurrent under
on/off switching of 365 nm UV illumination (the applied bias was 1 V); (d) experimental data points
and fitting curve of the photocurrent decay [113]. Reproduced with permission.

Nie and coworkers [115] reported a Schottky junction UV photodetector based on transparent
monolayer graphene (MLG)/ZnO nanorods. The photodetector showed a ratio of photocurrent to
dark current of approximately 3 orders of magnitude under 365 nm UV illumination at a bias of −1 V.
The responsivity and photoconductive gain of the detector were 113 A W−1 and 385, respectively
(Figure 16). The response speed of the UV photodetector was rather fast, with rise and fall times of
0.7 and 3.6 ms, respectively, which was attributed to the formation of a Schottky barrier, high crystal
quality of the ZnO nanorod array, and strong light-trapping effect of the structure.

Figure 16. (a) Current–voltage characteristics of the monolayer graphene (MLG)/ZnO nanorod UV
photodetector in the dark and under 365 nm UV illumination with an incident intensity of 100 µW
cm−2. Inset is a cross-sectional SEM image of the PMMA-supported MLG film/ZnO nanorod Schottky
photodetector; (b) response times of the MLG/ZnO nanorod UV photodetector. The applied bias was
−1 V [115]. Reproduced with permission.
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Several kinds of 1D ZnO nanostructure-based p–n junction photodetectors have been
reported [108,110,116,117], which possess the advantages of low applied fields and no oxygen
dependency over Schottky junction detectors. In particular, p–n junction photodetectors work at
rather high bias voltage to inhibit the recombination of electron–hole pairs, which increases the
detection capability of UV signals [108,118]. Tahani et al. [108] developed a photodetector based on
p-Si/n-ZnO nanotube heterojunctions, which is shown in Figure 17. Under 365 nm UV illumination
with an incident power intensity of 1 mW cm−2 at a bias of −2 V, the responsivity and detectivity
of the detector were 21.51 A W−1 and 1.26 × 1012 cm Hz1/2 W−1, along with an external quantum
efficiency of 73.1 × 102% (effective area = ~0.79 mm2). The rise and fall times of the heterojunction
device were 0.44 and 0.599 s, respectively.

Figure 17. (a) Schematic diagram of the structure of a p-Si/n-ZnO nanotube UV photodetector;
(b) detector photoresponse under 365 nm UV illumination with an incident intensity of 1 mW cm−2

at a bias of ±2 V; (c) response times of the photodetector under 365 nm illumination (1 mW cm−2)
at a bias of −2 V; (d) device responsivity and detectivity as functions of applied bias under 365 nm
illumination (1 mW cm−2); (e) responsivity and detectivity as functions of light intensity under 365 nm
illumination at a bias of −2 V [108]. Reproduced with permission.

Recently, self-powered ZnO photodetectors have attracted research interest because they can
work in some poor conditions without an external power source. According to their interface
features, self-powered photodetectors have three types of structures: Schottky junction, p–n junction,
and photoelectrochemical. Compared with the other two types, ZnO-based p–n junction UV detectors
are more suitable for development as self-powered photodetectors because of their much lower
applied fields, faster response times, and high stability. Table 2 summarizes representative results
for reported 1D ZnO nanostructure-based self-powered UV photodetectors, accompanied with a
brief description of the corresponding device characteristics, detection wavelengths, power intensity,
and photodetector performance.

Table 2. Recently reported self-powered 1D ZnO nanostructure-based UV photodetectors.

Device Structure
Light of

Detection,
Power

UV–Visible
Rejection

Ratio

On/Off
Ratio Responsivity Rise/Decay

Time Ref.

ZnO/Sb-doped ZnO
nanowire

365 nm,
0.3 mW cm−2 26.7 26.5 30 ms/30 ms [119]

n-ZnO
nanowire/P-GaN film 20 µs/219 µs [120]
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Table 2. Cont.

Device Structure
Light of

Detection,
Power

UV–Visible
Rejection

Ratio

On/Off
Ratio Responsivity Rise/Decay

Time Ref.

n-ZnO
nanorods/i-MgO/p-GaN 350 nm R350 nm/R500

nm) = 34.5 8000 0.32 A/W [121]

ZnO nanorods/Si UV/Visible: 0.3 A
W−1/0.5 A W−1 [122]

ZnO Nanowire/CuSCN 370 nm,
100 mW/cm2

R370 nm/R500
nm) = 100 0.02 A/W [123]

ZnO Nanorod/CuSCN 380 nm 100 0.0075 A W−1 5 ns/6.7 us

PEDOT:PSS/ZnO
micro-/nanowire 1000 [124]

n-ZnO/p-NiO
core–shell nanowire 0.493 mA W−1 1.38 ms/10.0 ms

and 30.3 ms [125]

p-NiO/n-ZnO
nanorod array 355 nm 0.44 mA W−1 0.23 s/0.21 s [126]

p-NiO/n-ZnO nanowire 380 nm,
0.36 mW/cm2 1.4 mA/W [127]

CH3NH3PbI3
perovskite/ZnO nanorod 3.9 A W−1 300 nm 0.3 s/0.7 s [128]

ZnO/Cu2O nanowire [129]

Various approaches have been adopted to improve the photoresponse performance of 1D ZnO
nanostructure photodetectors for use in practical applications. Generally, surface and interface
carrier transport modulation are the main routes used to raise photoresponsivity [130]. For instance,
Lao et al. [131] manipulated and functionalized the polymer polystyrene sulfate (PSS) on the surface
of ZnO nanobelts using a layer-by-layer self-assembly method. The sensitivity of the PSS-coated ZnO
nanobelt-based detector was improved by close to 5 orders of magnitude compared with that of the
device lacking PSS, which was ascribed to the energy levels introduced by PSS serving as a “hopping”
state or bridge for electron transfer, effectively increasing the excitation probability of an electron to
the conduction band.

In addition, functional devices consisting of a noble metal (e.g., Au [132,133] and Ag [134–137])
coated on semiconductor nanostructures have inspired extensive research effort. Such devices can
realize superior optoelectronic properties to those without a metal coating because their LSPR effect
leads to strong scattering and absorption of incident light, efficient separation of photogenerated
electron–hole pairs, and rapid transport of charge carriers at the metal/semiconductor interface.
Liu and coworkers fabricated ZnO nanowire photodetectors coated with Au nanoparticles [132].
The ratio of photocurrent to dark current of the ZnO photodetector with Au nanoparticles reached
up to 5 × 106, which was much larger than that of the device without Au nanoparticles (around
103). Moreover, the decay time of the device decreased from ~300 s to ~10 s after coating with
Au nanoparticles.

Al is an abundant and inexpensive metal that is a better plasmonic material than Au and Ag
in the UV range because of the negative real part and relatively low imaginary part of its dielectric
function [138]. Lu et al. [139] used LSP resonance mediated by Al nanoparticles to optimize the UV
response of a ZnO nanorod array photodetector. The responsivity of the photodetector was improved
from 0.12 to 1.59 A W−1 after modification with Al nanoparticles and the ratio of photocurrent to
dark current was enhanced 6-fold compared with that of the bare one, as displayed in Figure 18.
Furthermore, the rise and decay times of the photodetector decreased from 0.8 and 0.85 s, respectively,
to less than 0.03 and 0.035 s, respectively, after Al nanoparticle decoration.
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Figure 18. (a) Photoresponsivity spectra of ZnO nanorod photodetectors without and with Al
nanoparticles. Inset is a schematic of the device structure; (b) time response of the devices with
and without Al nanoparticles under 325 nm illumination at a bias of 5.0 V [139]. Reproduced
with permission.

The transition metal Co is an effective candidate material for the surface modification of
photodetectors. Buddha and coworkers fabricated a UV photodetector based on a Co-coated ZnO
(Co–ZnO) nanorod array [140]; a schematic of the device is displayed in Figure 19a. The presence
of defect states in the Co–ZnO nanorod detector raised the photocurrent compared with that of the
device with bare ZnO nanorods. The Co–ZnO nanorod photodetector was sensitive to an external
magnetic field; its response current increased by about 186% under an applied magnetic field of
2400 G compared with that without an applied magnetic field at the same bias voltage (Figure 19b).
Furthermore, the response and recovery times of the photodetector decreased from 38 and 195 s,
respectively, to less than 1.2 and 7.4 s, respectively, upon Co decoration, as shown in Figure 19c,d.

Figure 19. (a) Photoresponse spectra of photodetectors based on bare and Co-coated ZnO nanorods.
The inset shows a schematic of the device; (b) cyclic response of the Co-coated ZnO nanorod
photodetector with and without an external magnetic field at an applied bias of 5 V. The recovery times
of (c) Co-coated and (d) bare ZnO nanorod photodetectors [140]. Reproduced with permission.
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Recently, many researchers have attempted to improve the performance of photodetectors
based on ZnO 1D nanostructures through the piezo-phototronic effect [141–146] and obtained
some noticeable achievements. ZnO with a non-centrosymmetric crystal structure possesses high
polarization. Therefore, the generation, transport, separation, and recombination process of carriers can
be controlled by the piezopotential caused by the strain in this piezoelectric semiconductor material.
It is worth noting that the coupled piezoelectric polarization, optoelectronic, and semiconducting
properties of 1D ZnO nanomaterials offer an opportunity to construct functional devices with
improved optoelectronic performance. Wang et al. [146] demonstrated that the responsivity of
an MSM ZnO micro-/nanowire photodetector was enhanced through the piezoelectric effect.
Zhang et al. [143] fabricated a self-powered photodetector based on a metal–insulator–semiconductor
(MIS) Pt/Al2O3/ZnO structure; a schematic diagram of the device is shown in Figure 20a. The Schottky
barrier height (SBH) was markedly enhanced to 0.739 eV by introducing the ultrathin dielectric
layer (Al2O3) at the interface. The SBH could be actively adjusted by the modulation of the
piezopolarization-induced built-in electric field under compressive strain, as shown in Figure 20b.
The responsivity and detectivity of the photodetector increased from 0.644 µA W−1 and 2.92 × 106 cm
Hz0.5 W−1, respectively, without compressive strain to 0.644 µA W−1 and 2.92 × 106 cm Hz0.5 W−1,
respectively, under compressive strain of −1.0%.

Figure 20. (a) Schematic diagram of the Pt/Al2O3/ZnO nanorod metal–insulator–semiconductor (MIS)
photodetector; (b) typical cross-sectional SEM image of the ZnO nanorod array; (c) calculated Schottky
barrier height (SBH) change under compressive strain at different biases of 0.5, 0.8, and 1 V; (d) device
photoresponses under 100 mW cm−2 illumination and different compressive strains [143]. Reproduced
with permission.

5. Conclusions

In conclusion, low-dimensional ZnO nanomaterials could be suitable for use in advanced
optoelectronic devices, such as LEDs and photodetectors, because of their favorable properties.
This review focused on the fabrication methods and growth parameters that influence the properties
of the obtained 1D ZnO nanostructures. The fabricated nanomaterials could be used to construct
novel devices with improved performance for certain applications. The properties, preparation,
and device applications of 1D ZnO nanostructures were reviewed in detail. Importantly, several
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promising approaches to improve device performance, including surface passivation, LSPs,
and piezo-phototronic effects, were discussed.

Considering the wide application potential of 1D ZnO nanomaterials and their excellent
performance in devices, they can satisfy the requirements of “smaller, faster, colder” for electronics,
which is expected to be extended to practical applications in the near future. The applications of 1D
ZnO nanomaterials have expanded greatly in recent years, and the performance of various devices has
been continuously improved. Novel high-performance devices based on 1D ZnO nanomaterials will
certainly be an important research focus of the nanotechnology industry in the 21st century. With the
improvement of preparation technology, deepening of research, constant improvement of device
performance, and progress of nanotechnology industrialization, 1D ZnO nanomaterials will play an
increasingly important role in the fields of energy, environmental protection, information science
technology, biomedicine, security, and national defense.

The fundamental properties and applications of 1D ZnO nanomaterials have been explored
extensively to optimize their advantages, providing a route to meet practical requirements in
nanoscience and nanotechnology. Because 1D ZnO nanomaterials possess a large binding exciton
energy, wide band gap, high carrier mobility, and non-centrosymmetric structure, they can be used to
couple different properties such as semiconductivity, piezoelectricity, and photoexcitation together
to develop next-generation devices with attractive properties such as intelligent features and high
efficiency. At present, much attention has been paid to LEDs and photodetectors based on 1D
ZnO nanomaterials, and more and more interdisciplinary research has been conducted, such as
biochemical applications of 1D ZnO nanomaterials. It is anticipated that the carrier transport in 1D
ZnO nanomaterials can be well tuned to maximize conversion efficiency. Through the combination
of semiconducting properties and piezo-phototronic and size effects, the energy band structure of
devices could be tuned to modulate charge carrier transport behavior, and device performance
could be improved by controlling the SBH. Therefore, coupled effects can be readily applied to
1D ZnO nanomaterial-based devices to improve performance. We anticipate that research on
1D ZnO nanomaterial-based optoelectronic devices, such as LEDs and photodetectors, will yield
further progress.

6. Perspective

There has been extensive and fundamental research performed on 1D ZnO nanomaterials
and devices, resulting in methods to construct intelligent, smart, functional units with advanced
performances for potential applications. One-dimensional ZnO nanomaterials generally have
non-central symmetry crystal structure, high crystal quality, large aspect ratio, high carrier mobility,
wide band gap, and other characteristics that can be applied for coupling with properties such as
photoexcitation, piezoelectricity, and semiconductivity for designing next-generation, newly emerging
devices. At present, many types of 1D ZnO nanodevices have emerged with promising applications, for
example, energy harvesting, piezo-phototronic light emitting, photodetecting, nano-biosensing, and so
on, based on 1D ZnO nanomaterials. When considering the design factors for building several kinds of
nanodevices based on 1D ZnO nanomaterial, charge carrier generation, transport, and recombination
dynamics are generally considered by studying band gap structure, non-central symmetry induced
piezotronic effects, surface or interface contact properties, and so on. Thus, conversion efficiency
could be key in the overall consideration for building advanced optoelectric devices with improved
performance. Until now, it was anticipated that the charge carrier transport behaviors of the
1D ZnO nanomaterials could be well modulated for building devices based on piezotronic and
piezo-phototronic effects. Self-powered 1D ZnO nanodevices could be constructed with outperforming
properties based on the above effects, thus, next-generation, intelligent products with smart volume
could be built by applying the mentioned ideas. By optimally combining their properties based on 1D
ZnO nanomaterials, the performance of these devices, such as nanogenerators, LEDs, photodetectors,
nanosensors, and memory devices, can be improved by modulating charge carrier transport behavior,
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interface barrier structures, piezotronic effect, and so on. It is believed that the coupled effects can be
well applied for modulating carrier transport behaviors in 1D ZnO nanodevices for improving their
performance. Further, newly emerging 1D ZnO nanodevices could be constructed for promising
applications by studying its known effects and other properties through doping and surface
modification. Finally, we anticipate that research work on 1D ZnO nanodevices—such as LEDs,
photodetectors, solar cells, nanosensors, nanogenerators, and others—will yield continuous progress,
and novel optoelectric, light emitting, electric nanodevices could be created through further efforts.
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