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Abstract: Two groups of coumarin derivatives, 4-methyl-2-oxo-2H-chromen-7-yl 4-alkoxybenzoates
(coumarin esters), In, and 4-methyl-2-oxo-2H-chromen-7-yl 4-(2-(4-alkoxyphenyl)diazenyl) benzoates
(coumarin azoesters), IIn, were synthesized and investigated for their mesophase behavior and
stability. Each group constitutes five series that differ from each other by length of the mesogenic
part. Within each homologous series, the length of the terminal alkoxy group varies between 6, 8, 10,
12 and 16 carbons. Mesophase behavior was investigated by differential scanning calorimetry (DSC)
and identified by polarized light microscopy (PLM). Density functional theory (DFT) calculations
for coumarin derivatives were discussed. The results revealed that the incorporation of azo group
incorporated in the mesogenic core decreases the energy differences, increases the dipole moments
and stabilities of coumarin azoesters series more than coumarin esters.

Keywords: liquid crystal; coumarin derivatives; non-mesomorphic; mesophase stability; DFT
calculations

1. Introduction

Coumarin derivatives display excellent kinds of photochemical and photophysical properties.
They become useful in different applications like brightening agents [1] and organic light-emitting
diodes (LED) [2–4]. Moreover, they exhibit an excellent and wide range of biological activity, such as
antibiotic, anticancer, antifungal, ant-coagulating, anti-inflammatory, plant growth regulating agents
and analytical reagents [5–7]. Additionally, polymeric and non-polymeric coumarin derivatives display
liquid-crystalline properties [8–11]. Thus, coumarins have become an interesting molecular framework
to be incorporated in numerous electronic organic materials, with potential applications in OLED,
solar cells and photo alignment technologies for liquid crystal displays [12,13]. Mesophase stability
of an organic compound depends primarily on its molecular architecture in which a slight change in
the molecular geometry enables considerable change in its mesomorphic properties [14,15]. Generally,
the stability of the mesophase is increased as the polarity and/or polarizability of the central part of
the molecule increase. Mesomorphic properties of nematic mesogens are strongly impacted by the
lateral group. The degree of such impact is dependent on the size, position, and polarity of the lateral
substituent. Sterically, a lateral substituent effectively widens the core and increases the intermolecular
separation. This leads to a reduction in lateral interactions [16–18] and, hence, the nematic stability is
reduced. Gray [19] has clarified that an increase in the breadth of the molecules reduces the stability of
both the nematic and smectic mesophases. High demand for new liquid crystals for applications has led
to the preparation and study of numerous mesogens, particularly thermotropic liquid crystals [14,15].
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Most thermotropic liquid crystals are rod-like molecules having a rigid core composed of two or
more phenyl rings and one or more flexible terminal alkyl chains. Coumarin derivatives have readily
available electrons that enable the photo-excitation of the dye to an excited state. Due to this attractive
structure-property relationship, coumarins allow the synthesis of suitable dyes with appropriate
groups by either adding chromophore groups or expanding the π system (a conjugation path) between
them. Connecting theoretical calculations of molecular structure with experimental data is one of our
interests [20–23]. In liquid crystals, the molecular structures as well as the interactions between the
molecules have large effects on their physical properties [24–27].

The mesomorphic properties of nematic mesogens are strongly influenced by a lateral group
appended to a nematic core. The extent of such effect is dependent on the size, position, and polarity
of the lateral substituent. A large lateral substituent effectively widens the core and increases
the intermolecular separation, and this reduces nematic stability by a reduction of the lateral
interactions [16–18]. Furthermore, Gray [19] reported that an increase in the breadth of the molecules
reduces the stability of both the nematic and smectic mesophases.

In the present work, in order to obtain a further understanding of the structure-property
relationship of liquid crystalline compounds having coumarin derivatives, two series of lateral methyl
coumarin esters, In, and coumarin azoesters IIn, have been synthesizes and investigated in terms of
their mesophase behavior as well as DFT calculation to illustrate the effect of the length of the alkoxy
chain as well as the mesogenic part on their mesophase stability (Figure 1).
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2. Experimental

2.1. Materials

Hexyl bromide, octyl bromide, decyl bromide, dodecyl bromide and hexadecyl bromide were
obtained from Sigma Aldrich (Darmstadt, Germany). Phenol, p-aminobezoic acid, 4-n-hexyoxyl
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benzoic acid, 4-n-octoyloxy benzoic acid, 4-n-decyloxy benzoic acid and 4-n-dodecyloxy benzoic
acid were obtained from Merck (Darmstadt, Germany). N,N′-dicyclohexylcarbodiimide (DCC),
tributylamoniumbromide (TBAB) and 4-dimethylaminopyridine (DMAP) were purchased from
Aldrich (Missouri, WI, USA). Dichloromethane, ethanol and methanol were of pure grade and
purchased Aldrich (Missouri, WI, USA).

2.2. Synthesis of Coumain Derivatives

Coumarin esters, In and coumarin azoesters IIn, were synthesizes according to the following
Scheme 1:
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Scheme 1. Synthesis of coumarin derivatives In and IIn.

2.2.1. Synthesis of 4-methyl-2-oxo-2H-chromen-7-yl 4-alkoxybenzoate, In

To a mixture of the 7-hydroxy-4-methyl-2H-chromen-2-one (0.01 mole) and 0.01 mole of
4-alkoxybenzoic acid in 25 mL dry methylene chloride N,N′-dicyclohexylcarbodiimide (DCC, 0.02 mole)
and few crystals of 4-dimethylaminopyridine (DMAP) were added. The reaction mixture was stirred
for 72 h at room temperature. The separated precipitate was filtered off and the filtrate was evaporated.
The solid residue obtained was recrystallized from ethanol.

4-methyl-2-oxo-2H-chromen-7-yl 4-hexyloxybenzoate I6.

Yield: 89.2%; mp. 110.0 ◦C, FTIR (ύ, cm−1): 2923, 2856 (CH2 stretching), 1722 (C=O), 1625 (C=N),
1605 (C=C), 1469 (C–OAsym), 1245 (C–OSym). Elemental analyses: C23H24O5 Found (Calc.): C, 72.21
(72.61); H, 6.29 (6.36).
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4-methyl-2-oxo-2H-chromen-7-yl 4-octyloxybenzoate I8.

Yield: 91.3%; mp. 104.0 ◦C, FTIR (ύ, cm−1): 2919, 2846 (CH2 stretching), 1724 (C=O), 1624 (C=N),
1604 (C=C), 1467 (C–OAsym), 1253 (C–OSym). Elemental analyses: C25H28O5 Found (Calc.): C, 73.39
(73.51); H, 6.88 (6.91).

4-methyl-2-oxo-2H-chromen-7-yl 4-decyloxybenzoate I10

Yield: 93.8%; mp. 108.0 ◦C, FTIR (ύ, cm−1): 2921, 2851 (CH2 stretching), 1726 (C=O), 1626 (C=N),
1604 (C=C), 1469 (C–OAsym), 1247 (C–OSym). Elemental analyses: Found (Calc.): C27H32O5 C, 74.33
(74.29); H, 7.45 (7.39).

4-methyl-2-oxo-2H-chromen-7-yl 4-dodecyloxybenzoate I12

Yield: 90.7%; mp 107.0 ◦C, FTIR (ύ, cm−1): 2921, 2850 (CH2 stretching), 1726 (C=O), 1625 (C=N),
1604 (C=C), 1469 (C–OAsym), 1247 (C–OSym). Elemental analyses: Found (Calc.): C29H36O5 C, 74.75
(74.97); H, 7.64 (7.81).

4-methyl-2-oxo-2H-chromen-7-yl 4-hexadecyloxybenzoate I16

Yield: 90.9%; mp. 109.0 ◦C, FTIR (ύ, cm−1): 2919, 2850 (CH2 stretching), 1726 (C=O), 1626 (C=N),
1604 (C=C), 1470 (C–OAsym), 1247 (C–OSym). Elemental analyses: C33H44O5 Found (Calc.): C, 76.01
(76.12); H, 8.33 (8.52).

2.2.2. Synthesis of 4-(2-(4-alkoxyphenyl)diazenyl)benzoic acid

A mixture of 4-(2-(4-hydroxyphenyl)diazenyl)benzoic acid (5.0 mmol), alkylbromide (6.0 mmol),
tetrabutylammonium bromide (0.17 g, 0.50 mmol), and the mixture of potassium carbonate (0.28 g,
2.0 mmol) and potassium hydroxide (0.11 g, 2.0 mmol) was heated under reflux for 6 h. After cooling,
the reaction mixture was neutralized with 4N HCl and extracted with methylene chloride (3 × 20 mL).
The organic layer was dried over anhydrous MgSO4, filtered, and the solvent was evaporated to
dryness. The products were purified by recrystalization by aqueous ethanol (1:1).

2.2.3. Synthesis of 4-methyl-2-oxo-2H-chromen-7-yl 4-(2-(4-alkoxyphenyl)diazenyl)benzoate, IIn

N,N′-dicyclohexylcarbodiimide (DCC, 0.02 mole) and few crystals of 4-dimethylaminopyridine
(DMAP) were added to a mixture of the 7-hydroxy-4-methyl-2H-chromen-2-one (0.01 mole) and
0.01 mole of 4-(2-(4-alkoxyphenyl)diazenyl)benzoic acid in 25 mL dry methylene chloride. The reaction
mixture was stirred for 72 h at room temperature. The separated dicyclohexylurea (DCU) was filtered
off and the filtrate was evaporated. The solid residue obtained was recrystallized from ethanol.

4-methyl-2-oxo-2H-chromen-7-yl 4-(2-(4-hexyloxyphenyl)diazenyl)benzoate II6

Yield: 92.3%; mp 122.7 ◦C, FTIR (ύ, cm−1): 2928, 2856 (CH2 stretching), 1726 (C=O), 1602 (C=C),
1498 (C–OAsym), 1245 (C–OSym). 1H NMR (400 MHz, CDCl3): δ/ppm: 0.92 (t, 3H, CH3(CH2)3CH2CH2O,
J = 6.6 Hz), 1.15–1.36 (m, 6H, CH3(CH2)3CH2CH2O), 1.76–1.85 (m, 2H, CH3(CH2)3CH2CH2O), 2.47
(s, 3H, CH3), 4.07 (t, 2H, CH3(CH2)3CH2CH2O, J = 6.4 Hz), 6.31 (s, 1H, Ar–H) 7.00–7.04 (m, 2H, Ar–H),
7.24–7.29 (m, 2H, Ar–H), 7.66–7.69 (m, 2H, Ar–H), 7.89–8.00 (m, 3H, Ar–H), 8.33 (d, 2H, J = 8.7 Hz,
Ar–H). 13C NMR (101 MHz, CDCl3) δ = 164.04, 162.50, 160.43, 155.99, 154.17, 153.36, 152.02, 146.85,
131.40, 129.60, 127.61, 125.49, 125.13, 122.65, 118.27, 117.97, 114.87, 110.69, 68.50, 32.36, 29.14, 25.70,
22.61, 18.80, 14.05. Elemental analyses: C29H28N2O5 Found (Calc.): C, 72.15 (71.88); H, 5.99 (5.82); N,
5.49 (5.78).

4-methyl-2-oxo-2H-chromen-7-yl 4-(2-(4-octyloxyphenyl)diazenyl)benzoate II8

Yield: 91.7%; mp 107.5 ◦C, FTIR (ύ, cm−1): 2925, 2855 (CH2 stretching), 1726 (C=O), 1603 (C=C),
1499 (C–OAsym), 1246 (C–OSym). 1H NMR (400 MHz, CDCl3): δ/ppm: 0.91 (t, 3H, CH3(CH2)5CH2CH2O,
J = 6.6 Hz), 1.12–1.39 (m, 10H, CH3(CH2)5CH2CH2O), 1.69–1.82 (m, 2H, CH3(CH2)5CH2CH2O), 2.45
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(s, 3H, CH3), 4.05 (t, 2H, CH3(CH2)5CH2CH2O, J = 6.5 Hz), 6.31 (s, 1H, Ar–H) 7.00–7.04 (m, 2H, Ar–H),
7.21–7.31 (m, 2H, Ar–H), 7.62–7.67 (m, 2H, Ar–H), 7.92–8.02 (m, 3H, Ar–H), 8.33 (d, 2H, J = 8.8 Hz,
Ar–H). Elemental analyses: C31H32N2O5 Found (Calc.): C, 72.45 (72.64); H, 6.01 (6.29); N, 5.12 (5.47).

4-methyl-2-oxo-2H-chromen-7-yl 4-(2-(4-decyloxyphenyl)diazenyl)benzoate II10

Yield: 88.9%; mp 137.5 ◦C, FTIR (ύ, cm−1): 2926, 2853 (CH2 stretching), 1724 (C=O), 1605
(C=C), 1497 (C–OAsym), 1248 (C–OSym). 1H NMR (400 MHz, CDCl3): δ/ppm: 0.89 (t, 3H,
CH3(CH2)7CH2CH2O, J = 6.9 Hz), 1.08–1.41 (m, 14H, CH3(CH2)7CH2CH2O), 1.79–1.88 (m, 2H,
CH3(CH2)7CH2CH2O), 2.44 (s, 3H, CH3), 4.09 (t, 2H, CH3(CH2)7CH2CH2O, J = 6.5 Hz), 6.31
(s, 1H, Ar-H) 7.00–7.04 (m, 2H, Ar–H), 7.23–7.30 (m, 2H, Ar–H), 7.60–7.68 (m, 2H, Ar–H), 7.91–8.02
(m, 3H, Ar–H), 8.34 (d, 2H, J = 8.8 Hz, Ar–H). Elemental analyses: C33H36N2O5 Found (Calc.): C, 73.03
(73.31); H, 6.35 (6.71); N, 4.75 (5.18).

4-methyl-2-oxo-2H-chromen-7-yl 4-(2-(4-dodecyloxyphenyl)diazenyl)benzoate II12

Yield: 92.2%; mp 131.0 ◦C, FTIR (ύ, cm−1): 2918, 2851 (CH2 stretching), 1727 (C=O), 1603
(C=C), 1498 (C–OAsym), 1244 (C–OSym). 1H NMR (400 MHz, CDCl3): δ/ppm: 0.88 (t, 3H,
CH3(CH2)9CH2CH2O, J = 6.5 Hz), 1.21–1.57 (m, 6H, CH3(CH2)9CH2CH2O), 1.80–1.87 (m, 2H,
CH3(CH2)9CH2CH2O), 2.47 (s, 3H, CH3), 4.08 (t, 2H, CH3(CH2)9CH2CH2O, J = 6.4 Hz), 6.31
(s, 1H, Ar–H) 7.04 (d, 2H, J = 8.4 Hz, Ar–H), 7.24–7.29 (m, 2H, Ar–H), 7.70 (d, 2H, J = 8.4 Hz, Ar–H),
7.89–8.00 (m, 3H, Ar–H), 8.35 (d, 2H, J = 8.7 Hz, Ar–H). 13C NMR (101 MHz, CDCl3) δ = 164.15,
162.61, 160.54, 156.09, 154.30, 153.36, 151.94, 146.86, 131.40, 129.59, 125.49, 125.39, 122.64, 118.26, 118.02,
114.87, 114.65, 110.69, 68.50, 31.93, 29.68, 29.65, 29.61, 29.58, 29.39, 29.37, 29.17, 26.02, 22.71, 18.80, 14.14.
Elemental analyses: C35H40N2O5 Found (Calc.): C, 73.79 (73.92); H, 6.61 (7.09); N, 4.49 (4.93).

4-methyl-2-oxo-2H-chromen-7-yl 4-(2-(4-hexadecyloxyphenyl)diazenyl)benzoate II16

Yield: 90.1%; mp 126.0 –C, FTIR (ύ, cm−1): 2918, 2849 (CH2 stretching), 1726 (C=O), 1602
(C=C), 1501 (C–OAsym), 1246 (C–OSym). 1H NMR (400 MHz, CDCl3): δ/ppm: 0.91 (t, 3H,
CH3(CH2)13CH2CH2O, J = 6.5 Hz), 1.21–1.83 (m, 6H, CH3(CH2)13CH2CH2O), 2.46 (s, 3H, CH3),
4.06 (t, 2H, CH3(CH2)13CH2CH2O, J = 6.8 Hz), 6.31 (s, 1H, Ar–H) 7.04 (d, 2H, J = 8.4 Hz, Ar–H),
7.24–7.29 (m, 2H, Ar–H), 7.70 (d, 2H, J = 8.4 Hz, Ar–H), 7.89–8.00 (m, 3H, Ar–H), 8.35 (d, 2H, J = 8.8 Hz,
Ar–H). Elemental analyses: C39H48N2O5 Found (Calc.): C, 74.68 (74.97); H, 7.63 (7.74); N, 4.39 (4.48).

2.3. Characterization

The purity of the prepared samples was checked with thin-layer chromatography (TLC) using
TLC sheets coated with silica gel (E Merck), and CH2Cl2/CH3OH (9:1) as eluent, whereby only one
spot was detected by a UV-lamp.

Infrared spectra were recorded using Perkin-Elmer B25 spectrophotometer (Perkin-Elmer, Inc.,
Shelton, CT USA). 1H NMR spectra were performed using a Varian EM 350 L 300 MHz spectrometer
(Varian, Oxford, UK) using tetramethylsilane as internal standard and CDCl3 as solvent; the chemical
shift values recorded as δ (ppm units). Elemental analyses for final products were carried out on
Thermo Scientific Flash 2000 CHS/O Elemental Analyzer, Milan, Italy.

Calorimetric measurements were carried out using a TA Instruments Co. Q20 Differential
Scanning Calorimeter (TA Instruments Co. Q20, DSC, New Castle, DE USA). The DSC was calibrated
using the melting temperature and enthalpy of indium and lead. DSC investigation was carried out
for small samples (2–3 mg) placed in aluminum pans. All measurements were achieved at a heating
rate of 10 ◦C/min in inert atmosphere of nitrogen gas (30 mL/min) and all transition recorded from
the second heating scan.

Transition temperatures were checked and types of mesophases identified, for all compounds
prepared, with a standard polarized light microscope (PLM, Wild, Germany) attached with Mettler
FP82HT hot stage.
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2.4. Methods and Calculations

All calculations for the studied coumarin derivatives were carried out using Gaussian 09 software
(version 09) [28] on a Pentium IV processor personal computer. The calculations were performed by
DFT/B3LYP methods using 6-31G (d,p) basis set. The geometries were optimized by minimizing
the energies with respect to all geometrical parameters without imposing any molecular symmetry
constraints. Gauss View [29] has been used to draw the structures of the optimized geometries. Also,
frequency calculations were performed using the same level of theory. The frequency calculations
showed that all structures were stationary points in the geometry optimization procedures and none
showed imaginary frequencies in the vibrational analyses. Vibrational mode assignments were made
by visual inspection of the modes animated by using Gauss View program.

3. Results and Discussion

3.1. Infrared Absorption Spectra of Components (In)

Infrared spectra observed for the all compounds In and IIn under investigation showed no
significant effect of the length of the alkoxy chain on the position of FTIR absorption bands of the main
characteristic functional groups.

3.2. Mesophase Behavior of the Investigated Coumarin Derivatives

Transition temperatures and transition enthalpies as measured by DSC, and the phases
identified by polarized light microscopy PLM, for synthesized derivatives coumarinesters, In,
and coumarinazoesters, IIn, are summarized in Table 1. DSC curves for I8 and II10 upon heating and
cooling are depicted in Figure 2 as representative examples. The effect of increasing alkoxy-chain
length on the mesophase behavior of compounds in series In is represented graphically in Figure 3a
and those of coumarinazoesters IIn, for comparison, are depicted in Figure 3b.

The data in Table 1 and Figure 3 reveal that all coumarinesters, In, series are non-mesomorphic.
Conversely, all compounds in Coumarin azoesters group IIn are enantiotrpically mesomorphic, these
results are consistent with previous finding [30]. All members of group IIn are dimorphic exhibit
smectic C (SmC) and nematic phases (N) except II16 is monomorphic showing only SmC phase. Phases
were confirmed by the miscibility method, using 4-hexadodecyloxybenzoic acid as the mesophase
reference. Generally, the stability of the mesophase is augmented by an increase in the polarity and/or
polarizability of the mesogenic part of the molecule. It was found that [19], the stability and types
of the mesophase produced are dependent on the dipole moment of the mesogenic portion of the
molecule. The results clearly show a dependence on the polarizability of the mesogenic core, and that
coumarinazoesters (IIn) homologues are mesomorphic with high stability.

Table 1. Phase transition temperatures (◦C), enthalpy of transition ∆H, kJ/mole, normalized entropy
∆S, and

√
TC, K1/2 for compounds In and IIn.

Comp. TCr–SmC ∆HCr–SmC TSmC–N ∆HSmC–N ∆SSmC–N/R TSmC-I ∆HSmC–I TN–I ∆HN–I ∆SN–I/R
√

TC

I6 110.3 31.72 - - - - - - - - -
I8 103.9 28.59 - - - - - - - - -
I10 108.7 33.29 - - - - - - - - -
I12 107.7 29.10 - - - - - - - - -
I16 109.0 30.96 - - - - - - - - -
II6 122.7 25.56 163.3 1.81 0.50 220.7 0.92 0.22 22.22
II8 107.5 24.29 163.5 1.63 0.45 188.4 0.55 0.14 21.49
II10 137.5 28.74 174.2 1.72 0.46 187.9 0.56 0.15 21.47
II12 130.9 31.73 177.0 2.74 0.73 182.0 0.63 0.17 21.33
II16 125.9 26.77 - - 174.0 2.43 - - - 21.15

Abbreviations: TCr–SmC = crystal to smectic C phase transition; TSmC–N = smectic C to Nematic transition;
TSmC–I = smectic C to isotropic liquid transition; TN–I = Nematic to isotropic liquid transition. ∆HCr–SmC = crystal
to smectic C phase transition; ∆HSmC–N = smectic C to Nematic transition; ∆HN–I = Nematic to isotropic
liquid transition; ∆SSmC–N/R = smectic C to Nematic transition entropy; ∆SN–I/R = Nematic to isotropic liquid
transition entropy.
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Figure 2. DSC thermograms of some representative compounds recorded from heating and cooling at
a rate of 10 ◦C/min for: (a) I8 and (b) II10.

Figure 3b shows that the nematic-to-isotropic transition temperatures (TN–I) decrease gradually
with the increase of the alkoxy-chain length (n). This trend is in accordance with that shown
by Gray [19] and Imrie and Taylor [31] in which the nematic-to-isotropic transition temperatures
fall with increasing alkoxy-chain length, and also for the smectic phase, the smectic-nematic,
or smectic-to-isotropic transition temperatures rise gradually as the alkoxy chain lengthens.

The mesophase behavior of a calamitic mesogen is affected by the molecular–molecular
interactions that depend mainly on geometry of the molecules, polarizability anisotropy of the core
molecule, as well as the stereo electronic properties of the whole molecule. Therefore, in the present
studied coumarin derivatives, molecular association of the rod-like molecules, and consequently their
mesophases stability (Tc) depends mainly on lateral adhesion of linear molecules that increases with
the increase of the alkoxy-chain length (n). However, the increased alkyl-chain length reduces the
rod-shaped molecule's rigidity and, consequently, its ability to fit readily into the parallel arrangement
within the nematic phase. As a result, nematic phase stability decreases with increasing the alkoxy
chain length. The end-to-end intermolecular interactions play a role in determining the SmC-to-
isotropic transition temperatures, that is, the construction of the smectic molecular order is determined
by the fact that the terminal attractions become stronger, allowing the arrangement of the layers to
occur more easily as the alkoxy chains increased, which in turn enhances the SmC-to-I transition.

When the present investigated coumarin azoesters are compared with coumarin esters for the
corresponding alkoxy chain length, it is found that incorporation of phenyl azo group to the coumarin
ester derivatives led to an increase in the polarizability of the whole compound and consequently
enhanced the intermolecular association between molecules.

Normalized entropies of the smectic C-nematic (∆SSmC–N/R) and nematic-isotropic (∆SN–I/R)
transitions for coumarinazoesters derivatives were calculated and appended to Table 1. Entropies of
N–I transitions (∆SN–I/R) are of lower values than those of the corresponding ∆SSmC–N/R transitions.
The decrease observed in ∆SN–I/R was presumably in part a reflection of the increase in the biaxiality
of the mesogenic group, resulted from the flexible terminal alkoxy-chain, being less strongly anchored
at its end, giving a resulting decrease in conformational entropy [32].
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3.3. Stabilities, Total Energies, Dipole Moments

Since the mesophase stability of liquid crystalline compounds is dependent upon the
intermolecular attractions, in which molecular polarity plays a significant role, it has been shown [33]
that in a series of compounds the dipole moment of any compound is dependent upon the nature of the
substituent. It has also been shown [34,35] that the dipole moments of all members of a homologous
series are virtually the same irrespective of the alkoxy-chain length. The calculated total energies,
dipole moments of the studied compounds are summarized in Table 2. The optimized structures of I6

and II6 shown in Figure 4 were calculated using 6-311G(d,p) level of theory.

Table 2. Total energies (a.u), dipole moments (Debye) using B3LYP/6-31G(d,p) method.

I6
X Y Z Total

Dipole moment (Debye) 3.98 −1.62 −1.47 4.44
Energy (a.u.) −1266.70

II6
X Y Z Total

Dipole moment (Debye) −2.31 0.03 −5.20 5.71
Energy (a.u.) −1607.11
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The results of energy analysis showed that I6 has energy−1266.70 a.u., while, II6 has−1607.11 a.u.
The high energy difference between the two compounds could be attributed to the extra conjugation
of II6 than the I6 due to the attachment of the extra azo phenyl group in the mesogenic part, while,
the dipole moment of II6 is also more than that of I6.

3.4. Molecular Electrostatic Potential (MEP)

The molecular electrostatic potentials of I6 and II6 are given in Figure 5. Many properties
such as molecular polarizability, dipole moment and electronic structure are highly affected by the
charge calculations at atomic sites of compounds under investigations [36]. Moreover, the molecular
electrostatic potential (MEP) is a useful property to study the distribution of the electron density [37–39].
In MEPs, the red color is the region of maximum negative charges. The studied compounds have more
electron deficient centers which mainly localized on the esters group either of benzoate or coumarin
moieties, while the electron rich region is located on the mehyl group of the coumarin part for both
compounds. Also, the molecular electrostatic potential (MEP) is best suited for identifying the presence
of intra- and intermolecular interactions on the different atomic sites.Crystals 2018, 8, x FOR PEER REVIEW  10 of 13 
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3.5. Frontier Molecular Orbitals

One of the important properties for chemists and physicist is the nature of the frontier molecular
orbitals (FMOs), like energy level and electron densities. The location of electron densities of FMOs are
used for calculation of the reactive position in the compounds under investigation [40].

LUMO is the lowest unoccupied molecular orbital and HOMO is the highest occupied molecular
orbital, and their energy gap (∆E) shows the chemical reactivity of the molecule. The HOMO, LUMO
and ∆E values of the studied compound were calculated by the B3LYP/6-311G(d,p) method. Where A
molecule having high ∆E is less polarizable and is generally associated with a low chemical reactivity
and high kinetic stability [41]. The HOMO and LUMO pictures are shown in Figure 6. As shown in
Figure 6 for compound I6, the electron densities of the HOMO and LUMO are mainly localized on the
coumarin moiety, while that of II6 HOMO and LUMO is located on the azo part. Moreover, attachment
of the azo group in II6 affords HOMO and LUMO with lower energy difference (0.12311) rather than
that of I6 (0.159128); it could be attributed to the extra conjugation of the azo part which decreases the
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energy difference between the frontier molecular orbitals. This lower energy difference II6 makes it
more polarizable than that of I6.
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4. Conclusions

Two groups of coumarin derivatives were synthesized and investigated for their mesophase
behavior and stability. The study revealed that, irrespective of the length of the alkoxy chains,
all compounds of the first group, 4-methyl-2-oxo-2H-chromen-7-yl 4-alkoxybenzoates, In were
found to be non-mesomorphic, while 4-methyl-2-oxo-2H-chromen-7-yl 4-(2-(4-alkoxyphenyl)diazenyl)
benzoates, IIn, were dimorphic possessing SmC and nematic phases, exceptthe compound II16 (n = 16)
is purely smectogenic has SmC phase. DFT calculations for coumarin derivatives were discussed
and the result showed that the incorporation of azo group elongates the mesogenic core and hence
decreases the energy differences between the FMOs and increases the dipole moments as well as the
stabilities of coumarin azoesters series compared to coumarin esters.
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