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Abstract: The structural determination of clathrate hydrates, nonstoichiometric crystalline host-guest
materials, is challenging because of the dynamical disorder and partial cage occupancies of the
guest molecules. The application of direct space methods with Rietveld analysis can determine the
powder X-ray diffraction (PXRD) patterns of clathrates. Here, we conducted Rietveld analysis with
the direct space method for the structural determination of binary tetrahydrofuran (THF) + O2 and
3-hydroxytetrahydrofuran (3-OH THF) + O2 clathrate hydrates in order to identify the hydroxyl
substituent effect on interactions between the host framework and the cyclic ether guest molecules.
The refined PXRD results reveal that the hydroxyl groups are hydrogen-bonded to host hexagonal rings
of water molecules in the 51264 cage, while any evidences of hydrogen bonding between THF guests
and the host framework were not observed from PXRD at 100 K. This guest-host hydrogen bonding is
thought to induce slightly larger 512 cages in the 3-OH THF hydrate than those in the THF hydrate.
Consequently, the disorder dynamics of the secondary guest molecules also can be affected by the
hydrogen bonding of larger guest molecules. The structural information of binary clathrate hydrates
reported here can improve the understanding of the host-guest interactions occurring in clathrate
hydrates and the specialized methodologies for crystal structure determination of clathrate hydrates.
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1. Introduction

Clathrate hydrates are nonstoichiometric crystalline host-guest compounds stabilized by van der
Waals interactions between hydrogen-bonded water cages and hydrophobic guest molecules [1,2].
Because they have high capacities for gas storage reaching 170 v/v, clathrate hydrates are potentially
applicable in the areas of gas storage, separation, transportation, and carbon sequestration [3–6].
In nature, natural gas clathrate hydrates are abundant in permafrost or subsea sediment regions;
hence, clathrate hydrates of natural gases are also considered as potential energy resources [7–11].
For application as gas storage materials or as natural gas sources, the understanding of
the physicochemical properties of clathrate hydrates, including thermodynamic stability, guest
distributions and occupancies, and formation kinetics, is essential. The structural characterization of
such materials regarding host-guest interactions is thus a prerequisite for an improved understanding
of the inherent nature of clathrate hydrates. However, structural determination of clathrate hydrates
is challenging because of dynamical disorder and partial cage occupancies of the guest molecules.
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In particular, X-ray diffraction analysis for the structural characterization of powdered clathrate hydrate
samples is often difficult because clathrate hydrates contain many hydrogen atoms. The contributions
of hydrogen atoms to the diffraction patterns are significant, but the atomic scattering factor of
hydrogen is too small to use for the analysis of low-resolution powder diffraction patterns.

Recently, Takeya et al. reported that the application of direct space methods with Rietveld
analysis can solve powder X-ray diffraction (PXRD) patterns of these clathrate hydrate materials [12].
They suggested that the position of rigid body guest molecules in the cages of the fixed host framework
can be determined by a Monte-Carlo approach minimizing reliability factors of refined patterns and
also demonstrated that the dynamical disorder of guest molecules in the cages of structure I (sI; cubic
Pm-3n), structure II (sII; cubic Fd-3m), and structure H (sH; hexagonal P6/mmm) clathrate hydrates can
be refined by the direct-space technique. To overcome the limitation of the small scattering amplitude
of hydrogen atoms, they used virtual chemical species with sums of atomic scattering factors instead
of refining the hydrogen positions. Shin et al. demonstrated that the hydrogen atom positions of host
water molecules can be refined with some distance constraints between oxygen and hydrogen atoms of
water molecules when synchrotron high-resolution powder diffraction data were used [13]. Therefore,
structural determination of clathrate hydrates including hydrogen atom positions can be achieved by
Rietveld refinement analysis with the direct space method of high-resolution PXRD patterns.

Three widely known crystal structures of clathrate hydrates exist [1,2]. The sI hydrate, whose
lattice parameter is ~12 Å, contains six tetrakaidecahedrons (51262) and two pentagonal dodecahedrons
(512) cages in the unit cell comprising 46 H2O molecules. The sII hydrate, whose lattice parameter is
~17.3 Å, contains eight hexakaidecahedrons (51264) and sixteen 512 cages in the unit cell comprising
136 H2O molecules. The sH hydrate, with the lattice parameters a ~12.2 Å and c ~10.1 Å, contains
one icosahedron (51268), two irregular dodecahedrons (435663), and three 512 cages in the unit cell
comprising 34 H2O molecules. Some decades ago, canonical clathrate hydrates were thought to be
stabilized by van der Waals interactions only, without any directional guest-host interactions [1,14].
However, recent studies have revealed that hydrogen bonding or halogen bonding between the host
and guest molecules occasionally occurs in clathrate hydrate phases [14–20].

Here, we conducted Rietveld analysis with the direct space method for the structural determination
of binary tetrahydrofuran (THF) + O2 and 3-hydroxytetrahydrofuran (3-OH THF) + O2 clathrate
hydrates in order to identify the hydroxyl substituent effect on interactions between the host framework
and cyclic ether guest molecules. THF is a widely known hydrate-forming cyclic ether that occupies
the 51264 cages of sII hydrate [1,2,21–23]. On the other hand, 3-OH THF, a hydroxyl group substituted
THF, cannot form sII hydrate alone but can form a sII hydrate with secondary gaseous guest molecules
such as O2, N2, or CH4 [24]. Because of the inhibition effect of the hydroxyl group, binary (3-OH
THF + gaseous guest) hydrates are thermodynamically less stable than binary THF hydrates. In this
work, high-resolution PXRD patterns of THF + O2 and 3-OH THF + O2 binary hydrates were obtained
from a synchrotron beam line and refined by the direct space method and Rietveld method in order to
investigate the effect of hydroxyl groups on enclathrated cyclic ether guest molecules.

2. Experimental Section

THF and 3-OH THF were supplied by Sigma-Aldrich Inc. (St. Louis, MO, USA) and used without
further purification. O2 gas of 99.95 mol % purity was purchased from Special Gas (Daejeon, Korea).

A well-mixed solution of THF/H2O or 3-OH THF/H2O at the mole ratio of 1:17 was prepared.
A high-pressure reactor with an internal volume of 50 mL was loaded with 10 g of each solution and
then placed in a refrigerated ethanol circulator (RW-2025G, Jeio Tech Co., Ltd., Daejeon, Korea) and
pressurized by O2 up to 12 MPa at 293 K. The fluids inside the reactor were mechanically stirred
throughout hydrate formation. After the system reached the steady state, the reactor was slowly cooled
to 253 K and maintained at that temperature for three days. The synthesized hydrate samples were
collected and finely ground at liquid nitrogen temperature. The powdered samples were kept in a
liquid nitrogen storage dewar until diffraction pattern measurement.
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The PXRD patterns were obtained using the supramolecular crystallography beamline (2D)
at the Pohang Accelerator Laboratory (PAL) in Korea. An ADSC Quantum 210 CCD detector
(210 mm × 210 mm) with synchrotron radiation (λ = 0.9000 Å) was used. A pre-cooled polyimide tube
(purchased from Cole-Parmer, Vernon Hills, IL, USA); inner diameter: 0.025 in; outer diameter: 0.269 in)
was filled with the powdered hydrate sample and loaded into the diffractometer. The sample-detector
distance was 63 mm. Two-dimensional patterns of 4096 pixels by 4096 pixels were recorded with an
exposure time of 5 s at 100 K and then were converted into one-dimensional diffraction patterns of 2θ

range from 0 to 66.9932◦. As the intensities near the starting and endpoints of the patterns diverged,
the 2θ regions from 0 to 4 and from 66 to endpoint were excluded. The obtained patterns were refined
by Rietveld analysis with the direct space method [12]. The guest molecules of THF, 3-OH THF, and O2

were assumed as rigid bodies, and their positions were determined by the direct space method using
the program FOX [25,26]. With these initial guest coordinates, the patterns were refined by the Rietveld
method with the FULLPROF program [27]. During the refinements, soft distance constraints for the
host water molecules (O-H covalent bond length: 0.98 Å; and O·H hydrogen bond length: 1.74 Å)
were applied. The isotropic atomic displacement parameters for hydrogen atoms can be experientially
constrained to be some factor times the values for the atoms to which the hydrogens are bonded [28].
In this work, the isotropic temperature factor (B value, defined as B = 8π2〈u2〉 where 〈u2〉 is the mean
square isotropic displacement) of a hydrogen atom of H2O, THF, or 3-OH THF was assumed to be
1.5 times the B value factor of the atom to which the hydrogen was bonded [29]. The B values for the
carbon and oxygen atoms of THF or 3-OH THF were defined as identical.

3. Results and Discussion

The atomic coordinates, isotropic temperature factors, and site occupancies of THF + O2 and
3-OH THF + O2 hydrates, which were determined by Rietveld analysis with the direct space method,
are presented in Tables 1 and 2.

Table 1. Atomic coordinates and isotropic temperature factors for binary tetrahydrofuran (THF) + O2

hydrate at 100 K. Hea: hydrogen covalently connected with Oe and hydrogen bonded with Oa

(Oe-Hea·Oa). Hgg(p): hydrogen in pentagonal ring; and Hgg(h): in hexagonal ring. Site: multiplicity and
Wyckoff letter.

Atom x y z B (Å2) g Site

Oa 0.125 0.125 0.125 1.84 (10) 1 8 a
Oe 0.2166 (1) 0.2166 0.2166 1.56 (6) 1 32 e
Og 0.1822 (1) 0.1822 0.3706 (1) 1.80 (3) 1 96 g
Hea 0.1842 (2) 0.1842 0.1842 2.34 0.5 32 e
Hae 0.1581 (2) 0.1581 0.1581 2.76 0.5 32 e
Heg 0.2106 (10) 0.2106 0.2731 (6) 2.34 0.5 96 g
Hge 0.1827 (10) 0.1827 0.3110 (5) 2.70 0.5 96 g

Hgg(p) 0.1414 (3) 0.1414 0.3640 (19) 2.70 0.5 96 g
Hgg(h) 0.2373 (7) 0.1807 (8) 0.3912 (11) 2.70 0.5 192 i

CL1 0.9314 0.9142 0.3679 3.43 (29) 0.0415 (2) 192 i
OL2 0.9143 0.8484 0.3197 3.43 0.0415 192 i
CL3 0.8364 0.8600 0.2924 3.43 0.0415 192 i
CL4 0.7909 0.8937 0.3624 3.43 0.0415 192 i
CL5 0.8557 0.9311 0.4138 3.43 0.0415 192 i
HL6 0.9811 0.8990 0.4045 5.14 0.0415 192 i
HL7 0.9474 0.9644 0.3312 5.14 0.0415 192 i
HL8 0.8365 0.9012 0.2433 5.14 0.0415 192 i
HL9 0.8146 0.8039 0.2718 5.14 0.0415 192 i

HL10 0.7471 0.9359 0.3438 5.14 0.0415 192 i
HL11 0.7609 0.8473 0.3941 5.14 0.0415 192 i
HL12 0.8576 0.9038 0.4712 5.14 0.0415 192 i
HL13 0.8469 0.9936 0.4223 5.14 0.0415 192 i
OS1 0.2317 0.2285 0.9789 5.31 (19) 0.0808 (4) 192 i
OS2 0.2775 0.2695 1.0131 5.31 0.0808 192 i
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Table 2. Atomic coordinates and isotropic temperature factors for 3-hydroxytetrahydrofuran (3-OH
THF) + O2 hydrate at 100 K.

Atom x y z B (Å2) g Site

Oa 0.125 0.125 0.125 1.42 (9) 1 8 a
Oe 0.2166 (1) 0.2166 0.2166 1.55 (6) 1 32 e
Og 0.1824 (1) 0.1824 0.3708 (1) 1.90 (3) 1 96 g
Hea 0.1842 (2) 0.1842 0.1842 2.32 0.5 32 e
Hae 0.1578 (2) 0.1578 0.1578 2.13 0.5 32 e
Heg 0.2156 (9) 0.2156 0.2752 (5) 2.32 0.5 96 g
Hge 0.1857 (11) 0.1857 0.3127 (6) 2.85 0.5 96 g

Hgg(p) 0.1416 (3) 0.1416 0.3835 (15) 2.85 0.5 96 g
Hgg(h) 0.2372 (7) 0.1782 (9) 0.3878 (12) 2.85 0.5 192 i

CL1 0.6740 0.1037 0.1417 1.89 (34) 0.0387 (2) 192 i
OL2 0.6493 0.0585 0.0732 1.89 0.0387 192 i
CL3 0.5662 0.0766 0.0571 1.89 0.0387 192 i
CL4 0.5426 0.1418 0.1146 1.89 0.0387 192 i
CL5 0.5986 0.1280 0.1841 1.89 0.0387 192 i
HL6 0.7121 0.0671 0.1774 2.83 0.0387 192 i
HL7 0.7047 0.1574 0.1252 2.83 0.0387 192 i
HL8 0.5601 0.0947 −0.0039 2.83 0.0387 192 i
HL9 0.5315 0.0237 0.0668 2.83 0.0387 192 i

HL10 0.5564 0.1996 0.0909 2.83 0.0387 192 i
HL11 0.4809 0.1392 0.1307 2.83 0.0387 192 i
HL12 0.5771 0.0795 0.2203 2.83 0.0387 192 i
OL13 0.6164 0.1972 0.2297 1.89 0.0387 192 i
HL14 0.5686 0.2118 0.2593 2.83 0.0387 192 i
OS1 0.2829 0.2292 0.9757 4.27 (25) 0.0785 (5) 192 i
OS2 0.2440 0.2626 1.0236 4.27 0.0785 192 i

THF is a widely known sII hydrate former. As expected, the pattern of THF + O2 hydrate sample
in Figure 1a shows the cubic Fd-3m structure with a lattice parameter of a = 17.1143 (5) Å. The calculated
density is 1.166 g/cm3. As reported previously [24], the pattern of the 3-OH THF + O2 hydrate sample
also shows the cubic Fd-3m structure with a lattice parameter of a = 17.1268(5) Å, with a tiny amount
of hexagonal ice impurities (Figure 1b). The calculated density of the hydrate phase is 1.186 g/cm3.
The refined cage occupancy values for THF and 3-OH THF in the 51264 cages are 1.00 (1) and 0.93 (1),
respectively (Tables 1 and 2). The slightly smaller value of the latter system may arise from the nature
of the 3-OH THF molecule, which cannot form the sII hydrate on its own. Although 3-OH THF is a
larger guest molecule than THF (Figure 2), the estimated average radii (average distances between the
cage centers and each oxygen atom) of the 51264 cages are almost equal at 4.629 Å and 4.630 Å for the
THF and 3-OH THF hydrates, respectively. Here, we assumed that the 51264 cages are occupied by
only large hydrocarbon molecules in both the THF and 3-OH THF hydrates in this work. Although a
possibility of O2 occupancy in the 51264 cages of the 3-OH THF hydrate exists, the number of small
guest molecules occupying the large cages is usually ignorable when a stoichiometric amount of large
guest molecules for sII hydrate is used.
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parameter: a = 17.1143 (5) Å; Reliability factors: χ2 = 5.68; and Rwp = 8.55% (background subtracted); 
(b) Rietveld refinement of the 3-OH THF + O2 hydrate pattern (tick marks: first row for sII hydrate, 
second row for ice Ih). Space group: Fd-3m; Lattice parameter: a = 17.1268 (5) Å; Reliability factors: χ2 
= 3.65; and Rwp = 8.38% (background subtracted). 

 
Figure 2. Molecular shapes and the longest end-to-end distances of (a) THF and (b) 3-OH THF. 

The hydroxyl group capable of hydrogen bonding is usually allowed to approach the host 
water molecules more closely than other hydrophobic groups in the guest molecules [15,20,30,31]; 
this may explain the 3-OH THF formation of the sII hydrate, while 2-methyl THF, which is similar 
in size, forms the sH hydrate with the assistance of CH4 or Xe gases [32]. 

Figures 3 and 4 show the crystal structures and guest positions of the THF + O2 and 3-OH THF 
+ O2 hydrates as obtained by Rietveld refinement.  

Figure 1. (a) Rietveld refinement of the THF + O2 hydrate pattern. Space group: Fd-3m; Lattice
parameter: a = 17.1143 (5) Å; Reliability factors: χ2 = 5.68; and Rwp = 8.55% (background subtracted);
(b) Rietveld refinement of the 3-OH THF + O2 hydrate pattern (tick marks: first row for sII hydrate,
second row for ice Ih). Space group: Fd-3m; Lattice parameter: a = 17.1268 (5) Å; Reliability factors:
χ2 = 3.65; and Rwp = 8.38% (background subtracted).
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Figure 2. Molecular shapes and the longest end-to-end distances of (a) THF and (b) 3-OH THF.

The hydroxyl group capable of hydrogen bonding is usually allowed to approach the host water
molecules more closely than other hydrophobic groups in the guest molecules [15,20,30,31]; this may
explain the 3-OH THF formation of the sII hydrate, while 2-methyl THF, which is similar in size, forms
the sH hydrate with the assistance of CH4 or Xe gases [32].

Figures 3 and 4 show the crystal structures and guest positions of the THF + O2 and 3-OH
THF + O2 hydrates as obtained by Rietveld refinement.



Crystals 2018, 8, 328 6 of 9Crystals 2018, 8, x FOR PEER REVIEW  6 of 9 

 
Figure 3. Guest distributions with full symmetry in 51264 and 512 cages. (a) THF + O2 and (b) 3-OH 
THF + O2 hydrates. (Red: oxygen of O2 molecule; Gray: carbon; blue: oxygen in cyclic rings; brown: 
oxygen of hydroxyl group. Hydrogen atoms are omitted.). 

 
Figure 4. Guest molecules in the 51264 cages of (a) THF + O2 and (b) 3-OH THF + O2 hydrates. 

Figure 3. Guest distributions with full symmetry in 51264 and 512 cages. (a) THF + O2 and (b) 3-OH
THF + O2 hydrates. (Red: oxygen of O2 molecule; Gray: carbon; blue: oxygen in cyclic rings; brown:
oxygen of hydroxyl group. Hydrogen atoms are omitted.).

Crystals 2018, 8, x FOR PEER REVIEW  6 of 9 

 
Figure 3. Guest distributions with full symmetry in 51264 and 512 cages. (a) THF + O2 and (b) 3-OH 
THF + O2 hydrates. (Red: oxygen of O2 molecule; Gray: carbon; blue: oxygen in cyclic rings; brown: 
oxygen of hydroxyl group. Hydrogen atoms are omitted.). 

 
Figure 4. Guest molecules in the 51264 cages of (a) THF + O2 and (b) 3-OH THF + O2 hydrates. Figure 4. Guest molecules in the 51264 cages of (a) THF + O2 and (b) 3-OH THF + O2 hydrates.



Crystals 2018, 8, 328 7 of 9

As shown in Figure 3a, THF molecules are spherically distributed in the 51264 cages. The shortest
distance between a host oxygen atom and guest carbon or oxygen atom is calculated as 3.083 Å
(Figure 4a). On the other hand, Figure 3b shows that the hydroxyl groups of 3-OH THF are oriented
toward the hexagonal faces of the 51264 cages. The shortest host-guest distance between oxygen atoms
is calculated as 2.564 Å (Figure 4b); the PXRD analysis thus reveals that the hydroxyl functional group
of 3-OH THF is hydrogen-bonded to the host water molecules. As H2O molecules in the sII hydrates
are tetrahedrally connected to each other, the hexagonal rings in the 51264 cages are relatively weakly
hydrogen-bonded in the host framework (the O-O-O angles are ~120◦, whereas those in pentagonal
rings are ~108◦). Therefore, the guest-host hydrogen bonding in the 51264 cage often occurs at the
hexagonal rings, as shown in Figures 3b and 4b [18–20].

The distances between host oxygen atoms can be affected by the guest-host hydrogen bonding.
In the THF + O2 hydrate, the Og-Og distances in the hexagonal and pentagonal faces are calculated as
2.758 Å and 2.769 Å, respectively (Figure 4). On the other hand, those distances for the 3-OH THF + O2

hydrate are 2.755 Å and 2.779 Å in the hexagonal and pentagonal faces, respectively. The slightly
larger difference in the Og-Og distance between the hexagonal and pentagonal faces of the 3-OH
THF + O2 hydrate suggests a slightly distorted framework in the 3-OH THF + O2 hydrate, caused by
the guest-host hydrogen bonding. The host O-O distances are listed in Table 3.

Table 3. Distances of host O-O atoms in the THF + O2 and 3-OH THF + O2 hydrates.

Hydrates Oa-Oe (Å) Oe-Og (Å) Og-Og (p) 1 (Å) Og-Og (h) 2 (Å)

THF + O2 2.714 (2) 2.765 (2) 2.769 (2) 2.758 (3)
3-OH THF + O2 2.716 (2) 2.768 (3) 2.779 (2) 2.755 (3)

1 in the pentagonal ring; 2 in the hexagonal ring.

The average radii of the small 512 cages for both hydrates are also estimated; the values are 3.858 Å
for the THF hydrate and 3.862 Å for the 3-OH THF hydrate. The 512 cages in the latter are slightly
larger than those in the former. This can be a result of framework distortion induced by the significant
guest-host hydrogen bonding occurring in the large 51264 cage of 3-OH THF hydrate. The off-centered
distances of the O2 guest molecules from the centers of the 512 cages are calculated at 0.11 Å and 0.24 Å
for the THF and 3-OH THF hydrates, respectively. The estimated 512 cage radii and the off-centered
distances support that the position of the O2 guest molecule in the 3-OH THF hydrate fluctuates
more as shown in Figure 3, representing the disorder dynamics of the guest molecules. However, as
the mean square isotropic displacement (〈u2〉) of guest O atoms in THF hydrate, meaning thermal
vibration amplitude of O atom, is slightly larger (0.067(2) Å2 for the THF hydrate and 0.054 (3) Å2 for
the 3-OH THF hydrate) than the value in the 3-OH THF hydrate, it is difficult to conclude that the O2

guest molecules captured in the 3-OH THF hydrate occupy more space than those in the THF hydrate.

4. Conclusions

In this work, the PXRD patterns of the two binary clathrate hydrates of THF + O2 and 3-OH
THF + O2 were analyzed by Rietveld refinement with the direct space method. The hydroxyl group of
3-OH THF was hydrogen-bonded to the host water molecules in the hexagonal rings of the 51264 cages.
This guest-host hydrogen bonding slightly distorted the framework and is thought to induce larger
512 cage in the 3-OH THF hydrate. Consequentially, the disorder dynamics of the secondary small
guest molecules also can be affected by hydrogen bonding between large guest molecules and the host
framework. The findings presented in this work can provide a better understanding of host-guest
interactions occurring in clathrate hydrates and the specialized methodologies for the crystal structure
determination of clathrate hydrates.
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