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Abstract: A NiO@ZnO (NZO) hybrid with different reaction times was successfully synthesized
by a green hydrothermal method. After comparison, it was found that hydrothermal time had a
great impact on specific capacitance. As a supercapacitor electrode of NZO-12h, it exhibited the
maximum reversible specific capacitance of 985.0 F/g (3.94 F/cm2) at 5 mA/cm2 and 587.5 F/g
(2.35 F/cm2) at 50 mA/cm2, as well as a high retention of 74.9% capacitance after 1500 cycles at
20 mA/cm2. Furthermore, the asymmetric electrode device with ZnO-12h and activated carbon
(AC) as the positive and negative electrodes was successfully assembled. In addition, the device
exhibited a specific capacitance of 85.7 F/g at 0.4 A/g. Moreover, the highest energy density of
27.13 Wh kg−1 was obtained at a power density of 321.42 W kg−1. These desirable electrochemical
properties demonstrate that the NZO hybrid is a promising electrode material for a supercapacitor.

Keywords: NiO@ZnO; electrochemical performance; supercapacitor

1. Introduction

The development of industrialization has caused tremendous pressure on the environment, and it
has also seriously affected people’s lives. It is necessary to find sustainable and renewable resources [1].
Supercapacitors, excellent energy storage devices, can effectively alleviate the current energy crisis [2–4].
Based on their obvious advantages, such as simple design, high-power density, long cycling lifetime,
and short charge/discharge rate [5–7], supercapacitors have attracted much research interest in recent
years. However, their development has been limited due to low-energy density, making it difficult to
obtain a capacitor with both high-energy density and good power density [8–10]. It is important to find
an effective solution to improve the performance of the electrode material.

As an excellent candidate, transition metal oxide can obtain good capacitance characteristics
benefiting from its various oxidation states [11]. Nickel oxide (NiO), a low-toxicity and high theoretical
specific capacity electrode material, has been widely investigated for energy storage devices [12].
Until now, research on nickel-based materials has made great progress for supercapacitors [13,14].
Gund et al. [14] fabricated micro-belts like β-Ni(OH)2 thin films, and its specific capacitance was
462 F/g at 5 mV/s. As is known, the structure of a material has a direct influence on its performance.
To some extent, structural limitations make the conductivity of transition metal oxide unsatisfactory,
so that the actual specific capacitance is lower than the theoretical value [15]. It is reportedthat
the electrochemical property of mixed transition metal oxide is superior to single transition metal
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oxides, and the former can display the synthetic effect of each component. Currently, considerable
efforts have been devoted to developing the materials, which exhibit improved electrochemical
performance [16–18].

As a single-crystal material, zinc oxide (ZnO) possesses excellent properties, such as wide band
gap (3.7 eV), a high-energy density of 650 Ah/g, and excellent chemical stability [19–22]. In addition,
the electrical conductivity of ZnO can achieve 230 S/cm [23]. Thus, ZnO can be used as a potential
electrode material [24–27]. For example, Hou et al. [27] reported that the ZnO/NiO hierarchical
core-shell structure exhibits enhanced pseudocapacitive behaviors, owing to synergistic effect of
combining ZnO and NiO/MoO2 composite. Based on this theory, a hybrid (NZO) was prepared by
combining NiO and ZnO in our work. The flower-like NZO electrode material has a large surface area,
allowing the electrolyte solution to have more contact with the active material. Thus, NZO electrode
material has enhancing electrochemical performance.

In this study, NZO on Ni foam with different reaction times was fabricated using a simple and
fast hydrothermal method. Their structure and electrochemical properties were also investigated
successfully. It was found that NZO-12h exhibits the best electrochemical performance compared with
other electrode materials. Further, it shows a high specific capacitance of 3.94 F/cm2 at 5 mA/cm2

and high rate capability of 59.6% due to its synergistic properties, growth on conductive substrate,
and unique flower-like structure.

2. Materials and Methods

All reagents required for the experiment were of analytical grade, and purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China).

The NZO was prepared using a facile hydrothermal method. First, Ni foam (2 cm × 2 cm) was
pretreated with 5% HCl solution to remove the oxide layer on its surface, and then it was ultrasonically
washed with acetone, ethanol, and deionized (DI) water for the same time, with each step sustained for
15 min. Then, 2 mmol nickel nitrate, 4 mmol zinc nitrate, and 24 mmol urea were dispersed into 50 mL
DI water with continuous stirring for 30 min to form a green transparent solution. The solution was
transferred into a 100 mL autoclave and a piece of pre-treated Ni foam immersed. The autoclave was
sealed and heated at 373 K for 12 h to carry out the hydrothermal reaction, and then naturally cooled
to room temperature. Next, the Ni foam was rinsed with DI water and ethanol several times, and dried
it at 333 K for 5 h. Finally, cleaned Ni foam was put in the tube furnace at 523 K for 2 h, heating rate
5 ◦C/min, and the product was labeled as NZO-12h. In order to study the effect of hydrothermal
time on the properties of electrode materials, analogous methods were used to fabricate other NZO
samples with different reaction times of 3 h, 6 h, and 24 h. These samples were denoted as NZO-3h,
NZO-6h, and NZO-24h, respectively. Schematic illustration of synthesis process for NZO-12h is shown
in Figure 1.

As-prepared products were analyzed using X-ray diffraction (XRD) measurements and
recorded with a Rigaku D/max 2500PC diffractometer with Cu Ka radiation (λ = 0.154156 nm).
X-ray photoelectron spectroscopy (XPS) was taken through an ESCA-LAB Mk II (Vacuum Generators)
spectrometer (Thermo Electron Corporation, New York, America). The morphology and microstructure
of the as-prepared sample were characterized by field emission scanning electron microscope (SEM,
S-4800, Hitachi, Tokyo, Japan) and transmission electron microscope (TEM, Tecnai F30G2, FEI,
Oregon, America) techniques, and chemical composition clearly recorded by energy dispersive
X-ray spectrometer (EDS) tests. In order to ensure the quality of the picture, the sample was
sputtered with a thin Au-Pt. Surface area analysis was conducted on an ASAP2020HD88 instrument
(Micromeritics Instrument Corporation, Shanghai, China) based on the Brunauer–Emmett–Teller (BET)
theory. Cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) curves, and electrochemical
impedance spectroscopy (EIS) measurements were examined using a three-electrode system on CHI
660E electrochemical station (Chenhua, Shanghai, China) in 6 M KOH. The sample was used as the
working electrode, a platinum foil (2 cm × 2 cm), and a saturated calomel electrode as the counter and
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the reference electrode, respectively. The mass loading of the active material on the Ni foam was about
4 mg, which was determined by weighing the Ni foam substrate before and after applying the active
material. And the specific capacitance of the single electrode was calculated using the equation:

C = i∆t/(S∆V) (1)

C = i∆t/(m∆V) (2)

where C is the specific capacitance, i is the discharge current, ∆t is the discharge time, S and m are
assigned as the area and mass of the electrode material, and ∆V represents the potential window.
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Figure 1. Schematic illustration of synthesis process for NZO-12h.

The electrochemical performance of asymmetric supercapacitor was examined in a two-electrode
system. The NZO-12h sample was used as the positive electrode and activated carbon as the negative
electrode, which was separated by a piece non-woven fabric. Further, a negative electrode was prepared
using activated carbon and polytetrafluoroethylene (PTFE) with mass ratio of 9:1. After, homogeneous
slurry was formed through continuous mixing, and then obtained slurry was spread on cleaned Ni
foam. Next, the Ni foam was dried at 340 K for 6 h in a vacuum oven.

The mass loading of positive and negative electrode was calculated according to the
following equation:

m+

m−
=

C− × ∆E−
C+ × ∆E+

(3)

where m (g) represents the mass loading, C is specific capacitance, and ∆E is potential window,
respectively, of positive (+) and negative (−) electrodes.

3. Results

The XRD measurement was used to analyze phase information of the NZO-12h electrode, and the
result is displayed in Figure 2. Three strong peaks can be found at 44.51◦, 51.84◦, and 76.41◦, which
corresponds to (110), (200), and (220) diffraction of Ni (JCPDS 65-2865). There were two diffraction
peaks which matched well with the (100) and (101) planes of ZnO (JCPDS 36-1451). The characteristic
peak at 43.01◦ corresponds to the (200) planes of NiO (JCPDS 47-1049). The XRD pattern indicates two
phases of NiO and ZnO could be indexed in the hybrid. Therefore, NZO was successfully fabricated
using the hydrothermal method.

The chemical composition and oxidation state of the samples were evaluated by XPS
measurements. The fitted spectra were obtained by Gaussian simulation method, as shown in Figure 3.
The Ni 2p3/2 main peak was located at 855.4 eV and its satellite peak at 861.1 eV, while the Ni 2p1/2
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main peak was centered at 873.8 eV and its satellite peak at 879.9 eV, respectively (Figure 3a). The result,
which is consistent with the previously reported values, further confirms that NiO can be detected
in as-prepared samples [28]. In the Figure 3b, it is clear that the prominent peaks of Zn 2p3/2 and Zn
2p1/2 appear at 1021.2 eV and 1044.5 eV, which was attributed to Zn2+ in the sample [29]. In the O 1s
region, there are three peaks, as shown in Figure 3c. Two peaks can be found at 527.9 eV and 530.5 eV,
which represents O2− (Ni) and O2− (Zn), respectively. In addition, a pronounced peak was observed
at 532.8 eV, which corresponds to H2O [28]. These results clearly determine the formation of ZnO and
NiO in this sample.
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Figure 3. X-ray photoelectron spectroscopy (XPS) survey spectra of NZO-12h: (a) Ni 2p; (b) Zn 2p;
(c) O 1s.

Figure 4 exhibits the SEM images at different magnifications of NZO-3h (Figure 4a–c), NZO-6h
(Figure 4d–f), NZO-12h (Figure 4g–i), and NZO-24h (Figure 4j–l), respectively. From low-magnification
SEM images (Figure 4a,d,g,j), it can be found that NZO materials grow on the Ni foam, and present
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the corresponding structure and its distribution states. For the NZO-3h sample, it exhibits a nanosheet
structure with an average diameter of 720 nm. Besides, the edge of these nanosheets has a jagged
structure, which can be observed from a high magnification of Figure 4b,c. For NZO-6h, the as-prepared
sample was composed of nanosheets with an average diameter of 540 nm, and these nanosheets form
a flower-like structure. Notably, the center of the flower-like structure has a large accumulation of
nanosheets, which affects the electrochemical conductivity of the electrode material. For the NZO-12h
sample, it can be seen that a 3D sphere was made up of intertwined nanosheets, and the nanosheets
were supported by each other, forming a flower-like structure. The diameter of nanosheets was about
610 nm. Moreover, there were a few pores in these nanosheets, as shown in Figure 4i, which facilitates
the diffusion of electroactive species. Such unique porous structure provides numerous pathways for
effective active sites electron/ion transport, which also accelerates the occurrence of redox reactions.
Thus, the NZO-12h sample has excellent electrochemical performance. Obviously, when the reaction
time is 24 h, the structure of the sample is still close to the flower-like; however, it is different from
other electrode materials. The magnified image (Figure 4l) illustrates NZO-24h was composed of many
short-rods and nanosheets.
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EDS is an important technique to examine and analyze elemental component of samples. EDS was
performed at a working distance of 15 mm and an acceleration voltage of 15 kV. The typical EDS
spectrum of the NZO-12h sample is shown in Figure 5. It can be clearly seen that Ni, O, and Zn were
detected in the as-obtained sample, which is consistent with the XPS result.
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To observe the detailed structural characteristic of the NZO-12h sample, TEM and high-
resolution-TEM (HRTEM) were carried out, as shown in Figure 6. Further, TEM can be used to
distinguish between crystalline and amorphous structures. Meanwhile, precise information about the
surface morphology can be provided. The low-magnification TEM image is exhibited in Figure 6a,
which reveals the existence of interdigitated nanosheets for NZO-12h. The result coincided with the
corresponding SEM patterns. The HRTEM of the NZO-12h sample is displayed in Figure 6b–d, and the
images show that there are two kinds of diffraction fringes with the lattice spacing of about 0.237 nm
and 0.241 nm, which can be ascribed to the (111) planes of NiO and (101) planes of ZnO. The diffraction
spots in the selected area electron diffraction (SAED) pattern suggest crystallization property of the
as-prepared sample is unsatisfactory. Therefore, the conclusion could be made undoubtedly that the
flower-like NZO sample has been successfully prepared using the hydrothermal method.
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The nitrogen adsorption and desorption test was used to analyze the porous structure, and the
result is displayed in Figure 7. The flower-like NZO-12h sample exhibits a high Brunauer–
Emmett–Teller (BET) surface area of 20.3350 cm2/g, which is beneficial for the transport and diffusion
of electrolyte. The pore size distribution of NZO-12h is shown in Figure 7b, and an average pore
diameter of 2 nm was obtained by the Barret-Joyner-Halenda (BJH) method using the adsorption
branch of the isotherm. From this feature, it can be concluded that the NZO-12h sample has micropores.
Consequently, the NZO-12h sample has good electrochemical performance.
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To explore the effect of structure on performance, a series of electrochemical tests of NZO materials
were performed. The CV curves of NZO electrodes (3 h, 6 h, 12 h, and 24 h) were measured at
5 mV/s within potential windows of 0–0.5 V, and the results are presented in Figure 8a. Obviously,
well-defined anodic and cathodic peaks of each curve can be observed. The special shape reflects the
pseudocapacitive characteristics of the NZO, which is different from the CV curves of the double-layer
capacitor [30]. Clearly, it can be found NZO-12h exhibits the largest enclosed area, implying its
specific capacitance is better than that of NZO-3h, NZO-6h, and NZO-24h electrodes. As is known,
electrochemical performance is related to the structure of samples. From these images it clearly shows
that the morphology of NZO-24h is different from NZO-12h, which consists of short-rods and sheets.
However, intertwined nanosheets of flower-like NZO-12h create a number of pores that have a large
effect on increasing the capacitance of the electrode material. In Figure 8a, NZO-3h and NZO-6h
samples exhibit almost the same double layer electrochemical surface area. The enclosed area is smaller
when the reaction time is 6 h, which is caused by poor electrical conductivity. Inconsistent redox peak
position change trend is mainly caused by the difference of pore structure. Figure 8b describes the
CV curves of the NZO-12h at different scan rates (5, 10, 25, and 50 mV/s). As the scan rates increases,
the distance between redox peaks becomes wide due to polarization. Moreover, the CV shape is similar
at different scan rates, which means that the electrode material has good reversibility [31], as shown in
the inset of Figure 8b. Therefore, it is necessary to further investigate the electrochemical properties of
the NZO-12h.

The GCD tests of different NZO electrodes were conducted at a current density of 5 mA/cm2,
as shown in Figure 9a. The area specific capacitances of the NZO-3h, NZO-6h, NZO-12h, and NZO-24h
were 1.49 F/cm2, 0.41 F/cm2, 3.94 F/cm2, and 3.32 F/cm2. Meanwhile, the mass specific capacitances
of these materials were measured to be 372.5 F/g, 102.5 F/g, 985.0 F/g, and 830.0 F/g. It can be
clearly found that the NZO-12h electrode has the highest specific capacitance, which is in agreement
with the CV result. The electrochemical performance of NZO-12h is better than NZO-3h, 6h, and 24h,
which was mainly attributed to its unique structural characteristics. Further, when the hydrothermal
reaction is 12 h, more active material grows on Ni foam. And its approximate flower-like structure
also promotes the contact between sample and electrolyte, thereby exhibiting better performance.
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The relationship between specific capacitances and hydrothermal time is shown in Figure 9b. It can be
found the NZO-12h exhibits higher specific capacitance than others.Crystals 2019, 9, x FOR PEER REVIEW 9 of 17 
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Figure 8. (a) CV curves of NZO electrodes prepared using different hydrothermal times at a scan rate
of 5 mV/s; (b) rate performance curves of the NZO-12 h electrode, the insets show the ip vs. Vplots of
the corresponding CV curves.
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Figure 9. (a) GCD curves at a current density of 5 mA/cm2 for NZO electrodes with different
hydrothermal times; (b) the specific capacitances of the NZO with different hydrothermal times;
(c) GCD curves of the NZO-12h electrode at different current densities; (d) rate capacitance calculation
of the NZO-12h electrode.

Figure 9c shows the GCD curves of the NZO-12h electrode at different current densities. Clearly,
there exists a discharge platform for each non-linear GCD curve. Actually, redox reaction is commonly
associated with pseudocapacitive charge/discharge process. When the current density is 5 mA/cm2,
the GCD curve has the longest discharge time. Rate capacitance calculation of NZO-12h derived
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from Figure 9c is shown in Figure 9d, and area specific capacitances are 3.94, 3.41, 3.02, 2.69, 2.51,
and 2.35 F/cm2 at the current density of 5, 10, 20, 30, 40, and 50 mA/cm2, respectively. According to
Equation (2), the mass specific capacitances of 985.0 F/g, 852.5 F/g, 755 F/g, 673.1 F/g, 627.5 F/g,
and 587.5 F/g were obtained at the same current density, respectively. In addition, NZO-12h
maintains 59.6% of the maximum capacitance at 50 mA/cm2, highlighting its excellent rate capability.
As expected, NZO-12h has better electrochemical performance than previous reports. In detail, specific
capacitances of different electrode materials are shown in Table 1. The high specific capacitance
was attributed to the unique structure of NZO-12h. Further, the large specific surface area of such a
flower-like structure allows the electrode material to have more active sites, which is significant to
the performance of itself. Thus, the flower-like NZO-12h has the potential to meet the demand of
supercapacitor applications.

Table 1. Specific capacitances of different electrode materials.

Material Structure Specific Capacitance Reference

NiO@PC Hierarchical structure 57 mF/cm2 at 5 mA/cm2 [32]
NiO@C@Cu2O hybrid Core-shell heterostructure 2.18 F/cm2 at 1 mA/cm2 [33]

HNCS-NiO Hierarchical structure 880.6 mF/cm2 at 0.8 mA/cm2 [34]
NiO/MnO2 Heterostructure 286 mF/cm2 at 0.5 mA/cm2 [35]

ZnO/MnO2@carbon cloth Core-shell structure 138.7 mF/cm2 at 1 mA/cm2 [36]
NiO/Ni(OH)2/PEDOT Nanoflower structure 404.1 mF/cm2 at 4 mA/cm2 [37]

NZO-12h Flower-like structure 3.94 F/cm2 at 5 mA/cm2 Our work

Long stability is an important parameter to determine whether the as-prepared material can be
effectively applied in supercapacitors, and the result is shown in Figure 10. After 1500 cycles, 74.9%
capacitance remained, indicating its high cycling stability. The GCD curves for first seven and last
seven cycles are shown in Figure 10b,c. It can be found that the shape of the curves is similar, meaning
that there is no significant structural change.

Crystals 2019, 9, x FOR PEER REVIEW 11 of 17 

 

Rct. Moreover, the slope of the NZO-12h is closer to the vertical line, representing a more rapid ion-

diffusion-transfer rate. Therefore, NZO-12h is an excellent candidate for the supercapacitor, which is 

consistent with above analysis. 

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

C
ap

a
ci

ta
n

ce
 r

et
en

ti
on

 (
%

)

Cycle number

20 mA/cm
2

74.9 %

(a)

0 30 60 90 120 150 180
0.0

0.1

0.2

0.3

0.4

P
o

te
n

ti
a
l 

(V
)

Time (s)

(b)

 

31800 31830 31860 31890 31920 31950
0.0

0.1

0.2

0.3

0.4

P
ot

en
ti

al
 (

V
)

Time (s)

(c)

 

 

Figure 10. (a) 1500 cycle performance of the NZO-12h at a current density of 20 mA/cm2; (b) first 7 

cycles of NZO-12h; (c) final 7 cycles of NZO-12h. 

  

Figure 11. (a) EIS plots of NZO electrodes with different hydrothermal time; (b) the corresponding 

high-frequency region of EIS. 

In order to explore practical applications of the flower-like NZO-12h, it is necessary to 

fabricate an asymmetric capacitor. The NZO-12h was regarded as a positive electrode and AC 

as a negative electrode, and the electrochemical performance was tested in 6 M KOH electrolyte. 

After calculation, the mass ratio of the NZO-12h and AC was 1:3.98. Figure 12a shows the CV 

curves of AC at different scan rates in the potential window of −1.0–0 V. It was found that the 

shape of the curve was close to a rectangle without redox peak, indicating the behavior of an 

electrical double-layer capacitance. When the scan rate increases from 5 to 50 mV/s, the 

0 5 10 15 20
0

5

10

15

20

25

30

 3 h
 6 h
 12 h
 24 h

Z'/ohm

Z
''

/o
h

m

(a)

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
(b)

 

Z
''

/o
h

m

 3 h
 6 h
 12 h
 24 h

Z'/ohm

Figure 10. (a) 1500 cycle performance of the NZO-12h at a current density of 20 mA/cm2; (b) first 7
cycles of NZO-12h; (c) final 7 cycles of NZO-12h.
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To further understand the electrochemical behavior, the EIS plots of the NZO with different
hydrothermal times were collected between 0.01 Hz and 10 kHz, as shown in Figure 11a. Generally
speaking, the EIS curve includes a linear portion of the low-frequency region and a non-linear
portion of the high-frequency region. For the electrode material, its stability properties, conductivity,
and charge–discharge rate [38] are better when the equivalent series resistance (Rs) value is smaller.
The diameter of a semicircle at high-frequency represents charge–transfer resistance Rct. The slope
of the line can be ascribed to the diffusion and kinetics process called the Warburg impedance (Zw).
Importantly, a steep line indicates the better capacitive behavior in low-frequency region. Thus,
NZO-6h is unable to be a promising electrode material. However, the Rs values of the three samples
(NZO-3h, NZO-12h, and NZO-24h) are particularly close, being 0.35 Ω, 0.31 Ω, and 0.33 Ω. Rct values
are 3.39 Ω, 1.25 Ω, and 1.74 Ω, respectively. It can be concluded that NZO-12h has the smallest Rs

and Rct. Moreover, the slope of the NZO-12h is closer to the vertical line, representing a more rapid
ion-diffusion-transfer rate. Therefore, NZO-12h is an excellent candidate for the supercapacitor, which
is consistent with above analysis.
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Figure 11. (a) EIS plots of NZO electrodes with different hydrothermal time; (b) the corresponding
high-frequency region of EIS.

In order to explore practical applications of the flower-like NZO-12h, it is necessary to fabricate
an asymmetric capacitor. The NZO-12h was regarded as a positive electrode and AC as a negative
electrode, and the electrochemical performance was tested in 6 M KOH electrolyte. After calculation,
the mass ratio of the NZO-12h and AC was 1:3.98. Figure 12a shows the CV curves of AC at different
scan rates in the potential window of −1.0–0 V. It was found that the shape of the curve was close
to a rectangle without redox peak, indicating the behavior of an electrical double-layer capacitance.
When the scan rate increases from 5 to 50 mV/s, the capacitance of the AC remains 73.4%, indicating
its good rate capability. Figure 12b shows the CV curves of AC and NZO-12h, which was recorded
in a three-electrode system and tested at a scan rate of 10 mV/s. There is no doubt that the positive
and negative electrodes were well matched each other for assembling asymmetric supercapacitors.
Figure 12c exhibits the CV curves of the asymmetric supercapacitor at different scan rates of 5, 10,
25, and 50 mV/s with the potential of 0–1.5 V. It was found that the shape of the CV curves were
nearly quasi-rectangular, even at a scan rate of 50 mV/s, indicating the asymmetric capacitor device
has low resistance. The GCD curves of the asymmetric supercapacitor at different current densities
were shown in Figure 12d. According to GCD measurement, energy density (E) and power density (P)
can be calculated as follows [39]:

E =
1

2 × 3.6
CV2 (4)

P = E × 3600/∆t (5)
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In this equation, E (Wh kg−1) and P (W kg−1) are the energy density and power density. C, V,
and ∆t are specific capacitance, operating voltage, and discharge time, respectively.

Ragone plot relative to the corresponding energy and power densities of the asymmetric
supercapacitor was shown in Figure 12e. Clearly, the highest energy density of 27.13 Wh kg−1 was
obtained at a power density of 321.42 W kg−1, and still remains 14.81 Wh kg−1 at a high-power density
of 744.72 W kg−1. The obtained values are superior to results found in the literature of other asymmetric
systems, such as fabricated CNFs/MnO2//AC (20.3 Wh kg−1 at 485 W kg−1) [40], MnO2//AC
(7.8 Wh kg−1 at 338 W kg−1) [41], the novel CNT@NCT@MnO2 composites (13.3 Wh kg−1 at
90 W kg−1) [42], FeCo2O4@MnO2 nanostructures on carbon fibers (22.68 Wh kg−1 at 406.01 W kg−1) [43],
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graphene-MnO2//graphene-MnO2 (6.8 Wh kg−1, 62.0 W kg−1) [44], and AC//MnO2-CNTs
(13.3 Wh kg−1 at 600.0 W kg−1) [45].

4. Conclusions

In summary, NZO with various hydrothermal time was fabricated through a facile, simple, and
low-cost hydrothermal method. For four kinds of electrode materials, the NZO-12h exhibited better
electrochemical performance than the others (NZO-3h, NZO-6h, and NZO-24h). This phenomenon
was attributed to the large specific surface area of the NZO-12h sample, which is advantageous for the
occurrence of redox reactions. Electrochemical results show the NZO-12h electrode exhibited a high
specific capacitance of 985.0 F/g (3.94 F/cm2) at 5 mA/cm2 and 587.5 F/g (2.35 F/cm2) at 50 mA/cm2.
Besides, 74.9% capacitance retention was obtained after 1500 cycles charge/discharge cycles, which
indicates excellent cycling stability of NZO-12h. Moreover, the electrochemical performance of an
asymmetric supercapacitor was measured, and the specific capacitance of the device was 85.7 F/g at
0.4 A/g. Moreover, the device can deliver a maximum energy density of 27.13 Wh kg−1 at a power
density of 321.42 W kg−1. Therefore, the obtained NZO-12h hybrid is a promising candidate for
asupercapacitor. Importantly, our present study provides a strategy for the preparation of other hybrid
metal oxides.
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