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Abstract: Existing studies on elastic waves in periodically laminated piezoelectric structures mainly
concerned the passive band properties, since the electrical boundaries in the considered structures
cannot vary. This paper investigates the tuning of band properties of uncoupled primary and
shear (P- and S-) waves along the thickness direction by actively varying the electrical field in
periodically multilayered piezoelectric structures consisting of orthotropic materials. The alteration
of the electrical field is realized in the multilayered unit cell here by either applying or switching
four kinds of electrical boundary conditions, including the electric-open, applied electric capacitance,
electric-short, and applied feedback voltage, to the constituent piezoelectric layer via the constituent
electrode layers covering both its surfaces. First, the state space formalism is introduced to obtain
the partial wave solution of any constituent orthotropic layer in the unit cell. Second, the traditional
transfer matrix method is adopted to derive the dispersion equation of general, periodically laminated
piezoelectric composites with unit cells consisting of an arbitrary number of piezoelectric layers
with various boundaries and of elastic layers. Third, numerical examples are provided to verify the
proposed analysis method, and to study the influences of electrode thickness as well as four electrical
boundaries on the band structures. All the frequency-related dispersion curves are also illustrated by
numerical examples to summarize the general dispersion characteristics of uncoupled P- and S-waves
in periodically laminated piezoelectric composites. The main finding is that the innovative dispersion
characteristic resulting from the negative capacitance may also be achieved via feedback control.

Keywords: periodically laminates; piezoelectric composites; band structures; elastic waves; electrical
boundaries; dispersion curves

1. Introduction

Periodically laminated composites consist of repeatedly arranged material layers with different
acoustic properties [1–7]. As a typical kind of periodic structure, periodically laminated composites
possess elastic-wave band properties, i.e., the elastic wave with frequencies in the bandgap attenuates
quickly without propagation, and the elastic wave with frequencies in the passband propagates without
attenuation [7,8]. This elastic-wave band behavior is similar to the De-Broglie wave in electronic
crystals [8–10] and the electromagnetic wave in photonic crystals [11–13]. In order to develop the
applications of band property in filter manufacture, non-destructive testing, signal transmission, etc.,
the elastic wave propagation in periodically laminated composites has attracted a lot of attention in
the last few decades [1–7,14–16].
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However, with the tremendous progress of information science and electronic technology in
the recent decades, the elastic-wave frequency bands in normally designed and traditionally used
periodically laminated elastic structures can not satisfy the higher-performance demand. There are
two ways for catering this severe requirement. The one way is to optimize the configuration of unit
cell in periodically laminated elastic composites, so that the width and location of bandgaps exactly
satisfy the required objective. Following this idea, Sigmund and Jensen [17] discussed the topology
optimization for both out-of-plane and in-plane waves in order to achieve maximal width and minimal
central frequency of bandgap; Hussein et al. [18] and EI-Beltagy [19] optimized the longitudinal-wave
bands according to multiple objectives, by genetic algorithm and evolutionary search, respectively. The
disadvantage of this way is that the width and location of frequency band are fixed after optimization
and they satisfy the requirement passively. Thus, this scheme can not realize frequency bands that
adapt to changing environment. The other way is to introduce hyperelastic or smart material as
the constituent layer in the periodically laminated structures so that the elastic-wave bands may
be controlled actively through deformation/instability or various physical other than mechanical
fields. So far, the following four kinds of materials have been introduced. First, with involving soft
hyperelastic layer, Galich et al. [20] tuned the shear and pressure wave bandgaps by deformation and
found highly tunable complete bandgaps in low-frequency ranges can be achieved; but Zhang and
Parnell [21] tried to freeze the elastic-wave bands also through deformation; Slesarenko et al. [22] and
Li et al. [23] both investigated the instability induced tunability of the widths and locations of pressure
and shear wave bandgaps, and the former [22] found the appearance of omni-directional negative
group velocity that foreshadows microscopic loss of the stability as well as the latter [23] obtained
the complete band gaps through deformation in both stable and post-buckling regimes. Note that
the tuning of band property by deformation or instability in mechanical field needs considering the
geometrical nonlinearity of the periodically laminated system with hyperelastic layers. Second, using
materials having the temperature-related phase transformations, Cheng et al. [24] and Li et al. [25]
investigated the tuning of Lamb-wave and P- and SH-waves bandgaps through temperature field
when ferroelectric ceramic Ba0.7Sr0.3TiO3 constituent layer and interfacial adhesive layer dependent
on temperature were introduced, respectively. Third, by importing the dielectric elastomer layer,
Galich and Rudykh [26] analyzed the manipulation of shear-wave bandgaps by finite deformation or
electrostatically induced deformation; Wu et al. [27] studied the tuning of the defect longitudinal-wave
bands by applying an electric voltage; Bortot et al. [28] performed topology optimization using genetic
algorithm approach for widening the SH (horizontally shear) wave bandgaps and improving their
tunability to electrostatically-controlled deformations.

Besides the above-mentioned three introduced materials, another smart material, which is the
fourth introduced material, is the piezoelectric material, which is also dependent on electric fields like
the dielectric elastomer, which has been extensively used in periodically laminated structures, i.e.,
one-dimensional (1D) piezoelectric layered phononic crystals. Because the electrical field is relatively
easy to control and the piezoelectric effect is linear coupling between the electrical and mechanical
fields, the elastic wave propagation and its tuning by the electrical conditions in periodically laminated
piezoelectric composites have received extensive attention during the last two decades [29–48]. The
earlier literatures on this topic only considered the relatively simple electrical boundaries, i.e., the
electric-open and electric-short conditions. In these literature, the horizontally shear (SH) wave
was investigated sufficiently. Minagawa [29] initiated the analysis of SH-wave propagation in 1D
periodically laminated piezoelectric composites in 1995. Then, in 2004, Qian et al. [30] produced a
deeper analysis of the same topic and obtained general solutions for SH-wave in periodic bi-layered
materials. Later, Li et al. [31] investigated the propagation and localization characteristics of SH waves
in randomly disordered, periodically laminated piezoelectric composites. Recently, Zhao et al. [32,33]
studied the propagation of the SH wave in the periodically single piezoelectric layer and multilayered
piezoelectric structure with the piezoelectricity considered or neglected. Besides, many researchers did
extension studies on other kinds of elastic waves in periodically laminated piezoelectric structures.
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For examples, Li et al. [34–37] discussed the propagation and localization of in-plane (P-SV) waves
and Rayleigh waves in disordered, periodically laminated piezoelectric structures. Lan et al. [38]
investigated the dispersive characteristics of elastic waves propagating through laminated piezoelectric
phononic crystals with imperfect interfaces and discussed the influence of the imperfect interface on
dispersion curves/bandgaps. Zou et al. [39] studied theoretically the band structures of plate-mode
(Lamb) waves in the 1D phononic crystal plate consisting of piezoelectric ceramics placed periodically
in an epoxy substrate and found that the width of first bandgap associated with the electric-short
condition is always larger than that corresponding to the electric-open boundary in the case of the
same polarization.

As can be seen from the above literature review, although the electric-open and electric-short
boundaries are easy to apply, they provide very limited modulation (just two cases) to the frequency
band property for periodically laminated piezoelectric structures. Naturally, in recent years the tunable
electric components have been introduced to achieve continuously varying electrical boundaries.
By so doing, the frequency band property of periodically laminated piezoelectric structures can be
tuned continuously within certain ranges. These introduced tunable components contain electrical
impedance, capacitance, voltage, and inductance. By adopting the electrical impedance condition,
Mansoura et al. [40,41] investigated theoretically and experimentally the bandgap control of elastic
waves perpendicular to the layers and found that the change of electric impedance can be used
to obviously modify the band structure and acoustic transmission. When considering the applied
capacitance, Mansoura et al. [42] also proposed the use of negative capacitance values to achieve
unusual band properties. Kutsenko et al. [43,44] successively investigated the tuning of bandgap
characteristics of longitudinal waves perpendicular to layering in layered phononic crystals, whose
piezoelectric layers are connected to external capacitance. This is equivalent to homogeneous material
whose parameters depend on piezoelectric and dielectric coefficients of piezoelectric materials in
the case of positive capacitance. In the case of negative capacitance, the dimensionless imaginary
wavenumber (qIh/π) spectra have poles, at whose corresponding frequency in stopbands the phase
constant (qRh/π) jumps from 0 to π. Besides, Kutsenko et al. [45] investigated the dispersion spectrum
of the longitudinal acoustoelectric wave in the piezoelectric crystals coupled with the electric wave of
potentials and charges in the network of capacitors and found that the dispersion spectrum consists of
a discrete set of curves when capacitance C1 and C2 are of same sign. The spectrum simultaneously
includes the discrete set of dispersion curves and the continuous bands when capacitance C1 and C2

are of the opposite sign and |C1/C2| ≥ 1. Ponge et al. [46] found that piezoelectric phononic crystals
have Bragg bandgap under periodically electric short-condition and found out design scheme for
Fabry-Perot cavity. By applying external voltage, Wang et al. [47] found that the thickness of inserted
PMN-0.38PT layer predominantly relates to its strain coefficient that can be adjusted. By introducing
an inductor, Zhu et al. [48] found that an extremely narrow stop band was caused.

Although the above-reviewed studies provide plenty of knowledge of elastic waves in general,
periodically laminated piezoelectric composites, to our best knowledge the following four aspects
of pending problems, however, have seldom been discussed: (1) The modulation of the primary
(longitudinal) wave by the electrical tunable boundaries has been studied, but few investigations
have dealt with the modulation of the shear (transversal) wave by these electrical boundaries.
(2) The mechanical vibration of the electrodes is neglected by nulling their thickness without
understanding their influence. (3) The connection and difference of the influences of the applied
feedback control and of the applied electric capacitance on the frequency band property are not
known. (4) The wave dispersion property has been solely represented by the frequency-wavenumber
dispersion curve. However, other forms of dispersion curves such as the frequency-wavelength and
frequency-phase velocity spectra may also be vital to representing wave dispersion properties from
different perspectives.

This paper, which aims to solve the above-mentioned four pending problems, is organized as
follows. In Section 2, the basic model of elastic waves including both primary (P-) and shear (S-)



Crystals 2018, 8, 351 4 of 32

waves in general, periodically laminated piezoelectric composites with unit cells consisting of arbitrary
numbers of piezoelectric layers with various boundaries and of elastic layers is described concisely.
Section 3 introduces the state space formalism [49] in detail to obtain the partial wave solution of any
constituent orthotropic layer in the unit cell. In Section 4, the dispersion equation of the elastic wave
in the general model is derived on the basis of the transfer matrix method [50] combined with the
Floquet-Bloch principle [7,8,51]. Section 5 gives numerical examples for decoupled P- and S-waves in
periodically Glass-Brass-(PZT-5H)-Brass piezoelectric composites with Brass layers as electrodes. After
the proposed formulation is validated by comparing the results with counterpart results in literature
and by other methods, the influence of electrode thickness and electrical boundaries including the
electric-open, applied electric capacitance, electric-short, and applied feedback voltage on dispersion
properties is studied in detail. The general properties of frequency-related dispersion curves are also
summarized through the analysis of results from the numerical example. Conclusions based on these
studies are drawn in Section 6.

2. Basic Model

Consider elastic waves along the thickness direction in general periodically laminated
piezoelectric composites with the unit cell consisting of all together m (arbitrary number) piezoelectric
and elastic layers and being shown in Figure 1. The thickness of any constituent layer is much smaller
than its in-plane dimensions, so it is treated here as boundary-less in the layer plane. If the electrical
boundaries other than the electric-open condition, including the applied electric capacitance (with
capacity C), electric-short and applied feedback control (with the gain coefficient Kg) conditions, are
needed to apply on any of the piezoelectric layers to tune its electrical and mechanical fields, a pair
of electrodes must be coated on the top and bottom surfaces of that piezoelectric layer. By switching
or modulating these four electrical boundaries via the electrodes, with their governing mathematical
formulas listed in Table 1, the dispersion characteristics of the elastic waves along the thickness
direction can be tuned. These electrodes with the in-plane area S, are also modeled as the elastic
layers in Figure 1, if their mechanical effects are also considered. All the adjacent constituent layers are
perfectly connected at the interfaces. All the piezoelectric layers and the elastic layers (including both
the electrodes and the inserted elastic layers) are all assumed as orthotropic materials or materials
with higher symmetry. It can be inferred that, from the relation between the macro-physical properties
and the crystal class [52,53], the mechanical/electrical properties of materials with higher crystal
symmetry than the orthotropic materials can be deemed as the special cases of the latter, while some
stiffness/dielectric constants are identical and some piezoelectric constants are zero. Therefore, in the
following Section 3 the derivations of the state equation of any constituent layer and its wave solution
are all based on the orthotropic materials of crystal classes mm2, 222, and mmm [52,53]. The derived
result also indicates that the three mechanical wave modes propagating along the thickness direction
are decoupled. Thus, the effect of electrical boundaries on the dispersion characteristics of decoupled
primary (P-) and shear (S-) waves can be studied. If elastic waves along the direction oblique to the
thickness are considered, they can not be decoupled into three pure P- and pure S-waves. Then the
dispersion characteristics of these oblique elastic waves may be much more complex than the results
provided in this paper, which will be considered in a future study. Interested readers can refer to
Ref. [54] for detailed discussions on oblique shear waves in periodically laminated composites with
hyperelastic layers of finite deformation.
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Figure 1. The schematic of the unit cell and its description in the global coordinate system of general,
periodically laminated piezoelectric composites.

Table 1. The mathematical formulas associated with various electrical boundaries 1–5.
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piezoelectric layer. By switching or modulating these four electrical boundaries via the electrodes, 

with their governing mathematical formulas listed in Table 1, the dispersion characteristics of the 

elastic waves along the thickness direction can be tuned. These electrodes with the in-plane area S , 

are also modeled as the elastic layers in Figure 1, if their mechanical effects are also considered. All 

the adjacent constituent layers are perfectly connected at the interfaces. All the piezoelectric layers 

and the elastic layers (including both the electrodes and the inserted elastic layers) are all assumed as 

orthotropic materials or materials with higher symmetry. It can be inferred that, from the relation 

between the macro-physical properties and the crystal class [52,53], the mechanical/electrical 

properties of materials with higher crystal symmetry than the orthotropic materials can be deemed 

as the special cases of the latter, while some stiffness/dielectric constants are identical and some 

piezoelectric constants are zero. Therefore, in the following Section 3 the derivations of the state 

equation of any constituent layer and its wave solution are all based on the orthotropic materials of 

crystal classes mm2 , 222 , and mmm  [52,53]. The derived result also indicates that the three 

mechanical wave modes propagating along the thickness direction are decoupled. Thus, the effect of 

electrical boundaries on the dispersion characteristics of decoupled primary (P-) and shear (S-) 

waves can be studied. If elastic waves along the direction oblique to the thickness are considered, 

they can not be decoupled into three pure P- and pure S- waves. Then the dispersion characteristics 

of these oblique elastic waves may be much more complex than the results provided in this paper, 

which will be considered in a future study. Interested readers can refer to Ref. [54] for detailed 

discussions on oblique shear waves in periodically laminated composites with hyperelastic layers of 

finite deformation. 

Table 1. The mathematical formulas associated with various electrical boundaries 1–5. 

Electrical 

boundaries 

Electric-open Applied capacitance 

 

Electric-short 

 

Applied feedback 
control 

 
Associated 

mathematical 

formulas 

0Q   Q CV  0V   
 ( ) (0)

gV K

w h w

  

 
 

 
Associated

Mathematical
Formulas

Q = 0 Q = CV V = 0 V = −Kg×
×[w(h)− w(0)]

1 Q is the electric charge on one electrode; 2 V is the voltage (electric potential difference) between electrodes;
3 C is the applied capacitance; 4 Kg is the gain coefficient in the feedback control system; 5 w(0) and w(h) are the
displacements along the thickness direction on the top and bottom surfaces.

Due to the Floquet-Bloch theorem for periodic structures [7,8,51], the decoupled P- and S-waves
along the thickness direction in the considered periodically laminated piezoelectric composites can be
analyzed on the basis of only one unit cell, whose schematic is depicted in Figure 1. The dispersion of
the elastic waves is mainly represented by the characteristic wavenumber along the thickness direction
q and the circular frequency ω. For the convenience of description, a global right-handed coordinate
system XYZ is established with its origin being located on the top surface of the current unit cell and
the Z axis pointing to the thickness and downward direction. All the constituent layers including
electrodes, are numbered in succession along the Z axis from 1 to m with their thickness denoted by h1

through hm. The total thickness of the unit cell is H =
m
∑

j=1
hj. The (m + 1) interfaces, including the top

and bottom surfaces, are denoted in succession from top to bottom along the Z axis by 1 to N.

3. State Space Formalism

3.1. Equations Governing the Elastodynamics of a Layer

For any constituent layer of either piezoelectric or elastic material in the unit cell, say layer
j described in its local right-handed coordinate system (xj, yj, zj) as shown in Figure 2, the
three-dimensional (3-D) elastic theory governing its elastodynamics [52,53] is represented by the
geometric relations, the constitutive equations, and the equations of motion together with the Gauss’s
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law of electrostatics. During the following derivation in this section, the subscript j is omitted
for brevity.Crystals 2018, 8, 351 6 of 34 
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Figure 2. The local coordinates and the basic physical quantities of any constituent layer.

Substituting the generalized geometric relations

ε = LTu, E = −∇ϕ, (1)

into the constitutive equations of piezoelectric material or the constitutive equations of elastic material
(such as electrode or other elastic constituent layer)

σ = Cε− eTE, D = eε+βE; σ = Cε, D = βE, (2)

one obtains the relation between the generalized stresses [σT, DT]
T and the generalized

displacements [uT, ϕ]
T

{
σ

D

}
=

[
CLT eT∇
eLT −β∇

]{
u
ϕ

}
or

{
σ

D

}
=

[
CLT 0

0 −β∇

]{
u
ϕ

}
(3)

of piezoelectric or elastic material, respectively. In Equations (1) to (3), u = [u, v, w]T and ϕ are the
mechanical displacement vector and the electric potential scalar, respectively, which are combined
to form the generalized displacements. ε = [εx, εy, εz, γyz, γzx, γxy]

T and E = [Ex, Ey, Ez]
T are the

mechanical strain and electric field intensity vectors, respectively. σ = [σx, σy, σz, τyz, τzx, τxy]
T and

D = [Dx, Dy, Dz]
T are the stress and electric displacement vectors, respectively, which are combined

to form the generalized stresses. L and ∇ are the matrix operator of 3× 6 dimension and the 3-D
Hamilton operator in form of column vector, respectively, whose components are written explicitly
as follows

L =


∂

∂x 0 0 0 ∂
∂z

∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0

, ∇ =


∂

∂x
∂

∂y
∂
∂z

. (4)

Superscript “T” denotes the transposition of a matrix or a vector. C and β are the 6× 6 symmetric
stiffness constant matrix and the 3× 3 symmetric dielectric constant matrix, respectively, which express
the mechanical and electrical properties of the layer, respectively. e is the 3× 6 piezoelectric constant
matrix, which represents the coupling property between mechanical and electrical fields. It should
be zero matrix for non-piezoelectric material. For orthotropic material (crystal classes mm2, 222, and
mmm) considered in this paper, the components of C and β are uniformly given in Appendix A,
while those of e are respectively shown in Appendix B. Notice that the latter group of equations
in Equations (2) and (3) for elastic layer can be regarded as a degeneration of the former group in
Equations (2) and (3) for piezoelectric layer by neglecting the piezoelectric matrix. In the following
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derivation, we will bear this fact in mind and only emphasize the different cases of piezoelectric and
elastic layers as needed.

The equations of motion (without body force) and the Gauss’s law of electrostatics of the
considered layer are

Lσ = ρ
∂2u
∂t2 , ∇ ·D = 0, (5)

respectively, where ρ is the material density.

3.2. Derivation of the State Equation of a Layer

Equations (3) and (5) represent the complete correlation between the generalized stresses [σT, DT]
T

and the generalized displacements [uT, ϕ]
T. Assume these physical variables have harmonic wave

solutions in form of

Γ(x, y, z, t) = Γ̂(kx; ky; z; ω)ei(kx x+kyy−ωt) = Γ̂(z)e−iωt (Γ = u, ϕ,σ, D), (6)

where i =
√
−1 is the imaginary unit, and ω is the circular frequency. In Equation (6), kx and ky are

the wavenumbers along the x− and y− directions, respectively, which are not explicitly appeared
in the wave solution as indicated in the last formula since kx = ky = 0 because only the elastic
wave propagating along the thickness (z−) direction is considered in this paper. Henceforth, the over
caret “̂” indicates corresponding physical quantities in the kx − ky −ω domain. Because the in-plane
dimensions are much larger than the thickness of the layer and the effect of the electric boundaries
on the mechanical field is the main focus of this paper, the components of displacement state vector
vu = [u, v, w]T and stress state vector vσ =

[
τzx, τzy, σz

]T are chosen as the primary quantities, which

are combined to form the state vector v =
[
(vu)

T, (vσ)
T
]T

=
[
u, v, w, τzx, τzy, σz

]T [49]. These basic
physical variables of the typical layer j are also depicted in Figure 2. Substitution of Equation (6) into
Equations (3) and (5) respectively gives{

σ̂

D̂

}
=

[
(Cp1)6×3 (ep1)6×1
(ep2)3×3 −(βp1)3×1

]
9×4

{
dv̂u
dz
dϕ̂
dz

}
or

{
σ̂

D̂

}
=

[
(Cp1)6×3 (0)6×1
(0)3×3 −(βp1)3×1

]
9×4

{
dv̂u
dz
dϕ̂
dz

}
, (7)

dv̂σ

dz
= −ρω2v̂u,

dD̂z,
dz

= 0, (8)

where Cp1 and βp1 are 6× 3 and 3× 1 matrices composed of partial components of stiffness and
dielectric constant matrices C and β, respectively; ep1 and ep2 are 6× 1 and 3× 3 matrices composed
of partial components of piezoelectric matrix e. The concrete form of these matrices for orthotropic
materials of crystal classes mm2, 222, and mmm can be referred to Appendices A and B. In the
following, we will derive the state equation of the considered layer based on Equations (7) and (8)
according to the two material types.

First, for piezoelectric layer covered with electrodes on its surfaces, the latter formula in
Equation (8) indicates that D̂z is a constant, which relates to the electric charge on the overlaid
electrodes Q̂ by

D̂z =
Q̂
S

, (9)

with S the area of electrodes. Note that S is only used in the derivation here, but it does not need to
be specified independently in the final calculation, because except the applied electric capacitance
boundary, it will not be involved in the final formulation. Furthermore, in the applied electric
capacitance condition, the capacitance per unit area C/S is actually needed. Consequently, it is
reasonable to assume that each constituent layer is boundary-less in the layer plane. Thus, Q̂
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should also be a constant. Substitute Equation (9) into the lower formula for piezoelectric material in
Equation (7), which expresses D̂z as

D̂z = ep3
dv̂u

dz
− β33

dϕ̂
dz

, (10)

with ep3 the 1× 3 matrix formed by the components in the last line of ep2 and provided in Appendix B
for orthotropic crystal classes mm2, 222, and mmm, one obtains

dϕ̂
dz

=
ep3

β33

dv̂u

dz
− Q̂

β33S
, (11)

which relates to the voltage (potential difference) V̂ between the electrodesby

V̂ = ϕ̂(h)− ϕ̂(0) =
∫ h

0

dϕ̂

dz
dz =

∫ h

0

(
ep3

β33

dv̂u

dz
− Q̂

β33S

)
dz =

ep3

β33
[v̂u(h)− v̂u(0)]−

Q̂h
β33S

. (12)

Equation (12) provides the relation with respect to three quantities, i.e., the electric charge Q̂, the
voltage V̂, and the displacements difference [v̂u(h)− v̂u(0)]. Various electrical boundaries actually
either provide another relation between any two among these three quantities or specify directly anyone
of Q̂ and V̂. This fact can be clearly demonstrated by the mathematical expressions corresponding to
four electrical boundaries including the electric-open, applied electric capacitance, electric-short, and
applied feedback voltage conditions listed in Table 2. Substitute Equation (12) into the mathematical
expressions associated with various electrical boundaries, V̂ and Q̂ can be expressed as formulas of
[v̂u(h)− v̂u(0)] or zero. Their expressions associated with the four electrical boundaries are also shown
in Table 2. Then substituting the respective expression of Q̂ into Equation (11) gives the expression of
dϕ̂/dz, which can be expressed uniformly for the four electrical boundaries as

dϕ̂

dz
=

ep3

β33

dv̂u

dz
−R[v̂u(h)− v̂u(0)], (13)

with R the 1× 3 matrix provided also in Table 2 for each of the four electrical boundaries. Further
substitute Equation (13) into the formulas related to the stress state vector v̂σ in Equation (7) for
piezoelectric material as follows

v̂σ = (Cp2)3×3
dv̂u

dz
+ (eT

p3)3×1

dϕ̂

dz
, (14)

then by combining like terms one derives the equations representing dv̂u/dz as

dv̂u

dz
= G−1v̂σ + G−1eT

p3R[v̂u(h)− v̂u(0)], (15)

where G = Cp2 + eT
p3ep3/β33 is the 3× 3 matrix composed of the equivalent stiffness coefficients.

Note that the mechanical stiffness, the piezoelectricity, and the dielectricity all affect the equivalent
stiffness, and the material piezoelectricity actually strengthens the manifesting stiffness on the basis of
mechanical stiffness. The combination of Equation (15) and the former formula in Equation (8) gives a

set of inhomogeneous differential equations governing the state vector v̂ =
[
(v̂u)

T, (v̂σ)
T
]T

, which is
referred to as the state equation. For the piezoelectric layers with considering the electrical boundaries
studied here, the form of the state equation is as follows

dv̂
dz

= A6×6v̂ + B6×6[v̂(h)− v̂(0)], (16)
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where the 6 × 6 coefficient matrices A and B corresponding respectively to the function and the
inhomogeneous terms are composed of

A =

(
0 G−1

−ρω2I3 0

)
, B =

(
G−1eT

p3R 0
0 0

)
, (17)

with I3 the third order identity matrix. Note that the form of G−1 is only related to the material crystal
class, which is shown in Appendix C for the orthotropic materials of mm2 and 222 crystal classes.
Nevertheless, the form of G−1eT

p3R is in connection with both the material crystal class and the electrical
boundaries, which is displayed in Table A1 of Appendix C for the orthotropic materials of mm2 and
222 crystal classes in combination with the four electrical boundaries including the electric-open,
applied electric capacitance, electric-short and applied feedback voltage conditions. Since G−1 and
−ρω2I3 are both diagonal matrices for these orthotropic materials, it can be deduced that the three
mechanical wave modes including one primary (P-) mode and two shear (S-) modes are decoupled
each other. For piezoelectric materials of 222 crystal class with the various electrical conditions and
of mm2 crystal class with the electric-open condition, G−1eT

p3R is zero matrix indicates that in these
cases the electrical boundaries do not influence on the mechanical wave propagation. For piezoelectric
materials of mm2 crystal class with the m plane perpendicular to z, x, and y axes, the locations of the
nonzero components in G−1eT

p3R manifest that all the applied capacitance, electric-short and applied
feedback control conditions merely affect the x-polarized shear wave, y-polarized shear wave and
primary wave, respectively.

Table 2. The involved expressions relative to electrical boundaries.

Electrical Boundaries Expressions of Scalar V̂ Expressions of Scalar Q̂ Expressions of Vector R

Electric-open
ep3
β33

[v̂u(h)− v̂u(0)] 0 01×3

Applied capacitance
ep3

β33+Ch/S [v̂u(h)− v̂u(0)]
ep3

β33/C+h/S [v̂u(h)− v̂u(0)]
ep3

β2
33S/C+β33h

Electric-short 0 ep3
h/S [v̂u(h)− v̂u(0)]

ep3
β33h

Applied feedback control −K[v̂u(h)− v̂u(0)] 1 ep3+β33K
h/S [v̂u(h)− v̂u(0)] 1

ep3+β33K
β33h

1

1 K = [0 0 Kg].

Second, for elastic layer modeling the electrodes and the inserted elastic layers, the combination
of Equation (8) and the latter equation in Equation (7) gives

dv̂σ

dz
= −ρω2v̂u, σ̂ = (Cp1)6×3

dv̂u

dz
;

dD̂z

dz
= 0, D̂ = −(βp1)3×1

dϕ̂

dz
; (18)

which indicates that the mechanical quantities û (= v̂u) and σ̂ are independent on the electrical
quantities D̂ and ϕ̂. Since this paper concerns the effect of electrical quantities on the mechanical
quantities, hence we only consider the former two formulas in Equation (18) that are related to the
mechanical quantities. The second formula in Equation (18) determines the relation between the
derivative of the displacement state vector dv̂u/dz and the stress state vector v̂σ in form of

v̂σ = Cp2
dv̂u

dz
or

dv̂u

dz
= G−1v̂σ, (19)

where the 3 × 3 matrices Cp2 and G are identical for the elastic layer discussed here. From the
comparison of Equation (19) with Equations (14) and (15), one notices that the quantities related to
the electrical field, which are essential for piezoelectric layers, are vanishing for elastic layers. The
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combination of the latter equation in Equation (19) and the first equation in Equation (18) provides the
state equation of elastic layers as follows

dv̂
dz

= A6×6v̂, (20)

which are homogenous equations instead of inhomogeneous ones in Equation (16) for piezoelectric
layer and where the coefficient matrix A has the same form as that in Equation (17). Since G−1 and
−ρω2I3 are both diagonal matrices for the orthotropic material of crystal class mmm, it can be deduced
that the three mechanical wave modes including one primary (P-) mode and two shear (S-) modes
are decoupled each other, as also pointed out in the case of piezoelectric layer of mm2 and 222 crystal
classes. Note that Equation (20) can actually be degenerated from Equation (16) if the piezoelectric
constants are zero. Consequently, the derivations henceforth are only based on Equation (16) for
piezoelectric layers, and we should keep in mind that the results equally apply to Equation (20) for
elastic layers as long as the piezoelectric constants are taken as zero.

3.3. Traveling Wave Solution of the State Equation for a Layer

The solution to the state equation can be obtained, according to the theory of inhomogeneous
ordinary differential equations, in form of

v̂ = Φ6×6

(
eΛz − P

)
6×6

w =

{
v̂u

v̂σ

}
=

[
(Φu)3×6
(Φσ)3×6

](
eΛz − P

)
6×6

w, (21)

where Λ and Φ are the diagonal eigenvalue matrix and the square eigenvector matrix of the coefficient
matrix A of state equation, respectively, both of 6× 6 dimension. If observed together with Equation (6),
then the solution in Equation (21) can be deemed as the contribution summation of all partial waves
on the state vector v̂. The eigenvalues in Λ are actually the wavenumbers of the partial waves, and the
undetermined coefficients in vector w are the partial wave amplitudes. Thus, the matrix exponential
function eΛz and P = Λ−1Φ−1BΦ(eΛh− I6) are essentially the phase function and the inhomogeneous
phase term, respectively, with I6 denoting the sixth order identity matrix here and after. The result of
eΛz is a diagonal matrix of the same dimension as Λ. Any component on its diagonal is computed
from eγz with γ the corresponding component of Λ. The components in any row of Φ denote the
contribution coefficients of the partial waves on the state variable corresponding to that row. Based on
that the components are corresponding to the displacement state vector v̂u and the stress state vector v̂σ,
Φ is divided into two block matrices Φu and Φσ. From the above, it is known that every quantity in the
traveling wave solution of the state equation has clear physical meaning. The solution in Equation (21)
also applies to the state equation of elastic layer, as long as zero piezoelectric coefficients are used
during the computations of matrices A and B. Therefore, in the subsequent derivations, Equation (21)
is directly referred without indicating that either a piezoelectric or an elastic layer is considering.

4. Transfer Matrix Method

After the state equation and its traveling wave solution of any constituent layer have been derived,
we need to further integrate the dynamic states of all constituent layers of the unit cell in the dynamic
state of the unit cell system. For this purpose, the classical transfer matrix method (TMM) [50], which
is exceptionally efficient for chain systems like the multilayered structures considered here, is utilized
to establish the governing equations of the unit cell system.

First, the dynamic state of any constituent layer is needed to be described from another viewpoint,
i.e., from the viewpoint of the transfer of state variables. For an arbitrary layer j, the state vectors of its
bottom and top surfaces are written directly, when referring to Equation (21), as

v̂j(hj) = Φj(e
Λjhj − Pj)wj, v̂j(0) = Φj(I6 − Pj)wj, (22)
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respectively. From the latter equation in Equation (22), one can represent the wave amplitude vector
wj by the state vector at the top surface v̂j(0) as wj =

[
Φj(I6 − Pj)

]−1v̂j(0) = (I6 − Pj)
−1

Φ−1
j v̂j(0),

which is substituted into the former equation of Equation (22) to give, by eliminating wj, the transfer
relation of layer j as

v̂j(hj) = Tjv̂j(0). (23)

Tj in Equation (23) is the transfer matrix of layer j formed as

Tj = Φj(e
Λjhj − Pj)(I6 − Pj)

−1
Φ−1

j . (24)

It is seen from the above derivation that the basic unknowns are first changed from the wave amplitudes
into the state variables of the initial surface in the TMM formulation.

Second, the interaction between adjacent layers in the unit cell should be considered. At an
arbitrary interface, K for instance, the continuous condition between the state variables of the upper
layer j at bottom surface and those of the lower layer j + 1 at top surface requires that

v̂j+1(0) = v̂j(hj) = TKv̂j(hj), (25)

where TK = I6 is the transfer matrix of the interface K and which is the transfer relation of interface K.
Third, progressively apply the transfer relation of layer and that of interface from the top surface all

down through to the bottom surface of the unit cell, by eliminating the state vectors of all intermediate
layers one relates the state vector of the lowest layer at the bottom surface v̂m(hm) to that of the
uppermost layer at the top surface v̂1(0) by the transfer relation of the unit cell as follows

v̂m(hm) = TmTm−1 · · ·Tj · · ·T2T1v̂1(0) = Tv̂1(0), (26)

where T = TmTm−1 · · ·Tj · · ·T2T1 is the transfer matrix of the unit cell. Besides, from the viewpoints
of the effects of neighboring unit cells on the currently considered unit cell and the Floquet-Bloch
theorem [7,8,51] for periodic structures, the state vector v̂m(hm) is related to the state vector v̂1(0)
also by

v̂m(hm) = eiqHv̂1(0), (27)

where q is the wavenumber of characteristic waves along the thickness direction, H is the thickness of
the unit cell. The combination of Equations (26) and (27) leads to

Tv̂1(0) = eiqHv̂1(0) or (T− eiqHI6)v̂1(0) = 0, (28)

which indicates that

eiqH = Eigenvalues(T) = µ or det
(

T− eiqHI6

)
= 0. (29)

The former equation in Equation (29) is obtained by considering the definition of eigenvalues of a
matrix as indicated from the former equation in Equation (28), while the latter equation in Equation (29)
is deduced by vanishing the determinant of the coefficient matrix in the latter system equation in
Equation (28) because v̂1(0) can not be zero vector. The former and latter equations in Equation (29)
are essentially identical and both are the dispersion equation governing the dispersion characteristics
of elastic waves along the thickness direction in the considered periodically laminated piezoelectric
structures. Note that the other quantities related to the dispersion characteristics of elastic waves, such
as the phase velocity and the wavelength are represented as c = ω/q, λ = 2π/q, respectively. If the
frequency ω is specified, by numerically solving the former equation in Equation (29) through the direct
eigenvalue operation, the frequency-related dispersion curves including the eigenvalue, wavenumber,
wavelength and phase velocity spectra, can all be obtained. If anyone among ω, q (or λ), and c is
specified, the other two can be obtained by solving the latter equation in Equation (29) numerically to
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provide the comprehensive dispersion curves including the frequency-related, wavenumber-related,
wavelength-related, and phase velocity-related dispersion curves. In the following numerical examples,
only the frequency-related dispersion curves are calculated as illustration.

5. Numerical Examples

Consider a periodically laminated piezoelectric structure with the unit cell consisting of
Glass-Brass-(PZT-5H)-Brass multilayers, where the PZT-5H layer, the Brass layers and the Glass
layer serve as the piezoelectric layer, the electrodes, and the inserted elastic layer, respectively. Both
the PZT-5H and the Glass layers always have the thickness of 10 mm in all the following calculations,
while the Brass layers serving as electrodes have the thickness of 0.025 mm unless specified otherwise.
Note that this value of the electrode thickness is taken from the experiment specimen in Ref. [55]. The
material parameters [43,44,55,56] of these constituent layers are listed in Table 3, in which two kinds
of poling and arranging pattern of PZT-5H are provided, i.e., (p ‖ z, m⊥y) and (p ‖ x, m⊥z) cases
denoting by superscripts “1” and “2”, respectively, with p representing the poling axis. It is known
from the discussion in Section 3.2 that the three mechanical waves including one primary (P-) mode
and two shear (S-) modes are decoupled each other, because the PZT-5H belongs to crystal class 6mm
that can be seen as a special case of mm2 class, and the isotropic Glass and Brass belong to special case
of mmm crystal class [56].

Table 3. Material parameters of the constituent layers in unit cell.

Materials PZT-5H1

(p ‖ z , m⊥y)

PZT-5H2

(p ‖ x , m⊥z)
Glass Brass

Elastic constants
(×1010 N ·m−2)

c11 12.600 7.421 8.334 16.246
c22 12.600 12.600 8.334 16.246
c33 7.421 12.600 8.334 16.246
c12 7.950 8.410 2.300 8.258
c13 8.410 8.410 2.300 8.258
c23 8.410 7.950 2.300 8.258
c44 2.300 2.325 3.017 3.994
c55 2.300 2.300 3.017 3.994
c66 2.325 2.300 3.017 3.994

Piezoelectric constants
(C ·m−2)

e15 17.000 e26 17.000
eαβ = 0.000
(α = 1, 2, 3,

β = 1, · · · , 6)

eαβ = 0.000
(α = 1, 2, 3,

β = 1, · · · , 6)

e24 17.000 e35 17.000
e31 −6.500 e11 19.200
e32 −6.500 e12 −6.500
e33 19.200 e13 −6.500

Dielectric
constants

(×10−10 F ·m−1)

β11 150.518 83.300 0.354 0.000
β22 150.518 150.518 0.354 0.000
β33 83.300 150.518 0.354 0.000

Material density
(kg ·m−3)

ρ 7500 7500 2540 8320

In the following, we calculate various frequency-related dispersion curves in two cases of PZT-5H
patterns with considering four kinds of electrical boundaries including the electric-open, applied
electric capacitance, electric-short and applied feedback voltage conditions. According to the discussion
in Section 3.2, in the case that PZT-5H1 is used, the electrical boundary only affects the P-wave
propagation, while in the case that PZT-5H2 is used only one S-wave is influenced by the electrical
boundary. Therefore, we focus mainly on the dispersion of P- and S-waves when PZT-5H1 and PZT-5H2

are used in the model, respectively, as illustrated respectively in the following Sections 5.1 and 5.2.
Moreover, for the convenience of describing the resulting dispersion curves in these sections, the
dimensionless quantities are adopted such as the dimensionless frequency ωH/(πc), the dimensionless
wavenumber qH/π, the dimensionless wavelength λ/H, and the dimensionless phase velocity c/c,
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where c =
√
(c55)PZT−5H/(ρ)PZT−5H is the speed of pure shear wave in PZT-5H material with the

stiffness constant (c55)PZT−5H and the material density (ρ)PZT−5H .

5.1. Tuning the Dispersion Characteristics of P-Wave Depend on the Electrical Boundary

In this section, PZT-5H1 is used in the exemplified unit cell. Since under this circumstance only
the P-wave is affected by the electrical boundary, then we mainly focus on the P-wave propagation
here in this section.

5.1.1. Validation of the Proposed Formulation for P-Wave Dependent on the Electric Field

As the mechanical effect of the Brass electrodes is neglected by vanishing the electrode thickness,
the frequency-wavenumber dispersion curves are first computed for the exemplified periodically
laminated piezoelectric structure in cases of the electric-open and the electric-short boundary conditions
by our proposed formulation. To validate our obtained results depicted in Figure 3, we compare
these results corresponding to the electric-open and the electric-short conditions with the results by
Kutsenko et al. [44] labeled as C/S = 0, and C/S = ∞, respectively, because C/S = 0 and C/S = ∞
are essentially identical to the electric-open and the electric-short conditions, respectively. Note
that Kutsenko et al. [44] considered only the longitudinal (=primary) wave, while by the proposed
formulation we can get the wavenumber spectra of both P- and S-waves. Furthermore, in the case
of the electric-open boundary, the wavenumber spectra of both P- and S-waves are also computed
by the explicit dispersion relation from Galich et al. [20]. The piezoelectric effect of PZT-5H1 on the
wavenumber spectra of P-wave can be included by adopting the equivalent stiffness (c33 + e2

33/β33)

rather than the alone elastic stiffness c33 in the explicit dispersion relation. All these comparisons are
demonstrated in Figure 3a. Without considering the piezoelectricity in the case of the electric-open
boundary, the wavenumber spectra of decoupled P- and S-waves are also calculated both by our
formulation and by the explicit dispersion relation from Galich et al. [20], which are provided and
compared in Figure 3b.

From Figure 3a, it is noticed that the present wavenumber spectra of P-wave by the proposed
formulation here are well agreed with the counterpart spectra by Kutsenko et al. [44] in both the
electric-open (C/S = 0) and the electric-short (C/S = ∞) conditions. This proves that our proposed
method works well for P-wave analysis in various electrical boundaries. In addition, the spectra of
the other mode with a lower and narrower first bandgap provided by our method, which are not
appeared in Ref. [44] by Kutsenko et al., are those dispersion curves of the two identical S-mode related
to c44 = c55. For the electric-open boundary, the coincidence between the wavenumber spectra of
both P-wave and S-wave by the proposed method and those counterparts by the explicit dispersion
relation from Galich et al. [20] further verifies that our proposed method gives accurate dispersion
characteristics for both P- and S-waves. In addition, the spectra of S-wave in cases of the electric-open
and the electric-short boundaries obtained by the proposed method are overlapped each other and
are also overlapped with those of S-wave in the case of the electric-open boundary by the explicit
dispersion relation from Galich et al. [20]. These consistencies validate that the S-wave is independent
on both the piezoelectricity and the electrical boundary. Figure 3b indicates that our proposed method
are also reliable to compute the dispersion characteristics of both P- and S-waves as the piezoelectricity
of the constituent piezoelectric layers is neglected, i.e., as the piezoelectric coefficients are specified
as zero.
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Figure 3. Comparisons of the wavenumber spectra of the exemplified periodic multilayers computed
by the proposed method, by Kutsenko et al. [44], and by the explicit dispersion relation from
Galich et al. [20], (a) in cases of the electric-open and the electric-short boundaries with reckoning on
piezoelectricity; (b) in the case of the electric-open condition without considering piezoelectricity.
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5.1.2. Influence of the Electrode Thickness on Dispersion of P-Wave Dependent on the Electric Field

In the existing references [42–45] on the similar topic as this paper, the mechanical effects of
the electrodes are all neglected by vanishing their thickness, as also adopted in the above section.
However, the influence of this assumption on the resulting dispersion characteristics is not known as
yet. Thus, here we study the effect of the electrode thickness on the wavenumber spectra in all the
four cases of electrical boundaries. Three values of the Brass electrode thickness are taken separately,
i.e., 0.025 mm, 0.25 mm, 2.5 mm, besides the null thickness 0 mm. Figure 4a–d show the comparisons
of the wavenumber spectra corresponding to four values of the electrode thickness in cases of the
electric-open, applied electric capacitance, electric-short and applied feedback voltage boundaries.
Note that the capacitance per unit area C/S = 1.02 pF/mm2 in the applied electric capacitance
condition and the gain coefficient Kg = 5.0× 108 V/m in the applied feedback voltage condition are
both specified casually.

From Figure 4, it is seen that the electrode thickness has the same influence rule on the dispersion
of all waves, including the P-wave dependent on the electric field and the two S-waves, in cases of
four electrical boundaries, which are summarized as follows:

1. The higher mode spectra are more sensitive to the electrode thickness. As the electrode thickness
is less than certain ratio to the thickness of associated piezoelectric layer, say 0.25/10 = 1/40,
the first two wavenumber spectra of all waves are nearly unaffected by the electrode thickness.
As the electrode thickness reaches to 1/40 of the thickness of piezoelectric layer, the 3rd and
higher order spectra begin to be influenced by the electrode thickness. As the thickness ratio
between electrode and host piezoelectric layer reaches to 2.5/10 = 1/4, all modes of spectra are
obviously influenced.

2. When the electrode thickness shows effect on the wavenumber spectra, it has the same effect
on all waves in that frequency range, since the alteration of the electrode thickness essentially
equals to changing the unit-cell configuration. With the increasing of the electrode thickness,
the wavenumber spectra deform to lower frequency side, so that the central frequencies of
bandgaps are lowered. However, the widths of bandgaps are not consistently changed with the
electrode thickness.

3. As the electrode thickness is less than 0.025/10 = 1/400, the electrode thickness does not affect
the dispersion characteristics of all waves.

In summary, as long as the electrode thickness is bigger than certain degree, say 1/40 of the
thickness of host piezoelectric layer, the mechanical effect of electrodes is not negligible. In calculations
of the following two subsections, the electrode thickness is taken as real value 0.025 mm, although
may be negligible. This does not bring any more difficulties in our proposed method anyway.

5.1.3. Influence of Electrical Boundaries on P-Waves Dependent on the Electric Field

Consider influence of four electrical boundaries on the dispersion characteristics of P-wave
dependent on the electric field. This task is achieved by studying effects of the applied capacitance
C/S condition in cases of 0.0 pF/mm2, 0.1 pF/mm2, 1.0 pF/mm2, 10 pF/mm2, 100 pF/mm2,
−0.75 pF/mm2, −0.95 pF/mm2, −1.15 pF/mm2, −1.35 pF/mm2 and of the applied feedback
control boundary with gain coefficient Kg specified as 0.0 V/m, 1.0 × 109 V/m, 2.0 × 109 V/m,
3.0× 109 V/m, 4.0× 109 V/m, 5.0× 108 V/m, 5.0× 109 V/m, 5.0× 1010 V/m, 5.0× 1011 V/m on the
wavenumber-frequency dispersion curves adopting our proposed method, since the electric-open
and the electric-short conditions correspond to C/S = 0 and C/S = ∞⇔ Kg = 0 , respectively. The
calculated results of all waves are depicted in Figure 5, where the spectra corresponding to the
electric-open and the electric-short conditions are used as the reference in all subfigures.
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Figure 4. The effect of Brass electrode thickness on the wavenumber spectra of periodic
Glass-Brass-(PZT-5H1)-Brass multilayers in cases of four electrical boundaries: (a) Electric-open
condition; (b) Applied C/S = 1.02 pF/mm2 condition; (c) Electric-short condition; (d) Applied
Kg = 5.0× 108 V/m condition.
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Figure 5. The effects of the electrical boundaries on the wavenumber spectra of elastic waves in periodic
Glass-Brass-(PZT-5H1)-Brass multilayers: (a) Applied positive capacitance; (b) Applied negative
capacitance; (c,d) Applied feedback control.

All subfigures in Figure 5 display that the resulting wavenumber spectra are associated with two
waves. One is not affected by the electrical boundaries at all and the other is obviously influenced
by the four electrical conditions. This actually verifies the discussion in Section 3.2 that the three
waves are decoupled and only one wave is dependent on the electric field. Inferred from the spectrum
slope which expressing the phase velocity and also the discussion in Section 3.2, it is known that the
spectra irrelative to the electrical boundaries represent the dispersion of two S-waves with identical
properties, which are polarized along X- and Y-axes, respectively. The spectra apparently dependent



Crystals 2018, 8, 351 18 of 32

on the electrical boundaries express the dispersion characteristics of P-wave. From Figure 5a,b, we can
summarize the influence rule of the applied capacitance on the wavenumber spectra of the P-wave
dependent on the electric field as follows:

1. Some orders of phase constant spectra are sensitive to the applied capacitance, like the second
spectra, but others are not, like the first and the third spectra.

2. As the applied capacitance C/S increases from 0 to positive values, the wavenumber spectra
change gradually from those of the electric-open condition to those of the electric-short condition
as expected, i.e., these phase constant spectra deform to the lower frequency side. Thus, the central
frequencies of most bandgaps and passbands decrease with the enlarging of the capacitance.
However, the bandgap widths may be either narrower like the first stopband in Figure 5a or
wider like the second stopband there.

3. As the applied capacitance C/S decreases from 0 to negative values, the wavenumber spectra of
the P-wave do not follow the opposite rule of positive capacitance and do show very complex
alterations that seems can not be described by a uniform rule. Nevertheless, the phenomena
that some attenuation constant spectra have pole at certain frequency in bandgap and the
corresponding phase constant jumps from 0 to π, found by Kutsenko et al. [44] in studying the
piezoelectric medium with periodically applied negative capacitance, are also discerned here as
the capacitance is taken as −0.95 pF/mm2 and −1.15 pF/mm2. Note that Kutsenko et al. [44]
did provide the formula to determine the negative capacitance that leads to this unusual feature
in wavenumber spectra for piezoelectric medium with periodically applied capacitance. But here
we can not provide a similar formula for this purpose because of the complexity of our model, in
which the inserted elastic layers and the mechanical effect of the electrodes have been further
considered on the basis of the model in Kutsenko et al. [44].

The influence rule of the applied feedback control on the wavenumber spectra of the P-wave
dependent on the electric field can be summarized from Figure 5c,d as:

1. Some orders of the phase constant spectra are sensitive to the applied feedback control, like the
first and second spectra in Figure 5c, but others are not, like the third spectrum there. Nevertheless,
Figure 5d shows that as long as the gain coefficient Kg is big enough, even the third spectrum
alters. The phase constant spectra that are insensitive to the applied feedback control may not
be definitely coincident with the spectra insensitive to the applied capacitance, like the first
spectrum. The spectra that are insensitive to both conditions may correspond to wave modes
mainly dominated by the mechanical effect.

2. As the gain coefficient Kg increases from 0, the wavenumber spectra change from those of the
electric-short condition, which can be expected since Kg = 0 corresponds to the electric-short
condition, to the lower frequency side. Thus, the central frequencies of most bandgaps and
passbands decrease with the enlarging of Kg. However, the bandgap widths may be either wider
like the second stopband in Figure 5c or change without coherence like the first stopband there.

3. As the gain coefficient Kg reaches 4.0× 109 V/m or bigger, the phenomena that some attenuation
constant spectra have pole at certain frequency in bandgap and the corresponding phase constant
jumps from 0 to π, can also be discerned. This means that we can use the applied feedback control
boundary to realize the same effect resulting from the negative capacitance, like the unusual
dispersion feature emphasized here. But neither can we provide a formula to determine Kg for
achieving this unusual dispersion phenomenon because of the complexity of our model.

If the electrical boundary influence on the wavenumber spectra is considered globally, it can be
concluded from the comparisons of Figure 5a–d that the spectra of the electric-short condition play a
benchmark role. The wavenumber spectra of the electric-short condition lie on the lower-frequency
side of the spectra of the applied positive and zero (identical to the electric-open) capacitance C/S
condition, and are also located on the higher-frequency side of the spectra of the applied feedback
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control Kg condition. Consequently, in the following subsection we take the electric-short condition as
a representative to illustrate the general properties of the frequency-related dispersion curves of the
P-wave dependent on the electric field in periodic piezoelectric composites.

5.1.4. Properties of Frequency-Related Dispersion Curves of P-Wave Dependent on the Electric Field

In the case of the electric-short boundary, comprehensive frequency-related dispersion curves of all
waves in periodic Glass-Brass-(PZT-5H1)-Brass composites are computed and given in Figure 6, which
contain the eigenvalue amplitude (|µ|) spectra, the wavenumber (qH/π) spectra, the wavelength (λ/H)
spectra, and the phase velocity (c/c) spectra shown in subfigures (a) to (d), respectively. Please notice
that only the spectra of the P-wave are relative to the electrical boundary while those of two S-waves
irrelative to the electrical boundary have exactly the same dispersion curves but different polarizations.Crystals 2018, 8, 351 20 of 34 
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Figure 6. The comprehensive frequency-related dispersion curves of elastic waves in periodic
Glass-Brass-(PZT-5H1)-Brass multilayers: (a) The eigenvalue amplitude |µ| spectra; (b) The
wavenumber spectra; (c) The wavelength spectra; (d) The phase velocity spectra.

The above frequency-related dispersion curves in Figure 6 indicate the dispersion characteristics
of two pure mode waves. Each wave has the same general dispersion features as the pure longitudinal
wave has, which had been discussed in Ref. [57] for periodic elastic rods and in Ref. [58] for periodic
piezoelectric rods with various electrical boundaries. For example: the bandgaps are bounded by
frequencies corresponding to 0 and π phases; The passbands and stopbands appear alternately; The
frequency-wavelength curves approach to infinite wavelength at bounding frequencies, so do the
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frequency-phase velocity curves except the two spectra starting from 0 frequency. As a supplement, it
is found that the eigenvalue amplitude |µ| appears in reciprocal pairs at any frequency in bandgap.

5.2. Tuning the Dispersion Characteristics of S-Wave Depend on the Electrical Boundary

In this section, PZT-5H2 is used in the exemplified periodically laminated piezoelectric structure
as the piezoelectric layer. Since under this circumstance only one S-wave is affected by the electrical
boundary, then we mainly focus on the S-wave propagation here in this section.

5.2.1. Validation of the Proposed Method for S-Wave Dependent on the Electric Field

In order to validate our method in the case that one S-wave is dependent on the electric field
and the other S-wave and the P-wave is not, we compute by our method the frequency-wavenumber
dispersion curve of the exemplified periodic multilayers with the electric-open boundary as the
electrode thickness is omitted. The results are depicted in Figure 7, which are further compared to the
counterpart results obtained by the explicit dispersion relation from Galich et al. [20]. The effect of
the piezoelectricity of PZT-5H2 on the wavenumber spectra of the S-wave dependent on the electric
field has been considered as the equivalent stiffness (c55 + e2

35/β33) is used in the explicit dispersion
relation. Note that the degenerated results without considering the piezoelectricity of PZT-5H2 by the
two methods have already been provided in Figure 3b.
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Figure 7. Comparisons of the wavenumber spectra of the exemplified periodic Glass-(PZT-5H2)
multilayers in the case of the electric-open boundary computed by the proposed method and by the
explicit dispersion relation from Galich et al. [20], as the piezoelectricity of PZT-5H2 are considered.

Figure 7 shows that the computed wavenumber spectra of all the three waves by the proposed
method are completely agreed with the counterpart spectra by the explicit dispersion relation from
Galich et al. [20]. This agreement verifies that our proposed method works also well for the analysis
of dispersion characteristics as one S-wave is dependent on the electric field. It can also be noticed
from Figure 7 and its comparison with Figure 3b that the piezoelectricity of PZT-5H2 strengthens the
manifesting stiffness on the basis of the elastic stiffness associated with one S-wave. This fact causes
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the increasing of the central frequency and the broadening of the width of the S-wave bandgap. The
higher the frequency is, the more obvious the alteration is. The other S-wave and the P-wave are
invariant with the piezoelectricity of PZT-5H2, and their independence on the electrical boundaries
will be illustrated in the following two subsections.

5.2.2. Influence of the Electrode Thickness on Dispersion of S-Wave Dependent on the Electric Field

By taking the electrode thickness as 0 mm, 0.025 mm, 0.25 mm, and 2.5 mm, respectively, we study
here the effect of the electrode thickness on the wavenumber spectra in all four electrical boundaries as
PZT-5H2 are used in the unit cell. Figure 8 provides wavenumber spectra associated with all electrode
thickness in cases of four electrical boundaries.
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Figure 8. The effect of Brass electrode thickness on the wavenumber spectra of periodic
Glass-Brass-(PZT-5H2)-Brass multilayers in cases of four electrical boundaries: (a) Electric-open
condition; (b) Applied C/S = 1.02 pF/mm2 condition; (c) Electric-short condition; (d) Applied
Kg = 5.0× 108 V/m condition.
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Figure 8 demonstrates the same influence rule of the electrode thickness as Figure 4 does. All
waves, including the S-wave dependent on the electric field, the other S-wave irrelative to the electric
field, and the P-wave, in cases of all four electrical boundaries, have the same connection with the
electrode thickness, which have been stated in Section 5.1.2. Again, although the mechanical effect of
electrodes need to be considered as long as the electrode thickness reaches nearly to 1/40 of the host
piezoelectric layer, in calculations of the following two subsections the electrode thickness is taken as
real value 0.025 mm for accuracy.

5.2.3. Influence of Electrical Boundaries on S-Wave Dependent on the Electric Field

In order to know how the band properties of the S-wave dependent on the electric field are tuned
by the electrical boundaries, here we study by our proposed method the influence of four electrical
boundaries on the wavenumber-frequency dispersion curves of all waves in the exemplified periodic
Glass-Brass-(PZT-5H2)-Brass multilayers. Since the electric-open and the electric-short conditions
correspond to C/S = 0 and C/S = ∞⇔ Kg = 0 , respectively, we apply the capacitance C/S condition
in cases of 0.0 pF/mm2, 0.1 pF/mm2, 1.0 pF/mm2, 10 pF/mm2, 100 pF/mm2, −0.75 pF/mm2,
−0.95 pF/mm2, −1.15 pF/mm2, −1.35 pF/mm2 or apply the feedback control boundary with the
gain coefficient Kg being 0.0 V/m, 5.0× 105 V/m, 5.0× 108 V/m, 5.0× 1011 V/m, 5.0× 1014 V/m on
the electrodes to tune the wavenumber spectra. The calculated results are depicted in Figure 9, where
the spectra corresponding to the electric-open and the electric-short conditions are again used as the
reference in all subfigures.

Crystals 2018, 8, 351 24 of 34 

 

(c) (d) 

Figure 8. The effect of Brass electrode thickness on the wavenumber spectra of periodic 

Glass-Brass-(PZT-5H2)-Brass multilayers in cases of four electrical boundaries: (a) Electric-open 

condition; (b) Applied 21.02 pF/mmC S   condition; (c) Electric-short condition; (d) Applied 
85.0 10  V/mgK    condition.  

Figure 8 demonstrates the same influence rule of the electrode thickness as Figure 4 does. All 

waves, including the S-wave dependent on the electric field, the other S-wave irrelative to the 

electric field, and the P-wave, in cases of all four electrical boundaries, have the same connection 

with the electrode thickness, which have been stated in Section 5.1.2. Again, although the mechanical 

effect of electrodes need to be considered as long as the electrode thickness reaches nearly to 1/ 40  of 

the host piezoelectric layer, in calculations of the following two subsections the electrode thickness is 

taken as real value 0.025 mm  for accuracy.  

5.2.3. Influence of Electrical Boundaries on S-Wave Dependent on the Electric Field 

In order to know how the band properties of the S-wave dependent on the electric field are 

tuned by the electrical boundaries, here we study by our proposed method the influence of four 

electrical boundaries on the wavenumber-frequency dispersion curves of all waves in the 

exemplified periodic Glass-Brass-(PZT-5H2)-Brass multilayers. Since the electric-open and the 

electric-short conditions correspond to 0C S   and 0gC S K    , respectively, we apply the 

capacitance C S  condition in cases of 20.0 pF/mm , 20.1 pF/mm , 21.0 pF/mm , 210 pF/mm , 2100 pF/mm , 
20.75 pF/mm , 20.95 pF/mm , 21.15 pF/mm , 21.35 pF/mm  or apply the feedback control boundary 

with the gain coefficient gK  being 0.0 V/m , 55.0 10  V/m , 85.0 10  V/m , 115.0 10  V/m , 

145.0 10  V/m  on the electrodes to tune the wavenumber spectra. The calculated results are depicted 

in Figure 9, where the spectra corresponding to the electric-open and the electric-short conditions are 

again used as the reference in all subfigures. 

  
(a) (b) 

20.1pF mmC S  21.0 pF mmC S 

210 pF mmC S  2100 pF mmC S 

Electric-open ( 0)C S  Electric-short ( )C S  

0

2

4

6

8

-1.0 -0.5 0.0 0.5 1.0

D
im

en
si

o
nl

es
s 

fr
eq

ue
nc

y

H c 

Real wavenumber  q RH /πImaginary wavenumber  q IH /π

0

2

4

6

8

-1.0 -0.5 0.0 0.5 1.0

D
im

en
si

o
n
le

ss
 f

re
qu

en
cy

H c 

2
0.95pF mmC S  

2
1.15pF mmC S  

2
0.75pF mmC S  

2
1.35pF mmC S  

Electric-open ( 0)C S  Electric-short ( )C S  

Real wavenumber  q R H /πImaginary wavenumber  q I H /π

Figure 9. Cont.



Crystals 2018, 8, 351 24 of 32

Crystals 2018, 8, 351 25 of 34 

 

 
(c) 

Figure 9. The effects of the electrical boundaries on the wavenumber spectra of elastic waves in 

periodic Glass-Brass-(PZT-5H2)-Brass multilayers: (a) Applied positive capacitance; (b) Applied 

negative capacitance; (c) Applied feedback control. 

Figure 9(a–c) indicate that the obtained wavenumber spectra correspond to three waves. The 

one with the smallest speed and the one with the biggest speed are both not affected by the electrical 

boundaries at all. The other with the middle speed is influenced by the four electrical conditions, but 

not very obviously. This actually verifies the discussion in Section 3.2 that the three waves are 

decoupled and only one wave is dependent on the electric field. The spectra dependent on the 

electrical boundaries represent the dispersion of the X  polarized S-wave, whose speed is slightly 

bigger than the Y  polarized S-wave due to the piezoelectricity of PZT-5H2 and is distinctly smaller 

than the P-wave. The applied positive capacitance influences the S-wave relative to the electric field 

via the same rule as it affects the P-wave dependent on the electric field in Section 5.1.3, as can be 

illustrated by Figure 9(a), although not very obviously since the spectra of the electric-open 

condition are very near to those of the electric-short condition. The rule has been stated in detail in 

Section 5.1.3, and it will not be repeated here. However, the applied negative capacitance and the 

applied feedback control nearly do not affect the wavenumber spectra of the S-wave relative to the 

electric field. The spectra corresponding to the various negative capacitance C S  and gain 

coefficient gK  all overlap on the spectra associated with the electric-short condition, which also 

denotes that the spectra of the electric-short condition play a benchmark role. The reason for this 

may be the weak coupling between the X  displacement and the electric field, since the shear strain 

rather than the normal strain is the modulation factor when 35 0e   is the involved piezoelectric 

coefficient. Considering the above fact, in the following subsection we take the electric-short 

condition as a representative to illustrate the general properties of the frequency-related dispersion 

curves of the S-wave dependent on the electric field in periodic piezoelectric composites. 

5.2.4. Properties of Frequency-Related Dispersion Curves of S-Waves Dependent on the Electric 

Field 

The comprehensive frequency-related dispersion curves of all waves in periodic 

Glass-Brass-(PZT-5H2)-Brass composites are computed and depicted in Figure 10 for the 

electric-short boundary as a representative, since those in the case of other electrical boundaries 

exhibit similar dispersion properties. The subfigures 10(a) to 10(d) exhibit the eigenvalue amplitude 

0

2

4

6

8

-1.0 -0.5 0.0 0.5 1.0

D
im

en
si

on
le

ss
 f

re
qu

en
cy

H c 

Real wavenumber  q RH /πImaginary wavenumber  q IH /π

55.0 10 V mgK  

115.0 10 V mgK  

Electric-open
85.0 10 V mgK  

145.0 10 V mgK  

( 0)gK Electric-short

Figure 9. The effects of the electrical boundaries on the wavenumber spectra of elastic waves in periodic
Glass-Brass-(PZT-5H2)-Brass multilayers: (a) Applied positive capacitance; (b) Applied negative
capacitance; (c) Applied feedback control.

Figure 9a–c indicate that the obtained wavenumber spectra correspond to three waves. The one
with the smallest speed and the one with the biggest speed are both not affected by the electrical
boundaries at all. The other with the middle speed is influenced by the four electrical conditions,
but not very obviously. This actually verifies the discussion in Section 3.2 that the three waves are
decoupled and only one wave is dependent on the electric field. The spectra dependent on the electrical
boundaries represent the dispersion of the X−polarized S-wave, whose speed is slightly bigger than
the Y−polarized S-wave due to the piezoelectricity of PZT-5H2 and is distinctly smaller than the
P-wave. The applied positive capacitance influences the S-wave relative to the electric field via the
same rule as it affects the P-wave dependent on the electric field in Section 5.1.3, as can be illustrated
by Figure 9a, although not very obviously since the spectra of the electric-open condition are very
near to those of the electric-short condition. The rule has been stated in detail in Section 5.1.3, and
it will not be repeated here. However, the applied negative capacitance and the applied feedback
control nearly do not affect the wavenumber spectra of the S-wave relative to the electric field. The
spectra corresponding to the various negative capacitance C/S and gain coefficient Kg all overlap
on the spectra associated with the electric-short condition, which also denotes that the spectra of the
electric-short condition play a benchmark role. The reason for this may be the weak coupling between
the X−displacement and the electric field, since the shear strain rather than the normal strain is the
modulation factor when e35 6= 0 is the involved piezoelectric coefficient. Considering the above fact,
in the following subsection we take the electric-short condition as a representative to illustrate the
general properties of the frequency-related dispersion curves of the S-wave dependent on the electric
field in periodic piezoelectric composites.

5.2.4. Properties of Frequency-Related Dispersion Curves of S-Waves Dependent on the Electric Field

The comprehensive frequency-related dispersion curves of all waves in periodic
Glass-Brass-(PZT-5H2)-Brass composites are computed and depicted in Figure 10 for the
electric-short boundary as a representative, since those in the case of other electrical boundaries
exhibit similar dispersion properties. The Figure 10a–d exhibit the eigenvalue amplitude (|µ|)
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spectra, the wavenumber (qH/π) spectra, the wavelength (λ/H) spectra, the phase velocity (c/c)
spectra, respectively. Note that only the spectra of the X−polarized S-wave are relative to the
electrical boundary, while those of the Y−polarized S-wave and P-wave are independent on the
electrical boundary.

It can be seen from the frequency-related dispersion curves in Figure 10 that these spectra
represent the dispersion characteristics of three pure mode waves, including one S-wave dependent
on the electric field, and the other S-wave as well as the P-wave both irrelative to the electric field.
For each wave, especially the S-wave dependent on the electric field that we are concerning, the
frequency-related dispersion curves satisfy the general features of pure wave dispersion in periodic
structures, as already had been discussed in Ref. [57] for periodic elastic rods and in Ref. [58] for
periodic piezoelectric rods with various electrical boundaries. The eigenvalue amplitude |µ| spectra
also appear in reciprocal pairs, which is a supplement feature.
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Figure 10. The comprehensive frequency-related dispersion curves of the elastic waves in
periodic Glass-Brass-(PZT-5H2)-Brass multilayers: (a) The eigenvalue amplitude |µ| spectra; (b) The
wavenumber spectra; (c) The wavelength spectra; (d) The phase velocity spectra.

6. Conclusions

By combining the state space formalism, the classical transfer matrix method, and the
Floquet-Bloch principle, this paper proposes a general formulation for the analysis of dispersion
characteristics of elastic waves propagating along the thickness direction in general, periodically
laminated piezoelectric composites with unit cells consisting of orthotropic piezoelectric and
elastic layers. Four electrical boundaries including the electric-open, applied electric capacitance,
electric-short, and applied feedback control conditions are considered to apply or switch on the
piezoelectric layers via electrode layers, to tune the dispersion characteristics of the wave dependent
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on the electric field. After the proposed method has been validated on the basis of numerical examples
through comparisons with existing results or other methods like the explicit dispersion relation for
simple configuration, it is used to study the influence of electrode thickness on frequency-wavenumber
dispersion curves. The effect of four electrical boundaries on wavenumber spectra is also investigated
using numerical examples, so that the feasibility of tuning the decoupled P- and S-waves by applying
and switching electrical conditions is obtained. Numerical examples are also provided to summarize
the general properties of the frequency-related dispersion curves of decoupled P- and S-waves. From
these analyses, we can draw the following conclusions:

(1) In the theoretical derivation of the analysis method, this paper is limited to elastic waves along
the thickness direction and to general periodic piezoelectric composites of orthotropic materials.
It is found that in this case, the three elastic waves are all decoupled into one primary (P-) wave
and two shear (S-) waves with perpendicular polarizations, and only one wave among them is
influenced by the electric field. The situation with elastic waves propagating obliquely to the
thickness direction or of general, periodically laminated piezoelectric composites with unit cells
consisting of arbitrarily anisotropic constituent layers is under investigation.

(2) The mechanical effect of electrodes must be considered in the modeling, as the electrode thickness
surpasses 1/40 of the thickness of host piezoelectric layer. In this case, the electrode thickness
can also be used to adjust passively the band structures of the periodic piezoelectric composites.

(3) The applying and switching electrical boundaries among the electric-open, applied electric
capacitance, electric-short, and applied feedback control conditions are very effective for actively
modulating the dispersion of the P-wave that is dependent on the electric field. In particular,
the unusual dispersion feature, which means that at some frequencies in the bandgaps, the
attenuation constant spectrum has a pole and the corresponding phase constant jumps from 0
to π, which results from the applied negative capacitance condition in other literature, can also
be realized by the applied feedback control boundary. However, the applying and switching of
the four electrical boundaries may be inefficient or even invalid for modulating the dispersion
of the S-wave that is dependent on the electric field if the electromechanical coupling effect of
the piezoelectric materials is not utilized properly. The dispersion curves associated with the
electric-short condition play a benchmark role for designing the active control scheme.

The findings of this paper may be applied to guide the design of elastic wave devices.
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Appendix A. The Matrices Composed of Stiffness and Dielectric Constants

For orthotropic materials of crystal classes mm2, 222, and mmm,

C =



c11 c12 c13 0 0 0
c22 c23 0 0 0

c33 0 0 0
c44 0 0

sym c55 0
c66


, Cp1 =



0 0 c13

0 0 c23

0 0 c33

0 c44 0
c55 0 0
0 0 0


, Cp2 =

 c55 0 0
0 c44 0
0 0 c33

. (A1)
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β =< β11, β22, β33 >, βp1 = [0, 0, β33]
T. (A2)

in which “< · >” indicates diagonal matrix here and after.

Appendix B. The Matrices Composed of Piezoelectric Constants

The matrices composed of piezoelectric constants involved in this paper are expressed differently
for orthotropic crystal classes mm2, 222, and mmm. For crystal class mm2 with piezoelectricity as the
m plane perpendicular to z, x, and y axes, these matrices are written respectively as

e =

 e11 e12 e13 0 0 0
0 0 0 0 0 e26

0 0 0 0 e35 0

, ep1 = [0, 0, 0, 0, e35, 0]T, ep2 =

 0 0 e13

0 0 0
e35 0 0

, ep3 = [e35, 0, 0], (m⊥z); (A3)

e =

 0 0 0 0 0 e16

e21 e22 e23 0 0 0
0 0 0 e34 0 0

, ep1 = [0, 0, 0, e34, 0, 0]T, ep2 =

 0 0 0
0 0 e23

0 e34 0

, ep3 = [0, e34, 0], (m⊥x); (A4)

e =

 0 0 0 0 e15 0
0 0 0 e24 0 0

e31 e32 e33 0 0 0

, ep1 = [e31, e32, e33, 0, 0, 0]T, ep2 =

 e15 0 0
0 e24 0
0 0 e33

, ep3 = [0, 0, e33], (m⊥y). (A5)

For crystal class 222 with piezoelectricity as the 2 axis parallel to z, x, and y axes, the matrices
composed of piezoelectric constants involved in this paper are written uniformly as

e =

 0 0 0 e14 0 0
0 0 0 0 e25 0
0 0 0 0 0 e36

, ep1 = [0, 0, 0, 0, 0, e36]
T, ep2 =

 0 e14 0
e25 0 0
0 0 0

, ep3 = [0, 0, 0]. (A6)

For crystal class mmm that does not have piezoelectricity, these are all zero matrices.

Appendix C. The Components of Matrices G−1 and G−1eT
p3R

The matrix G−1 is expressed differently for orthotropic crystal classes mm2, 222, and mmm. For
crystal class mm2 with piezoelectricity as the m plane perpendicular to z, x, and y axes, it is written
respectively as

G−1 =< 1/(c55 + e2
35/β33), 1/c44, 1/c33 >, (m⊥z); (A7)

G−1 =< 1/c55, 1/(c44 + e2
34/β33), 1/c33 >, (m⊥x); (A8)

G−1 =< 1/c55, 1/c44, 1/(c33 + e2
33/β33) >, (m⊥y). (A9)

For crystal class 222 with piezoelectricity as the 2 axis parallel to z, x, and y axes and crystal class
mmm without piezoelectricity, G−1 is written uniformly as

G−1 =< 1/c55, 1/c44, 1/c33 > . (A10)

The matrix G−1eT
p3R is related to both the orthotropic crystal classes and the electrical boundaries.

For crystal class mm2 with piezoelectricity as the m plane perpendicular to z, x, and y axes, G−1eT
p3R

is provided in Table A1 for the electric-open, applied electric capacitance, electric-short, and applied
feedback voltage conditions, respectively. For crystal class 222 with piezoelectricity, G−1eT

p3R is zero
matrix in cases of all four electrical boundaries, as also shown in Table A1, since ep3 is zero row vector.
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Table A1. The components of matrix G−1eT
p3R for orthotropic layer of crystal classes mm2, and 222 with various electrical boundaries.

Electrical Boundaries
mm2

222
m⊥z m⊥x m⊥y

Electric-open 03×3 03×3 03×3 03×3

Applied capacitance

 e2
35

(c55 β33+e2
35)(β33S/C+h) 0 0

0 0 0
0 0 0


 0 0 0

0 e2
34

(c44 β33+e2
34)(β33S/C+h) 0

0 0 0


 0 0 0

0 0 0

0 0 e2
33

(c33 β33+e2
33)(β33S/C+h)

 03×3

Electric-short

 e2
35

(c55 β33+e2
35)h

0 0

0 0 0
0 0 0


 0 0 0

0 e2
34

(c44 β33+e2
34)h

0

0 0 0


 0 0 0

0 0 0

0 0 e2
33

(c33 β33+e2
33)h

 03×3

Applied feedback control

 e2
35

(c55 β33+e2
35)h

0 e35 β33Kg

(c55 β33+e2
35)h

0 0 0
0 0 0


 0 0 0

0 e2
34

(c44 β33+e2
34)h

e34 β33Kg

(c44 β33+e2
34)h

0 0 0


 0 0 0

0 0 0

0 0 e2
33+e33 β33Kg

(c33 β33+e2
33)h

 03×3
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