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Abstract: Octacyanometallate-based compounds displaying a rich pallet of interesting physical
and chemical properties, are key materials in the field of molecular magnetism. The [M(CN)8]n−

complexes, (M = WV, MoV, NbIV), are universal building blocks as they lead to various spatial
structures, depending on the surrounding ligands and the choice of the metal ion. One of the
functionalities of the octacyanometallate-based coordination polymers or clusters is the magnetocaloric
effect (MCE), consisting in a change of the material temperature upon the application of a magnetic
field. In this review, we focus on different approaches to MCE investigation. We present examples of
magnetic entropy change ∆Sm and adiabatic temperature change ∆Tad, determined using calorimetric
measurements supplemented with the algebraic extrapolation of the data down to 0 K. At the field
change of 5T, the compound built of high spin clusters Ni9[W(CN)8]6 showed a maximum value
of −∆Sm equal to 18.38 J·K−1 mol−1 at 4.3 K, while the corresponding maximum ∆Tad = 4.6 K was
attained at 2.2 K. These values revealed that this molecular material may be treated as a possible
candidate for cryogenic magnetic cooling. Values obtained for ferrimagnetic polymers at temperatures
close to their magnetic ordering temperatures, Tc, were lower, i.e., −∆Sm = 6.83 J·K−1 mol−1

(∆Tad = 1.42 K) and−∆Sm = 4.9 J·K−1 mol−1 (∆Tad = 2 K) for {[MnII(pyrazole)4]2[NbIV(CN)8]·4H2O}n

and{[FeII(pyrazole)4]2[NbIV(CN)8]·4H2O}n, respectively. MCE results have been obtained also for
other -[Nb(CN)8]-based manganese polymers, showing significant Tc dependence on pressure or
the remarkable magnetic sponge behaviour. Using the data obtained for compounds with different
Tc, due to dissimilar ligands or other phase of the material, the ∆Sm ~ Tc

−2/3 relation stemming
from the molecular field theory was confirmed. The characteristic index n in the ∆Sm ~ ∆ Hn

dependence, and the critical exponents, related to n, were determined, pointing to the 3D Heisenberg
model as the most adequate for the description of these particular compounds. At last, results
of the rotating magnetocaloric effect (RMCE), which is a new technique efficient in the case of
layered magnetic systems, are presented. Data have been obtained and discussed for single
crystals of two 2D molecular magnets: ferrimagnetic {MnII(R-mpm)2]2[NbIV(CN)8]}·4H2O (mpm =
α-methyl-2-pyridinemethanol) and a strongly anisotropic (tetren)Cu4[W(CN)8]4 bilayered magnet
showing the topological Berezinskii-Kosterlitz-Thouless transition.

Keywords: molecular magnets; magnetocaloric effect; octacyanometallates; critical behaviour;
coordination polymers

1. Introduction

In the quest for novel materials which could be used in modern technologies, molecular
substances play an important role, as they may show properties not available in conventional materials.
Molecule-based compounds attract much attention as they combine interesting magnetic, electronic,
and optical properties together with low weight, transparency, and chemical sensitivity. Molecular
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magnets represent a vast and still growing family of compounds based on molecular buildings blocks,
where organic groups mediate magnetic interactions between metal ions or may also carry their
own magnetic moment. Research into molecule-based materials is motivated by their potential
functionality due to the properties of the molecular building blocks or the specific character of
the resulting molecular network. Thanks to the rational design and advanced chemical syntheses,
it is possible to obtain systems with different magnetic dimensionalities: molecular ferro-, ferri-,
or antiferromagnets with the substantial ordering temperature Tc, magnetic molecular layers, magnetic
molecular chains, or magnetic molecular clusters, the latter two regarded as molecular nanomagnets.
In many cases, properties of the systems, like Tc, coercive field, magnetic moment, and colour, may be
changed and even controlled with different factors, such as temperature, irradiation with light, external
pressure, or sorption of guest molecules. Molecular magnets which show spin crossover transition,
photomagnetism, magnetic sponge behaviour, or optical activity are potential candidates for efficient
sensors and switches. On the other hand, superparamagnetic character, slow relaxation, and quantum
tunneling in anisotropic high-spin clusters, may be used in high-density magnetic storage, spintronics,
or quantum computing. Results of extensive studies on molecular magnetism have been reviewed in
books and monographies [1–4].

The relatively later explored functionality of molecular magnets has been the magnetocaloric effect
(MCE), consisting in change of the material temperature when a magnetic field is applied or removed.
MCE is an intrinsic thermodynamic property of all magnetic solids: it occurs in paramagnets, ferro-,
and ferrimagnets [5] but also in antiferromagnets at the metamagnetic transition [6]. Investigations of
MCE are significant also for the basic reason that its dependence on the magnetic field is related to the
critical behaviour of the material. The microscopic description of MCE has been presented in [7–10].
Of particular interest are “magnetic coolers”, i.e., substances for which an adiabatic demagnetization
provokes the substantial temperature decrease. The value of the effect depends on the temperature
derivative of magnetization, thus for paramagnets it is strongest at the lowest temperatures, while for
ordered magnets it achieves maximum at the magnetic ordering temperature Tc. The aim is to replace
standard, non-ecological refrigeration techniques, studies on magnetocaloric effect in conventional
magnetic solids are concentrated on cooling in the room temperature range.

The most suitable candidates for magnetic refrigeration are here systems like Gd5Si2Ge2,
Tb5Si2Ge2, MnAs, or Ni-Mn-In Heusler alloys [11]. Materials with first order magnetic transitions at
Tc may be considered as most suitable for large MCE but thermal and magnetic losses appearing in
transitions of this type may impede the practical applications. Consequently, materials showing the
second order magnetic phase transition are also taken into account. Interest in the magnetocaloric
effect in molecular materials and “chilling with magnetic molecules” [12] started about a decade
ago. At first, it has been investigated for slowly relaxing molecular nanomagnets with large spin,
Single Molecule Magnets (SMM) [2]. Because of the large ground-state spin S of SMM, the entropy
associated with the magnetic degrees of freedom, Sm = Rln(2S+1) (R is the gas constant) should be
sizeable. However, molecular anisotropy, which is essential in SMMs as it decides on long relaxation
time and blocking temperature, delays magnetization and demagnetization of the system, thus brings
about weak MCE. As stated by Evangelisti and Brechin, the ideal molecular refrigerant should have
large spin, negligible magnetic anisotropy, prevailing ferromagnetic coupling, and large magnetic
density [13]. These conditions are fulfilled in metal–organic frameworks with densely packed magnetic
ions, like [Gd(HCOO)3] [14]. Large values of MCE observed in frameworks are not related to transition
at Tc as these systems remain paramagnetic or show the long-range order only in the sub-Kelvin
range. MCE originates here from the Schottky anomaly consequent on splitting of the energy levels in
the field. Very large MCE values have been also observed in the ferromagnetic acetate tetrahydrate
Gd3+ dimer [15], in the high nuclearity Gd42Co10 cluster [16], and in a 24-Gd capsule-like cluster
at temperature 2.5 K [17]. An interesting increase in the magnetocaloric effect in MnII glycolate on
transition between the three-dimensional coordination polymer and discrete mononuclear phase
induced by water molecules was reported in [18]. It follows that MCE in molecular clusters will play
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an important role in cooling in the sub-Kelvin temperature range. Advances in the design of magnetic
molecules for use as cryogenic magnetic coolants were reviewed in [19].

This paper presents investigations on the magnetocaloric effect performed by us for molecular
magnets based on octacyanidometallates. As it has been known from long-lasting studies of Prussian
blue analogs, MA

II[MB
III(CN)6]2/3·zH2O or AIMA

II[MB
III(CN)6] (MA

II and MB
III are 3d metal ions and

AI is the alkali ion), as well as of other hexacyanidometallates, the cyanobridge is able to mediate
strong antiferromagnetic or ferromagnetic interactions between the metal moments [20]. Besides high
temperatures of magnetic order reaching room temperature, Prussian blue analogs (PBAs) may show
many fascinating properties, like light- and pressure switchable magnetism, magneto-optical effects,
or chemically controlled growth of nanosized systems [21]. Unlike the hexacyano- [M(CN)6] blocks of
octahedral symmetry, which set up the cubic structure of PBAs, bimetallic octacyanometallates are
based on more flexible building blocks offering eight CN-bridges to link the M and M’ metal ions. Most
often used [M(CN)8] blocks are 5d [WV(CN)8] or 4d [NbIV(CN)8] and [MoV(CN)8] complexes, all of
spin S = 1/2. Eight possible coordination sites, the proper choice of other metal M’ and of additional
organic ligands resulted in a variety of obtained structures and magnetic properties [22–24]. Among
octacyanometallates one can find slowly relaxing systems [25–27], guest-molecule absorptive porous
networks [28,29], photomagnets [30,31], and magneto-optically active compounds [32], as well as
molecular sponges, which change, in a reversible way, the ordering temperature Tc and the coercive
field Hc upon hydration/dehydration process [33] and other functional materials [34].

Below, we discuss the magneto-thermal properties of the octacyanometallates showing the different
types of crystal architecture. The most numerous group is the family of 3D octacyanoniobate-based
networks with different nonmagnetic organic ligands which significantly affect the structure and overall
behaviour of the material. Another subject under study is the high-spin dodecanuclear cluster compound
Ni9[W(CN)8]6, a possible candidate for cryogenic magnetic cooling. Two experimental methods for
measuring the MCE data, i.e., calorimetry and/or magnetometry were used. Moreover, the new
approach, consisting in measuring MCE for two perpendicular sample orientations (so called Rotating
Magnetocaloric Effect RMCE), is reported for a low anisotropy 2D {MnII(R-mpm)2]2[NbIV(CN)8]}·4H2O
ferrimagnet, as well as for an anisotropic bilayered 2D Cu4[W(CN)8]4 molecular crystal showing the
topological phase transition. Conclusions regarding the scaling and critical behaviour in some systems
under study are also included.

2. Deriving Magnetocaloric Effect from Calorimetric Data

2.1. Thermodynamic Setup

The magnetocaloric effect (MCE) is quantified either by the isothermal entropy change ∆Sm or
the adiabatic temperature change ∆Tad due to the external field change Hi→Hf. While the former
quantity may be derived from magnetometric data by using the integral version of the Maxwell relation
∂S(T, H)/∂H = ∂M(T, H)/∂T, the latter one can be obtained solely from calorimetric data. In this
way, the heat capacity measurements performed without an external magnetic field as well as in a
nonzero field represent a more complete set of characteristics allowing one to arrive at both MCE
quantities. The step of pivotal importance in such a derivation is the determination of the temperature
and field dependence of the entropy thermodynamic function S(T,H). Then, the isothermal entropy
change ∆Sm is obtained by a simple subtraction:

∆Sm(T, ∆H = Hf − Hi) = S(T, Hf)− S(T, Hi) (1)

while the calculation of the adiabatic temperature change ∆Tad is based on the formula:

∆Tad(T, ∆H = Hf − Hi) = [T(S, Hf)− T(S, Hi)]S (2)
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which requires the inversion of the S(T,H) dependence with respect to variable T. However, the above
procedure is not as straightforward as it might seem. The problem lies in the experimental limitations
where we can measure the heat capacity Cp(T,H) down to a possibly small but finite temperature TL

never reaching the limit of 0 K, while for the correct determination of the S(T,H) function one needs to
know the Cp(T,H) function from zero absolute temperature: S(T, H) =

∫ T
0 Cp(T′, H)/T′dT′. A natural

way to solve the problem is using a plausible extrapolation scheme. In what follows we will present
two such schemes employed in the investigations of molecular magnets. The first scheme is more
complete and involves the determination of the so called baseline incorporating the lattice contribution
to the heat capacity. Having the baseline, one can extract the magnetic excess heat capacity ∆Cp and
extrapolate it down to 0 K by assuming a two parameter algebraic function ∆Cp(T, H) = A(H)TB(H)

which is believed (there are no theoretical accounts of that) to work well for the nonzero-field case
as it is well-known to do in the zero-field case (the Bloch law for ferromagnets). The extrapolation
scheme consists in two independent steps. Firstly, the algebraic function is fitted to the magnetic
excess heat capacity data ∆Cp in the narrow temperature range [TL,Tmax] for the different applied
field values. Next, the resultant fits are complemented with the extrapolated baseline to yield the final
form of the sought-for low temperature extrapolation of Cp(T,H). The other scheme is a simplified
one as it obviates the need to determine the normal heat capacity (baseline). However, it does require
the extrapolation of the Cp data down to 0 K. The extrapolation is performed assuming again a two
parameter function Cp,LT(T, H) = A(H)T3 + B(H)T3/2, where the first term corresponds to the lattice
contribution, while the second term represents the Bloch law for the magnonic contribution.

The above schemes will be exemplified by three compounds belonging to the class of molecular
magnets. The first compound (1) with the chemical formula {Ni[Ni(4,4′dtbpy)(H2O)]8[W(CN)8]6}·
17H2O (4,4′dtby − 4-4-di-tert-butyl-2,2′-bipyridine, C20H24N2O4) (Ni9[W(CN)8]6 in short) consists
of unique clusters. The main component of the compound is a fifteen-center cyanido-bridged
Ni(II)9W(V)6 molecule forming a cube-like framework to which the spacious tert-butyl substituted
bipyridine ligands are connected. The spin carried by the W(V) ion is SW = 1/2, while that of
the Ni(II) ion is SNi = 1. This allows one to calculate the maximal molar magnetic entropy of the
cluster as equal to Smax,1 = R ln (2SNi + 1)9(2SW + 1)6 ≈ 116.79 J·K−1·mol−1, which makes one
anticipate a considerable magnetocaloric response. However, the spins constituting the cluster are
ferromagnetically coupled through the cyanide linkages giving rise to a relatively high spin S = 12 [35],
which leads to the entropy content amounting to R ln(2S + 1) ≈ 26.76 J ·K−1 ·mol−1 ≈ Smax,1/5. It is
this reduced value that sets the order of magnitude of MCE at low temperatures, where the intracluster
interactions are at play. The detailed study of MCE for this compound was reported in [36]. The second
compound (2) is a bimetallic molecular magnet {[MnII(pyrazole)4]2[NbIV(CN)8]·4H2O}n (pyrazole
is a five membered ring ligand C3H4N2) [37].The MnII ions carry the spin of SMn = 5/2, while the
NbIV ions possess the spin of SNb = 1

2 , which implies that the maximal molar magnetic entropy of
the system is Smax,2 = R ln (2SMn + 1)2(2SNb + 1) ≈ 35.56 J·K−1 mol−1. This, together with the fact
that the compound exhibits the second-order phase transition, makes one anticipate a considerable
magnetocaloric response. Yet, an antiferromagnetic coupling between the MnII and NbIV ions was
suggested by the analysis of the magnetometric data [37], which implies that a more representative
spin value per formula unit (at least in the magnetic fields below the decoupling threshold) is S = 2SMn

− SNb = 9/2. The corresponding entropy content is reduced down to R ln(2S + 1) ≈ 19.14 J·K−1 mol−1

but still substantial. The detailed analysis of MCE for 2 was reported in [38]. The third compound (3)
is a bimetallic coordination polymer {[FeII(pyrazole)4]2[NbIV(CN)8]·4H2O}n, isostructural with 2 [37].
The spin of the FeII ion is SFe = 2, while the spin carried by the NbIV ion is SNb = 1

2 , which sets the
maximal molar magnetic entropy of the system as equal to Smax, 3 = R ln (2SFe + 1)2(2SNb + 1) ≈
32.53 J·K−1 mol−1. The compound is known to display the second-order phase transition and thus a
considerable magnetocaloric effect may be anticipated. On the other hand, the preliminary analysis
of the magnetometric data implied an antiferromagnetic coupling between the constituent ions [37],
which suggests that the total spin of S = 2SFe − SNb = 7/2 is a more representative spin value per
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formula unit, at least in the low temperature and low field regime. The entropy content associated
with this spin value amounts to R ln(2S + 1) ≈ 17.29 J·K−1 mol−1, which is reduced by half but still
substantial. The detailed report of MCE for this compound is given in [39].

2.2. Cluster Compound Ni9[W(CN)8]6

The compound crystallizes in a triclinic system, space group P1. The unit cell comprises one
centrosymmetric cluster, the structure of which is shown in Figure 1. Due to the relatively large
size of the tert-butyl substituted bpy (bpy = 2,2′-bipyridine = C10H8N2) the distances between the
cluster centers exceed 20

1 

 

Ǻ  and the π–π interactions in the system are practically absent. Hence the
inter-cluster superexchange interactions may be completely neglected in the studied temperature
range of 2–300 K.
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Figure 1. Core of the Ni9W6 clusters: W—magenta; Ni—cyan; N—blue; C—black. The relative sizes of
the balls correspond to the atomic radii of the respective atoms.

Heat capacity of the compound was detected on cooling with the PPMS instrument without a
field and for an array of applied field values in the temperature intervals 0.4–20 K with the 3He probe
and 1.8–100 K with the standard probe cooled with liquid 4He. Due to the different sensitivities of
the probes in different temperature regimes, we used the data provided by the former system below
15 K and those provided by the latter system above 15 K. In the zero applied field a broad anomaly of
width about 2 K with a very flat maximum around 1.9 K was revealed, see Figure 2. An increasing
applied field is apparent to gradually suppress the anomaly leaving no trace of it for the maximal field
value of 9T.
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The zero-field heat capacity of 1 is depicted in Figure 3 in the range of 0.4–100 K. To construct the
baseline an approximate approach was employed. The observed Cp values within the specific range
30–63 K above the anomaly, which we shall elucidate in what follows, are assumed to comprise two
separate contributions. The first contribution involves the lattice degrees of freedom Cp(lattice) and the
second contribution Cmag(H,T) is due to the Schottky-like anomaly anticipated for spin clusters coupled
via the exchange interactions. While a polynomial approximation involving cubic and higher-order
terms is employed to describe the former, the latter is introduced with the term proportional to T−2.
Thus the experimental heat capacity values are assumed to be represented within the range of 30–63 K
by the following formula:

Cp = Cp(lattice) + Cmag(HT) =
m

∑
i=3

aiTi + bT−2 (3)

Fitting Equation (3) with m = 6 to the experimental heat capacity values yielded a3 = 6.07(7) ×
10−2 J·K−4 mol−1, a4 = −2.08(4) × 10−3 J·K−5 mol−1, a5 = 2.76(9) × 10−5 J·K−6 mol−1, a6 = −1.33(6) ×
10−7 J·K−7 mol−1, and b = 45,355.9(1) J·K·mol−1. The baseline is defined by Cp(lattice) thus determined
and extrapolated down to 0 K (green solid curve in Figure 3). The subtraction of the baseline from the
detected heat capacity values yields the magnetic excess heat capacity ∆Cp, see Figure 4.
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To calculate the entropy content associated with the excess heat capacity ∆Cp in zero field the
low temperature behaviour of ∆Cp was additionally analyzed. A function f Tµ was fitted to the
magnetic excess heat capacity in the narrow range of 0.41−0.62 K (10 experimental points). The best
fit yielded f = 11.1(2) J·K−(1+µ)mol−1 and µ = 1.04(2) (see Inset of Figure 3). The low-temperature
algebraic best-fit function was next used to estimate the entropy contribution in the temperature range
0–0.62 K. The entropic contribution in the temperature range 0.62–63 K was obtained by numerical
integration of the area under the excess heat capacity signal ∆S =

∫
∆Cpd ln T. Finally, the high

temperature excess heat capacity bT−2 was used to estimate the entropic contribution above 63 K.
The total entropy content amounts to 116.97 J·K−1·mol−1 and is slightly higher than the value of
Smax,1 = 116.79 J·K−1·mol−1. Such a good level of agreement of the calculated magnetic entropy with
the theoretically predicted value is not accidental. The particular choice of the temperature interval
used to determine the baseline (30–63 K) was made so as to reproduce the total magnetic entropy
associated with the reported spin cluster. The above procedure was automatized within a specially
designed notebook of the Mathematica 8.0 environment.
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Equations (1) and (2) were used to determine temperature dependences of ∆Sm and ∆Tad.
The entropy thermodynamic function S(T,H) was calculated upon the algebraic extrapolation of
the magnetic excess heat capacity ∆Cp down to 0 K using the data in the interval 0.40–0.63 K
(10 experimental points) for each field value. The resultant extrapolating functions were next appended
with the baseline to yield the final forms of Cp(T,H).

Temperature dependence of ∆Sm for several indicated field change values (µ0∆H = µ0(H-0) =
µ0H) is depicted in Figure 5. The −∆Sm vs. T curves display maxima placed in the range 2.4−6.5 K
in addition to becoming broader and higher with increasing field change values. The peak values
of |∆Sm| and positions are given in Table 1. |∆Speak

m | for µ0∆H = 5 T of other magnetic molecules
was reported to range from 25 to 45 J·K−1·kg−1 [19] which is considerably higher than |∆Speak

m | =
3.36 J·K−1·kg−1 (18.38 J·K−1·mol−1) recorded for 1. This is most probably due to the relatively higher
molecular weight of 1. On the other hand, the observed |∆Speak

m | values lie close to the low temperature
physical threshold defined by R ln(2S+ 1) ≈ 26.76 J·K−1·mol−1 with S = 12. In the whole experimental
range, the −∆SM values remain positive exceeding 3 J·K−1·mol−1, although it is apparent they steeply
drop below their peaks.
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Table 1. Peak values of ∆Sm and ∆Tad of 1.

µ0∆H (T) Tpeak (K) |∆Speak
m |(J·K−1·mol−1) Tpeak (K) ∆Tpeak

ad (K)

1 2.4 7.18 2.9 1.6
2 3.0 11.42 2.6 2.8
3 3.5 14.48 2.4 3.6
4 3.9 16.62 2.3 4.2
5 4.3 18.38 2.2 4.6
7 5.3 20.86 2.0 5.2
9 6.5 22.77 2.0 5.6

One usually looks at the parameter n (= d ln |∆Sm|/d ln H) conveniently quantifying the local
sensitivity of the isothermal entropy change ∆Sm to the external field amplitude H = ∆H = Hf
(Hi = 0). The value of n means that in the vicinity of a given thermodynamic point (T,H) the
entropy change is approximately given by the power function Hn. At high temperatures, where the
magnetization is directly proportional to the field (the Curie–Weiss law), the integral version of the
Maxwell relation implies a quadratic field dependence of ∆Sm, giving rise to n = 2. Figure 6 shows
the temperature dependence of the field-averaged value of parameter n for 1. The field-variation
of n differs in intensity at different temperatures, which is reflected by the size of the error bars.
The behaviour of n is consistent with the above high-temperature paradigm, showing a steady increase
with temperature and approaching the limiting value of 2. At the experimental low-temperature
threshold parameter n attains a value as low as 0.16.
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In Figure 7 the adiabatic temperature change ∆Tad is depicted. All the ∆Tad(T) curves can be seen
to display well-defined peaks. The peak amplitudes of ∆Tad and the corresponding peak positions
are listed in Table 1. The value of ∆Tpeak

ad for µ0∆H = 1, 3, 5, 7 and 9 T amounts to 1.6, 3.6, 4.6, 5.2, and

5.6 K, respectively. The record beating Gd3+ dimer with ∆Tpeak
ad ≈ 3.5, 9.0, 12.7 K for µ0∆H = 1, 3, and

7 T, respectively [40], exceeds the ∆Tpeak
ad values of 1 more than twice. However, they fall closer to

those reported for the Mn32 cluster (∆Tpeak
ad ≈ 2.2, 4.5, 6.7 K for µ0∆H = 1, 3, and 7 T, respectively) [41].

The values of ∆Tpeak
ad reported for the compound {[NiII(pyrazole)4]2 [NbIV(CN)8]· 4H2O}n, 2.0 K for

µ0∆H = 5 T, and 2.9 K for µ0∆H = 9 T [42], are significantly lower than for 1. The still lower value was
recorded for molecular magnet Mn2-pyridazine-[Nb(CN)8] (1.5 K for µ0∆H = 5 T), but this is probably
due to the relatively higher transition temperature of 43 K [43].
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temperature range of 1.9‒101 K revealed a well-defined λ-shaped anomaly at 22.8 K (slightly lower 
than the magnetometric counterpart) providing evidence of the presence of a magnetic continuous 
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2.3. Coordination Polymer {[MnII(pyrazole)4]2[NbIV(CN)8]·4H2O}n

Compound 2 crystallizes in the tetragonal space group I41/a [37]. Its unique structure consists
of a 3D skeleton, where each MnII center is bridged to only two NbIV ions through the cyanido
linkages MnII-NC-NbIV, while each NbIV centre is linked to four MnII ions. The remaining part of
the pseudooctahedral coordination sphere of MnII is substituted with pyrazole molecules, while four
further terminal cyanide ligands are linked with the NbIV ion. It is an interesting and unique structural
feature that a three-dimensional (3D) extended network should emerge from such low connectivity
indices. Figure 8 shows the crystal structure of the compound for instant reference.
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Figure 8. Structure of 2. (a) View of the structure along the c (a) and b (b) crystallographic axes.
For clarity the water molecules, the hydrogen atoms, and all nonbridging cyanido ligands have
been removed.

The magnetic data imply that at Tc ≈ 23.8 K compound 1 undergoes a phase transition to the
long-range magnetically ordered state [37]. The mean-field approach was employed to analyze the
isothermal magnetization and the dc susceptibility, revealing the antiferromagnetic character of the
coupling between the MnII and NbIV centers, which gives rise to an overall ferromagnetic behaviour.
The coupling constant was estimated to amount to −6.8 cm−1 (−9.8K) [37].

The relaxation calorimetry technique implemented in the PPMS Quantum Design instrument was
used to measure the heat capacity of 1. The zero-field measurements carried out in the temperature
range of 1.9-101 K revealed a well-defined λ-shaped anomaly at 22.8 K (slightly lower than the
magnetometric counterpart) providing evidence of the presence of a magnetic continuous transition,
see Figure 9. Additionally, the sample was measured in the applied field of µ0H = 0.1, 0.2, 0.5,
1, 2, 3, 4, 5, 7, and 9T in the range of 1.9–40.4 K in the cooling direction. To estimate the normal
heat capacity (baseline), the observed Cp values within the specially selected range 31–55 K above
the transition temperature (justified in what follows) were considered to involve two independent
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contributions. The first contribution originates from the lattice degrees of freedom Cp(lattice) and the
second contribution is magnetic and due to the short-range order Cmag (short-range order). While
the latter is introduced by the term proportional to T−2, a polynomial approximation with cubic and
higher order terms is used to model the former. Thus the experimental values of the heat capacity
within the range of 31−55 K are assumed to be given by the formula:

Cp = Cp(lattice) + Cmag(short− range order) =
n

∑
i=3

aiTi + bT−2 (4)

Fitting Equation (4) with n = 6 to the experimental heat capacity values yielded a3 = 1.8674 ×
10−2 J·K−4·mol−1, a4 = −7.0801 × 10−4 J·K−5·mol−1, a5 = 1.0546 × 10−5 J·K−6·mol−1, a6 = −5.7808 ×
10−8 J·K−7·mol−1, and b = 8345.94 J·K mol−1. The lattice heat capacity Cp(lattice) thus determined
extrapolated down to 0 K defines the baseline (solid curve in Figure 9).
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Figure 9. Zero-field total heat capacity of 2 (symbols) with the baseline (solid line). Inset: Zero-field
magnetic excess heat capacity in the log-log plot (symbols) with the linear fit in the low temperature
regime (solid line).

The subtraction of the lattice heat capacity from the detected heat capacity values yields the
magnetic excess heat capacity ∆Cp, see Figure 10. Increasing magnetic field is apparent to suppress the
anomaly peak. Moreover, consistently with a system with dominating antiferromagnetic coupling it
slightly moves the anomaly toward lower temperatures. The calculation of the entropy associated with
zero-field ∆Cp proceeded in three separate steps. Firstly, the contribution to the entropy above 55 K was
estimated by considering the high temperature excess heat capacity bT−2. Secondly, the contribution
in the temperature range 1.9–55 K was calculated using the formula ∆S =

∫
∆Cpd ln T. And finally,

to obtain the low temperature contribution function fTµ was fitted to ∆Cp in the range of 1.9–3.0 K,
yielding f = 0.45(1) J·K−(1+µ) mol−1and µ = 1.45(3) (see Inset of Figure 9). Next, the fitted function was
logarithmically integrated in the interval 0–1.9 K. The total magnetic entropy is received by summing
the above three contributions giving 35.31 J·K−1 mol−1. This value compares perfectly well with Smax,2

= 35.56 J·K−1·mol−1, which is attributable to the specific choice of the temperature interval (31–55 K)
used to determine the baseline.
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Figure 10. Magnetic excess heat capacity of 2.

Similarly as for 1 using Equations (1) and (2), the isothermal entropy change ∆Sm and the
adiabatic temperature change ∆Tad were determined. The entropy thermodynamic function S(T,H)
was calculated using the baseline and the algebraic extrapolation of ∆Cp based on the data in the
temperature range of 1.9–3.0 K. Figure 11 shows the temperature dependence of ∆Sm for µ0∆H = 0.1,
0.2, 0.5, 1, 2, 3, 4, 5, 7 and 9T (Hi = H, Hf = 0). It is apparent that the corresponding curves display a peak.
In Table 2 the peak values of ∆Sm together with the peak positions are provided. In addition to the
∆Sm data inferred from the calorimetric measurements Figure 11 shows also the ∆Sm values obtained
by using the Maxwell relation from the magnetometric data [42]. Except for the two highest field
change values (4 and 5 T), where the magnetometric data are slightly scattered around the smoother
calorimetric data, both sets agree strikingly well. The lack of smoothness is probably a consequence of
the problems of the particular instrument with temperature stabilization.
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Figure 11. Temperature dependence of the isothermal entropy change ∆Sm of 2 inferred from the heat
capacity measurements (spheres) or from the isothermal magnetization measurements (stars).

The value of ∆Speak
m = 6.83 J·K−1·mol−1 detected for µ0∆H = 5T slightly exceeds that reported

in [42] (6.7 J·K−1·mol−1). The isostructural compound {NiII(pyrazole)4]2[NbIV(CN)8]·4H2O}n reveals
at the same time the lower entropy change of 6.1 J·K−1·mol−1 [42], which most probably can be
attributed to the smaller spin value of the NiII ion (SNi = 1). Figure 12 shows the thermal dependence
of the field-averaged exponent n for 2. On heating parameter n it is apparent that it smoothly decreases
down to the minimal value of 0.62 attained at 23.6 K (slightly above the transition temperature),
and subsequently increases toward the high temperature value of 2. At the transition temperature
TN = 22.8 K parameter n takes on the value of 0.64. It can be compared to that calculated using the
relationship: n|T=Tc

= 1 + (β− 1)/(β + γ) [8,44]. The value of 0.6424(4), obtained with the above
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equation and the theoretical estimates of β = 0.3689(3) and γ = 1.3960(9) for the 3D Heisenberg
universality class [45], is very close to that obtained for 2.

Table 2. Peak values of ∆Sm and ∆Tad of 2.

µ0∆H (T) Tpeak (K) |∆Speak
m |(J·K−1·mol−1) Tpeak (K) ∆Tpeak

ad (K)

0.1 23.3 0.29 23.3 0.06
0.2 23.8 0.68 23.3 0.14
0.5 23.8 1.50 23.8 0.30
1 23.8 2.44 23.8 0.50
2 24.3 3.85 23.8 0.80
3 24.3 4.99 23.8 1.04
4 24.3 5.97 23.8 1.24
5 24.3 6.83 23.8 1.42
7 24.3 8.30 23.8 1.73
9 25.5 9.49 23.8 1.97

Crystals 2018, 8, x 12 of 33 

 

2 24.3 3.85 23.8 0.80 
3 24.3 4.99 23.8 1.04 
4 24.3 5.97 23.8 1.24 
5 24.3 6.83 23.8 1.42 
7 24.3 8.30 23.8 1.73 
9 25.5 9.49 23.8 1.97 

The value of peak
mSΔ  = 6.83 J·K−1·mol−1 detected for μ0ΔH = 5T slightly exceeds that reported in 

[41] (6.7 J·K−1·mol−1). The isostructural compound {NiII(pyrazole)4]2[NbIV(CN)8]·4H2O}n reveals at the 
same time the lower entropy change of 6.1 J·K−1·mol−1 [41], which most probably can be attributed to 
the smaller spin value of the NiII ion (SNi = 1). Figure 12 shows the thermal dependence of the field-
averaged exponent n for 2. On heating parameter nit is apparent that it smoothly decreases down to 
the minimal value of 0.62 attained at 23.6 K (slightly above the transition temperature), and 
subsequently increases toward the high temperature value of 2. At the transition temperature TN = 
22.8 K parameter n takes on the value of 0.64. It can be compared to that calculated using the 
relationship: )/()1(1

c
γββ +−+=

=TT
n [8,43]. The value of 0.6424(4), obtained with the above equation 

and the theoretical estimates of β = 0.3689(3) and γ = 1.3960(9) for the 3D Heisenberg universality class 
[44], is very close to that obtained for 2. 

 

Figure 12. Temperature dependence of exponent n for 2. 

The ΔTad(T) curves are shown in Figure13. A two-peak structure of the curves is apparent. In 
addition to the expected peak located near the transition temperature they reveal the second peak at 
the lowest experimentally accessible temperatures. In Table 2 the primary peak values of ΔTad are 
provided. The positions of the primary peaks are practically independent of the applied field change. 
Moreover, there is their slight shift off the transition temperature toward higher temperatures. By 
contrast, the increasing magnetic field change seems to move the secondary peaks toward lower 
temperatures. The isostructural compound {NiII(pyrazole)4]2[NbIV(CN)8]·4H2O}n revealed higher 
values of ΔTad, i.e., 2.0 K for μ0ΔH = 5 T, and 2.9 K for μ0ΔH = 9 T [41]. The amplitudes of ΔTad reported 
for Mn2-pyridazine-[Nb(CN)8] (1.5 K for μ0ΔH = 5 T) [42] and hexacyanochromate Prussian blue 
analogues (1.2 K for μ0ΔH = 7 T) [45] are at the same time comparable to those for 2. 

Figure 12. Temperature dependence of exponent n for 2.

The ∆Tad(T) curves are shown in Figure 13. A two-peak structure of the curves is apparent.
In addition to the expected peak located near the transition temperature they reveal the second peak
at the lowest experimentally accessible temperatures. In Table 2 the primary peak values of ∆Tad
are provided. The positions of the primary peaks are practically independent of the applied field
change. Moreover, there is their slight shift off the transition temperature toward higher temperatures.
By contrast, the increasing magnetic field change seems to move the secondary peaks toward lower
temperatures. The isostructural compound {NiII(pyrazole)4]2[NbIV(CN)8]·4H2O}n revealed higher
values of ∆Tad, i.e., 2.0 K for µ0∆H = 5 T, and 2.9 K for µ0∆H = 9 T [42]. The amplitudes of ∆Tad
reported for Mn2-pyridazine-[Nb(CN)8] (1.5 K for µ0∆H = 5 T) [43] and hexacyanochromate Prussian
blue analogues (1.2 K for µ0∆H = 7 T) [46] are at the same time comparable to those for 2.

The occurrence of the secondary peaks in the ∆Tad(T) signal around 2 K points to the possibility
that beyond the experimentally accessible temperature range an additional magnetic transition is
concealed. This conjecture is neither confirmed by the shape of the ∆Sm(T) signal nor it was confirmed
by additional heat capacity measurements in the temperature range 0.8–10 K [38]. Therefore it seems
plausible that the reason for the presence of the secondary peaks is merely the proximity effect to the
natural boundary of the temperature scale (T = 0 K). In order to shed some light onto that point a
hypothetical paramagnetic medium was considered which consists of entities carrying the effective
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spins of S = 9/2 (2 SMn − SNb = 5/2 + 5/2 − 1/2). ∆Tad of this medium may be found solving the
following differential equation implied by the Maxwell thermodynamic relation:

dT
dH

= −
( ∂M(T,H)

∂T )H
CL(T) + CH(T, H)

(5)

where M(H,T) denotes the molar magnetization, CL stands for the lattice contribution to the total
heat capacity, CH is the magnetic contribution. The baseline determined for 2 may serve as CL.
The paramagnetic Hamiltonian corresponding to an isolated spin S subject to applied magnetic field
provides the basis to calculate CH and ∂M(T, H)/∂T. Let us note that in [38] an integral version of
Equation (5) was used, which is incorrect due to the explicit T-dependence of its right-hand side.
Solving Equation (5) with initial conditions T(Hi 6= 0) = Ti in the field interval [Hi,Hf = 0] for several
arbitrary values of the initial temperature Ti yields the system of adiabats shown in Figure 14 in the
(H,T) plane.
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Figure 14. Adiabats obtained by solving Equation (5) with different initial conditions. Two adiabats
are highlighted: the adiabat corresponding to the demagnetization process starting from 5 K and 9 T
(blue), the adiabat corresponding to the magnetization process starting at 5 K and 0 T continued up to
9 T (red). The arrows show the amplitudes of the corresponding adiabatic temperature changes ∆Tad.

Using Equation (5) the ∆Tad signal was calculated for the magnetization processes Hi = 0→ Hf,
with Hf assuming the integer field values, within the temperature interval 0 −55 K. The result is
shown in Figure 15 together with the ∆Tad signal of 2 (cf. Figure 13). Two points may be raised here.
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Firstly, the ∆Tad(T) curves of the hypothetical medium are peaked at 0 K, which is the direct vicinity
of the secondary peaks in the ∆Tad signal of 2. Secondly, the magnitude of ∆Tad of 2 is about four
times smaller than that of the hypothetical medium. Strikingly enough, it may be concluded that the
presence of a magnetic phase transition at some finite temperature has an adverse effect on MCE.
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2.4. Coordination Polymer {[FeII(pyrazole)4]2[NbIV(CN)8]·4H2O}n

Compounds 2 and 3 share the crystallographic structure. The graphical representation of the
crystal structure of 3 is shown in Figure 8 with the MnII ions replaced by the FeII ions. The magnetic
data implied that the compound undergoes a transition to a long-range magnetically ordered state at
Tc ≈ 7.8 K [3,16]. Moreover, the muon spin rotation spectroscopy (µSR) strongly suggested that the
compound may be assigned to the universality class of the 3D Heisenberg model [40]. The calculations
based on the mean field-model and the magnetometric data pointed to the antiferromagnetic character
of the superexchange coupling between the FeII and NbIV centres [37].

The relaxation calorimetry technique implemented in the PPMS Quantum Design instrument
was employed to measure the heat capacity of 3. The measurements were carried out both without
applied field and in nonzero field in the range 0.36–20.2 K in the cooling direction. The temperature
dependences of ∆Sm and ∆Tad were determined by employing Equations (1) and (2). In this case
the entropy thermodynamic function S(T,H) was calculated without determining the normal heat
capacity. However, the calculation required the extrapolation of Cp down to 0 K. Two independent
contributions were considered in the extrapolation scheme involving two field-dependent parameters:
Cp,LT(T, H) = A(H)T3 + B(H)T3/2. The first contribution accounts for the lattice degrees of freedom,
whereas the second one is due to the magnonic excitations (the Bloch law).

Figure 16 shows the temperature dependence of ∆Sm for µ0∆H = 0.1, 0.2, 0.5, 1, 2, 5, and 9 T
(Hi 6= 0, Hf = 0). Table 3 lists the values of ∆Sm attained at the maximum. The isostructural compounds
{[MII(pyrazole)4]2[NbIV(CN)8]·4H2O}n with M = Ni and M = Mn reveal ∆Speak

m for µ0∆H = 5 T equal to
6.1 J·K−1·mol−1 and 6.7 J·K−1·mol−1, respectively, which is higher than the value of 4.9 J·K−1·mol−1

detected for 3 [42]. It is surprising that it should be so for the Ni congener as the NiII ion carries lower
spin (SNi = 1 < SFe = 2). However, it is consistent with the ferromagnetic superexchange present in the
Ni compound [37] and the relatively stronger anisotropy of the FeII centre [13].
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Table 3. Peak values of ∆Sm and ∆Tad of 3.

µ0∆H (T) Tpeak (K) |∆Speak
m |(J·K−1·mol−1) Tpeak (K) ∆Tpeak

ad (K)

0.1 8.9 0.3 8.8 0.1
0.2 8.9 0.5 8.8 0.2
0.5 8.9 1.0 8.9 0.4
1 9.3 1.6 8.8 0.6
2 9.3 2.7 8.8 1.1
5 10.3 4.9 8.9 2.0
9 6.9 6.9 8.8 2.8

The field-averaged exponent n of 3 vs. temperature is depicted in Figure 17. Its estimation drew
on the data in Figure 16. The n vs. T curve reveals a minimum of 0.63 slightly above Tc = 8.3 K (implied
by the peak in the zero-field heat capacity). On further increase of temperature, it increases toward the
value of 2, consistent with the fact that in the paramagnetic phase the susceptibility is independent of
field (the Curie-Weiss law). At Tc parameter n takes on the value of 0.64, which, like in the case of 2,
indicates that 3 belongs to the universality class of the 3D Heisenberg model.
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Temperature dependence of ∆Tad of 3 calculated using Equation (2) is shown in Figure 18. All the
∆Tad vs .T curves reveal peaks in the vicinity of Tc. The peak values together with the peak positions
are listed in Table 3 which indicates that the peak positions are slightly moved off Tc toward higher
temperatures and are practically independent of the applied field change value. The presence of a field
induced effect is suggested by the occurrence of an inflection point at about 4 K (most apparent for
higher fields) followed by a sharp drop. The values of ∆Tad are comparable to those reported for its
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Ni congener (2.0 K for µ0∆H = 5 T, and 2.9 K for µ0∆H = 9 T) [42], and larger than those found for
Mn2-pyridazine-[Nb(CN)8] (1.5 K for µ0∆H = 5 T) [43], hexacyanochromate Prussian blue analogues
(1.2 K for µ0∆H = 7 T) [46], and the Mn congener (1.42 K for µ0∆H = 5 T, and 1.97 K for µ0∆H = 9 T) [38].
The last case might seem surprising as the Mn ion carries the maximal spin value (SMn = 5/2) among
the 3d ions. However, the Mn congener (2) displays the transition to the magnetically ordered phase at
the temperature (22.8 K) which is more than twice as high than for 3, and the ratio of the magnetic
excess heat capacity to the lattice heat capacity is expected to decrease with temperature. Thus the
magnetic entropy for 2 may be admittedly higher than for 3, but it is faced with a relatively higher
heat capacity at the transition temperature, which suppresses the magnitude of ∆Tad.
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2.5. Final Remarks of Section 2

In this Section we have demonstrated how one can employ the calorimetric data to determine
two main characteristics of the magnetocaloric effect, i.e., the isothermal entropy change ∆Sm and the
adiabatic temperature change ∆Tad. The pivotal step in the corresponding procedure is the calculation
of the entropy thermodynamic function S(T,H) in the temperature interval starting from 0 K and
for the given applied field values. Due to the experimental limitations, where the heat capacity
measurements go down to a possibly small but finite temperature TL never reaching the limit of 0 K,
the procedure is out of necessity only approximate. The approximation consists in the extrapolation of
the low-temperature Cp(T,H) values from TL down to 0 K by using the heuristic algebraic function.
Two approaches were considered, the simplified approach obviating the need to determine the normal
heat capacity (baseline) and the more comprehensive approach, where the baseline is constructed using
the polynomial approximation. Both approaches were exemplified by three instances of molecular
magnets, the cluster compound involving 15 ferromagnetically coupled spins (1) and two isostructural
3D coordination polymers 2 and 3 including MnII and FeII ions, respectively. While 2 and 3 display the
transitions to the magnetically long-range ordered phases, compound 1 does not order magnetically
above 0.4 K. For the sake of comparison of the MCE signals of the studied compounds Figure 19 shows
the temperature dependences of the isothermal entropy change ∆Sm and the adiabatic temperature
change ∆Tad corresponding to the field change µ0∆H = 5 T. It is apparent that at the lowest temperatures
the cluster compound 1 substantially exceeds 2 and 3 in terms of the ∆Sm and ∆Tad signals. The peak
values of the ∆Sm quantity seem to monotonically depend on the constituent spin value with that for 1
being the highest (S = 12), that for 2 being intermediate (SMn = 5/2) and that for 3 being the smallest
(SFe = 2). This hierarchy breaks down for the ∆Tad peak values with the peak value of 3 exceeding
that of 2, which can be rationalized by remembering that higher temperatures involve higher heat
capacity values and a concomitantly lower heating or cooling effect. Compounds 2 and 3 can compete
with 1 in terms of the ∆Tad signal only in the intermediate temperature range. One can thus conclude
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that in order to optimize the MCE parameters one should strive to organize separate spin carriers in
ferromagnetically coupled clusters rather than in 3D extended networks.
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3. Magnetocaloric Properties and Critical Behaviour in Magnetically Ordered Compounds
Investigated by Magnetometry

3.1. {[MII(H2O)2]2[NbIV(CN)8]·4H2O}n(M = Fe, Mn) Molecular Compounds

{[MnII(H2O)2]2[NbIV(CN)8]·4H2O}n (4) and {[FeII(H2O)2]2[NbIV(CN)8]·4H2O}n (5) are isostructural
molecular magnets, which crystallize in tetragonal space group I4/m. Despite the same structure these
compounds show different types of magnetic moments order. Mn-based compound (4) is a ferrimagnet
with the coercive field equal to 0 Oe and critical temperature Tc equal to 50 K. Fe-based analogue (5)
is an example of a ferromagnet with the coercive field equal to 145 Oe and Tc equal to 43 K [47,48].
For both compounds the magnetocaloric effect was determined using an indirect method involving
the measurements of a series of isothermal magnetization curves as a function of external magnetic
field M(H) in a wide temperature range: above and below the critical temperature (Figure 20a).
The magnetic entropy change |∆S| was calculated based on the integrated Maxwell’s relation given
by the equation:

∆SM(T, ∆H) =
∫ H2

H1

(
∂M(T, H)

∂T
)

H
dH (6)

As expected, a maximum ∆S value occurs at temperatures corresponding to Tc, and |∆S|
increases with ∆H. The replacement of Fe by Mn in isostructural {[MII(H2O)2]2[NbIV(CN)8]·4H2O}n

network causes an increase of |∆S|max as well as the temperature at which the maximum value
of the entropy change occurs [49]. The maximum values of |∆S| are equal to 4.82 J mol−1K−1

(8.65 J kg−1K−1) and 5.07 J mol−1K−1 (9.09 J kg−1K−1) for the field change of 0–5 T for 5 and 4,
respectively. Slightly higher values of the magnetic entropy change observed for 4 may be related
to the spin value of the MnII ion (SMn = 5/2), being higher than that of the FeII ion (SFe = 2) and the
typically soft magnetic character.
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A useful parameter describing the efficiency of a magnetocaloric material is the relative cooling
power (RCP) defined as RCP = |∆S|maxδFWHM, where δFWHM is the full width at half maximum of
the magnetic entropy change curve. The RCP measured for an applied magnetic field of 5 T is equal to
118.40 and 125.43 J mol−1 (212.61 and 225.59 J kg−1) for 4 and 5, respectively. These values of RCP
make about 50% of that of pure gadolinium-prototype magnetocaloric material.

An important aspect of the analysis of MCE is the construction of a universal curve of magnetic
entropy change, a so-called master curve. Franco et al. [44,50] proposed that such universal entropy curve
can be successfully used for determination of phase transition order. For the substances undergoing the
second order phase transition, the temperature dependences of the magnetic entropy changes obtained
at different applied magnetic fields may overlap after rescaling. The phenomenological universal
curve can be constructed by normalizing all the ∆S(T) curves using their maximum value ∆Smax and,
subsequently, re-scaling the temperature axis according to the following expression:

θ =
−(T − Tc)

(Tr1 − Tc)
, T ≤ Tc; θ =

(T − Tc)

(Tr2 − Tc)
, T > Tc (7)

The values of reference temperatures Tr1, Tr2 were calculated based on ∆S(Tr)/∆Smax = h, where
h is a reference level with value from the range 0–1. For both studied materials: 4 and 5, the rescaled
∆S(T)curves, create one master curve in a wide temperature range, and thus the type of the magnetic
order does not affect their construction. Figure 21 shows the comparison of universal entropy curves
obtained for samples 4 and 5.
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3.2. {[MII(pyrazole)4]2[NbIV(CN)8]3·4H2O}n(M = Ni, Mn) Molecular Compounds

{[MnII(pyrazole)4]2[NbIV(CN)8]3·4H2O}n (6) and [NiII(pyrazole)4]2[NbIV(CN)8]3·4H2O}n (7) are
subsequent examples of isostructural bimetallic compounds, where pyrazole is the five membered
C3H4N2 ring. MCE results for 6 determined by calorimetry, including both the entropy change and
the adiabatic temperature change, have been already discussed in paragraph 2.3. Below, we proceed
the study to compare the effect in the Mn-based compound with that in the Ni-based compound. Both
substances show a sharp phase transition, from a high- temperature paramagnetic to a low-temperature
ordered state and while 6 is a ferrimagnet with critical temperature equal to 23.8 K, 7 is a ferromagnet
with Tc = 13.4 K [37]. The higher values of the magnetic entropy change were observed for sample 6,
despite the ferrimagnetic coupling between magnetic ions (see Figure 22) [42]. The higher value of
magnetic entropy change observed for 6 may be related to the spin value of the MnII ion (SMn=5/2)
being higher than that of the NiII ion (SNi = 1). For Ni-based compound, the magnetic entropy
change was also determined by means of the heat capacity measurements. Obtained result is in
good agreement with the previous estimation inferred from M(H, T) data. The similar reasonable
agreement of the magnetically and thermally determined values of the magnetic entropy change was
previously observed for some inorganic alloys [51]. Based on the heat capacity data for 7, we estimate
the maximum value of the adiabatic temperature change ∆Tad upon the applied magnetic field change
of 9 T was equal to 2.9 K [42].
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measured for {[MnII(pyrazole)4]2[NbIV(CN)8]3·4H2O}n and [FeII(pyrazole)4]2[NbIV(CN)8]3·4H2O}n.

3.3. {MnII
2(imH)2(H2O)4[NbIV(CN)8]·4H2O}nMolecular Magnetic Sponge

{MnII
2(imH)2(H2O)4[NbIV(CN)8]·4H2O}n (8) is a molecular magnet, where imidazole is a bridging

ligand. This compound is an example of magnetic sponge, because it allows an easy and reproducible
control of the amount of water molecules absorbed in this material. During one-step dehydration,
one new CN−bridge is formed in this material. The changes in the compound structure generated
by the loss of water molecules cause the shift of the magnetic ordering temperature from 25 K (8) to
68 K (8deh) [52]. The dehydration process is responsible for the change of magnetocaloric properties
of the system: the maximum value of magnetic entropy change determined for 8deh is 40% lower
than for the as-synthesized compound 8 [53] (see Figure 23). Using the molecular field approximation
(MFA) an attempt was made to explain the origin of the magnetic entropy changes in the system,
for both forms 8 and 8deh. As shown in Figure 23, in comparison to the experimental MCE results,
the calculated entropy change is underestimated above the transition temperature, which can be
attributed to the fact that MFA does not account for the short-range correlations. However, below the
critical temperature, the calculated entropy change is overestimated in relation to the experimental
data [53]. This furthermore, may be attributed to the lack of thermal and quantum fluctuations in
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the mean field model. These fluctuations impede the magnetic moments reorientation caused by the
change of magnetic field, thus the magnetic susceptibility is higher than in normal paramagnets.
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(H2O)4[NbIV(CN)8]·4H2O}n and its dehydrated form {MnII
2(imH)2[NbIV(CN)8]}n.

3.4. [{[MnII(pydz)(H2O)2][MnII(H2O)2][NbIV(CN)8]}·2H2O]nTwo-Step Molecular Magnetic Sponge

[{[MnII(pydz)(H2O)2][MnII(H2O)2][NbIV(CN)8]}·2H2O]n(9) is an example of multifunctional
molecular magnet, where a pyridazine,C4H4N2, was chosen as a bridging ligand. One of the unique
properties of this compound is related to its two-step switchable magnetic sponge behaviour [33].
Within 6 h of dehydration of 9, the loss of four water molecules is observed, and 9 is transformed into
dehydrated form—9deh. This process is responsible for destabilization of hydrogen bonds and causes
intraskeletal molecular rearrangement: formation of a new Nb–CN–Mn bond as well as migration
of the pyridazine ligand between two Mn centres. The structural changes occurring during the
dehydration induce a significant increase of critical temperature from 43 K, observed for 9, to 68 K
recorded for 9deh. In the second step of dehydration (of about 24 h) two remaining water molecules are
removed and new stable, anhydrous phase 9anh is formed. During this process the material structure
does not change but some bonds are shortened. The critical temperature of anhydrous sample is
equal to 98 K. The transformation from the initial, as synthesized 9 to the anhydrous form 9anh is
reversible [33].

As depicted in Figure 24, for all three forms of the compound: 9, 9deh, and 9anh, a maximum
∆S value occurs at temperatures corresponding to consecutive Tc, and |∆S| increases with ∆H.
The highest value of magnetic entropy change is revealed for 9. For dehydrated and anhydrous
samples values of magnetic entropy change are similar—lower by 40% than that observed for the
as-synthetized material. This result is perfectly correlated with AC susceptibility data: the decrease
in ∆S by a factor of 0.6 for 9deh and 9anh relative to 9 corresponds to the same reduction in the χ’(T)
magnitude of 9deh and 9anh [43].

For the as-synthesized sample 9 the heat capacity measurements were performed, first at zero
applied field and then at 0.2, 0.5, and 1 T. The data obtained from this experiment were used for the
evaluation of magnetocaloric effect based on the magnetothermal method. The values of the magnetic
entropy change calculated based on the heat capacity and magnetic data are in very good agreement.
Furthermore, it was also possible to estimate, from the heat capacity data, the adiabatic entropy change
associated with the change of magnetic entropy. The maximum value of the adiabatic temperature
change determined for 9, corresponding to the change of magnetic field from 0 to 1 T, is equal to
1.5 K [43].
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3.5. [{[MnII(pydz)(H2O)2][MnII(H2O)2][NbIV(CN)8]}·2H2O]nMolecular Compound under Pressure

The uniqueness of compound 9 is also related to the possibility of the change of the magnetic
properties by the application of hydrostatic pressure [54]. The application of hydrostatic pressure
of 1.8 GPa results in the compression of the unit cell (ca. 7.6% in total volume) and a noticeable
bending of the Mn-NC-Nb linkages. These structural modifications are accompanied by the change
in magnetic properties of examined compound. The increase of the applied pressure increases the
ordering temperature up to 48 K, 50.5 K and 52.5 K for pressure of 0.27 GPa, 0.57 GPa and 1.19 GPa,
respectively. The shift of Tc towards higher temperatures due to application of mechanical stress is the
result of the strengthening of Mn- and Nb-sublattice coupling due to the enhanced overlap of magnetic
orbitals. The analysis of MCE for sample under pressure of 1.19 GPa (9HP) showed the reduction of
|∆S|max value in relation to as-synthesized compound 9 by 13.6% (see Figure 25) [55]. The summary
of the magnetocaloric properties of all forms of molecular magnet 9 as well as results obtained for
other octacyanoniobate- based compounds are presented in Table 4.
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Table 4. Comparison of MCE data obtained for samples discussed in Section 3. |∆S|max and RCP
were determined for µ0∆H = 5 T; MCE: magnetocaloric effect; RCP: relative cooling power

Sample Tc
(K)

|∆S|max

(J mol−1 K−1)
|∆S|max

(J kg−1 K−1)
RCP

(J mol−1 K−1)
RCP

(J kg−1 K−1)

4 50.0 5.07 9.09 118.40 212.61
5 43.0 4.82 8.65 125.43 225.59
6 23.8 6.70 6.50 136.9 132.9
7 13.4 6.10 5.90 75.6 73.1
8 25.0 6.70 8.95 186.2 248.9

8deh 60.0 4.02 7.73 152.8 293.8
9 43.0 5.36 8.95 160.8 268.0

9deh 68 3.33 5.82 109.9 192.1
9anh 98 3.38 6.88 101.4 206.5
9HP 52.5 4.63 7.73 138.9 231.8

3.6. Tc
−2/3 Dependence of the Maximum Entropy Change

Oesterreicher and Parker predicted that the maximum value of magnetic entropy change is
proportional to Tc

−2/3 [7]. This relation has been proved for the series of intermetallic samples [9].
Taking into account that in the compounds based on manganese and octacyanoniobate, the structural
changes caused by the external stimuli or selection of a bridging ligand did not affect magnetic moment
of Mn and Nb sublattices, while the critical temperature was changed, it was possible to verify the
relation: |∆S|max~Tc

−2/3.
Figure 26a shows the comparison of the temperature dependences of magnetic entropy upon

changing the magnetic field from 0 to 3 T, measured for samples: 9, 9deh, 9anh, 9HP, 8, 8deh, 4 and 6.
The clear reduction of the height of the ∆S(T) peak with the increase of the critical temperature is
observed. The slight deviation from this behaviour occurs for 9deh, because the maximum value
of magnetic entropy change is smaller than expected. It can be explained by instability of partially
dehydrated sample. Figure 26b presents the values of magnetic entropy change as a function of Tc

−2/3

in all Mn-Nb based compounds under study obtained at the change of magnetic field from 0 to 1 T,
3 T and 5 T. The linear character of all determined relations confirms the proportionality of |∆S|max

to Tc
−2/3.
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Figure 26. (a) The comparison of temperature dependences of magnetic entropy change determined
for the manganese octacyanoniobate-based samples with different ligands: pyridazine for samples 9,
9deh, 9anh, and 9HP, imidazole for 8 and 8deh,pyrazole for 4 and ligand-free 6. (b) The maximum values
of magnetic entropy change |∆S|max obtained for 9, 9deh, 9anh, 9HP, 8, 8deh, 4, and 6 at the change of
magnetic field µ0∆H = 1, 3 and 5 T as a function of Tc

−2/3.
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3.7. The Critical Behaviour of the 3 D Octacyanoniobate- Based Compounds

The MCE is an intrinsic thermodynamic characteristic and in the vicinity of the ferro- and
ferrimagnetic transition reflects the critical behaviour of the system. Thus, the critical exponents can
be extracted by use of the isothermal magnetization curves measured with the aim to determine the
magnetic entropy change. According to the scaling hypothesis, the spontaneous magnetization Ms

below Tc, the inverse initial susceptibility χ0 above Tc, and the magnetization dependence on magnetic
field M(H) measured at temperature Tc are characterized by the set of critical exponents β, γ and δ.
These exponents are defined by the following relations:

MS(T) = M0(ε)
β, T < Tc (8)

χ−1
0 (T) = (h0/M0)(ε)

γ, T > Tc (9)

M = DH
1
δ , T = Tc (10)

where ε is a reduced temperature defined as

ε = (T − Tc)/Tc

According to the mean field theory, which predicts in the vicinity of critical temperature Tc, β = 0.5
and γ = 1, the isotherms M2(H/M), so called Arrot plots, should consist of series of parallel straight
lines, and the isotherm measured at Tc should pass through the origin of coordinate system. Arrot
plots can be used for the determination of the order of phase transition occurring in the material
under study. According to the Banerjee criterion [56], a positive slope of the M2(H/M) indicates a
magnetic phase transition of the second order, while a negative slope corresponds to the first order
phase transition. For all the octacyanoniobate-based samples the positive slope of M2(H/M) plots
was observed, indicating the second order of the magnetic phase transition. The non-linear shape of
M2(H/M) Arrot for all discussed samples plots indicates that mean field approach does not describes
properly the critical properties of these materials.

The critical exponents β and γ were determined by using the Kouvel–Fisher method [57]. In the
Kouvel–Fisher method two new variables X and Y are defined as

X(T) = χ−1
0 (

dχ−1
0

dT
)

−1

=
T − Tc

γ
, (11)

Y(T) = M0(
dM0

dT
)
−1

=
T − Tc

β
. (12)

X(T) and Y(T) are the linear functions of temperature with slope of 1/γ and 1/β, respectively.
The intercepts of X(T) and Y(T) with the temperature axis correspond to the critical temperatures.
Figure 27a shows an exemplary result obtained for sample 4 with the Kouvel–Fisher method, which
next was used for the determination of the critical exponents β and γ for samples 9, 9deh, 9anh, 9HP, 8,
8deh, 4, and 6 [42,43,53,55,58]. The obtained results are presented in Table 5.
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Table 5. Comparison of the critical exponents determined for samples discussed in Section 3 and for the
mean field and 3D Heisenberg, 3D Ising, and 3D XY model. nMCE—the critical exponent n determined
based on the MCE data, ntheor—the critical exponents n determined based on Equation (13).

Sample β γ δ nMCE ntheor

4 0.41 1.32 4.39 0.69 0.66
5 0.37 1.33 4.37 0.67 0.63
6 0.64
7 0.59
8 0.37 1.35 4.48 0.65 0.63

8deh 0.37 1.40 4.95 0.67 0.64
9 0.38 1.35 4.69 0.66 0.64

9deh 0.43 1.38 4.23 0.68 0.69
9anh 0.39 1.37 4.49 0.69 0.65
9HP 0.37 1.40 4.48 0.67 0.64

Mean field model 0.500 1 3 0.66
Heisenberg model 0.365 1.385 4.8 0.64

Ising model 0.325 1.24 4.82 0.61
XY model 0.346 1.316 4.81 0.57
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Figure 27. (a) Determination of the critical exponents and the critical temperature for 4 using the
Kouvel–Fisher method, (b) logarithmic scaling plot of M |ε|−β vs. H·|ε|−(β + γ) for 4 evidences the
validity Kouvel–Fisher method, (c) magnetization vs. magnetic field measured for M(H) obtained for
4 at temperature T = 49 K; inset shows the same M(H) plots in the log–log scale, which was used for
determination of critical exponent δ, (d) temperature dependence of exponent n obtained for 4.

The value of critical exponent δ was estimated using the M(H) isotherm measured at temperature
Tc. The magnetization curve measured at Tc presented in log–log plot is expected to be a straight line
with a slope 1/δ. The example result of the analysis of the critical isotherm measured for 4 is shown in
Figure 27c.

In the materials undergoing the second order phase transition, the magnetic entropy change
is related to the change of the external magnetic field by the relation:|∆S|(T, H) ∝ Hn where n is a
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successive critical exponent. The mean field theory predicts the exponent n = 1 for the temperatures
well below Tc, and n = 2 well above Tc. At critical temperature n is equal to 2/3. The analysis of
temperature dependence of exponent n shows that for all octacyanoniobate-based compounds, shapes
of the n(T) plot are very similar and the values of n at Tc are very close to 2/3. The example of
dependence n(T) obtained for 4 is presented in Figure 27d.

At temperature Tc, critical exponents β and γ are related to exponent n by the formula [8]:

n(Tc) = 1 +
β− 1
β+ γ

(13)

Thus, having the values of the critical exponents β and γ obtained with the Kouvel–Fisher
method, the value of the critical exponent n can be estimated. For all octacyanoniobate-based samples
we obtained a very good agreement between the values of critical exponent n determined using
Equation (13) (in Table 5 denoted as ntheor) with the experimentally determined values based on MCE
data (in Table 5 denoted as nMCE).

The analysis of the critical exponents determined for the series of octacyanoniobate-based samples
showed that except sample (7), all the examined compounds can be assigned to the universality
class of the 3D Heisenberg model. It means that neither structural change due to the insertion of
bridging ligands into the structure nor the influence of the external stimuli significantly affect the
critical behaviour of the octacyanometallates-based materials. The result obtained for sample 7 is more
consistent with XY model.

We have also compared the described above values of the critical exponents with the values
predicted from the scaling hypothesis. In critical region, the magnetic equation of state can be
written as:

M(H, ε) = εβ f±(
H

εβ+γ
) (14)

where f± is the scaling function: f + for T > Tc, f− for T < Tc. Equation (14) suggests, that M |ε|−β

plotted as a function of H·|ε |−(β+γ) should give two different curves: one corresponding to the
temperatures below the ordering temperature, and the other for temperatures above Tc. For all the
studied samples for which the critical exponent β and γ were determined with Kouvel–Fisher method,
M |ε|−β vs. H·|ε |−(β+γ) plots exhibit two independent branches, indicating that the values of the
critical exponents are reasonably accurate. Figure 27b presents the example of logarithmic scaling plot
of M |ε|−β vs. H·|ε |−(β+γ) obtained for sample 4.

3.8. Final Remarks of Section 3

In this section we have investigated the magnetocaloric effect and critical behaviour in molecular
magnets showing long-range magnetic order. The most important issue of this study was the test of the
influence of bridging ligands and external stimuli on magnetocaloric properties of examined samples.

We have demonstrated that for the manganese octacyanoniobate-based samples with different
brigding ligand—pyridazine, pyrazole, imidazole, for which the magnetocaloric effect was determined
for as-synthetized samples and modified by external stimuli—the maximum value of magnetic entropy
change ∆Smax is proportional to Tc

−2/3.
We have also proved, that 3D Heisenberg model is the most adequate for the description of critical

behaviour of octacyanoniobate-based molecular magnets. The analysis of critical exponents β, γ, δ,
and n showed that neither structural changes due to the insertion of bridging ligands into the structure
nor the influence of external stimuli such as hydrostatic pressure and dehydration/hydration process
do not significantly affect the critical behaviour of octacyanometallate- based materials. Moreover,
the value of critical exponent n describing the field dependence of MCE according to |∆S|(T, H) ∝ Hn

is consistent with other critical exponents obtained from the magnetization data.
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4. Rotating Magnetocaloric Effect in Anisotropic Two-Dimensional Molecular Magnets

The rotating magnetocaloric effect (RMCE) is a new issue in the magnetic cooling research.
In contrast to conventional magnetocaloric effect, in RMCE the change of entropy is obtained not
by changing the external magnetic field, but with rotation of a single crystal in a constant magnetic
field [59–62]. If the compound reveals a substantial magnetic anisotropy, then the magnetic entropy will
depend on the crystal orientation in the magnetic field. The rotation is changing the crystal orientation
with respect to the applied field direction, therefore a change of magnetic entropy is observed and
can be used in cooling cycle. Recently, Balli et al. [63,64] have introduced a realization of refrigerator
based on RMCE. This approach has several advantages: simple construction, high efficiency [63–65]
(cycles in higher frequency than the conventional MCE), or working in constant field (lower power
consumption, possibility of use permanent magnets).

Most of the research concerning rotating magnetocaloric effect deals with inorganic
materials [59–61,63,64,66–68] and there are only few examples related to molecular magnets [69]. In our
research we have focused on two-dimensional molecular compounds which reveal magnetic anisotropy
and transition to long-range ordered phase. Single crystal studies allowed us to explore the anisotropy
of MCE. The dependence of MCE on the orientation was used to study the RMCE in case of low
(MnII(R-mpm)2]2[NbIV(CN)8]}·4H2O) [70] and high ({(tetren)H5)0.8CuII

4[WV(CN)8]4·7.2H2O}n) [71]
magnetic anisotropy. In particular, we have shown that inverse magnetocaloric effect can be used to
enhance the RMCE up to 51% in respect to conventional MCE.

4.1. Low Anisotropy Case: {MnII(R-mpm)2]2[NbIV(CN)8]}·4H2OCrystal

{MnII(R-mpm)2]2[NbIV(CN)8]}·4H2O (10), where mpm = α-methyl-2-pyridinemethanol, is a
two-dimensional coordination ferrimagnet [70]. The separation between layers of square grid
topology is 7.5 Å. Nevertheless, the compound reveals a phase transition to 3D long-range magnetic
ordered state at Tc = 23.5 K due to intermolecular dipole-dipole interactions. The magnetic single
crystal measurements of 10 showed an easy-plane type anisotropy within the layers, whereas the
perpendicular direction was a hard axis [72]. The observed anisotropy was not significant, since above
0.35 T applied field both orientations was magnetically undistinguishable. The magnetocaloric effect
was obtained by the indirect method from magnetization measurements in two orientations: bc||H
(easy plane) and a*||H (hard axis).

In high magnetic fields (above 1.0 T) the difference between magnetic entropy change in both
orientations is modest (Figure 28a), as a consequence of low magnetic anisotropy. In lower fields
the value of −∆Sm is small, but the relative change between easy plane and hard direction is more
significant (Figure 28b). Moreover, in the hard axis orientation an inverse magnetocaloric effect can be
noticed. The magnetic entropy change related to rotation (∆SRMCE) by 90◦ from hard direction (a*||H,
hard axis) to easy axis (bc||H) can be calculated by

− ∆SRMCE = −(∆Seasy − ∆Shard) (15)

where ∆Seasy and ∆Shard stands for magnetic entropy change in easy plane and hard axis orientations,
respectively. Figures 28 and 29 show the obtained values of −∆SRMCE. In high magnetic fields
(Figure 28a) both conventional MCE, for hard axis and easy plane, are greater than the RMCE in whole
temperature range. The situation is changing in lower fields µ0H < 0.2 T (Figure 28b), for which the
RMCE can have higher output even than the MCE for easy plane. This excess is a consequence of
rotation from hard axis (higher entropy) to easy plane (lower entropy) orientation and the inverse MCE
in hard axis. Figure 30 shows the ratio between the entropy change from RMCE and conventional
MCE. Depending on the applied field and the temperature, the RMCE can be more efficient than MCE
in an easy plane up to 51%.
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4.2. High Anisotropy Case: (tetren)Cu4[W(CN)8]4 Crystal

The high anisotropy case was studied [71] with (tetren)Cu4[W(CN))8]4 (11)(full formula:
{(tetren)H5)0.8CuII

4[WV(CN)8]4·7.2H2O}n, tetren = tetraethylenepentamine), a 2D cyanido-bridged
network with significant 2D XY magnetic anisotropy (ac is the easy plane, b is the hard axis) and the
Berezinskii-Kosterlitz-Thouless [73] topological phase transition at TBKT ≈ 33 K [74,75]. The anisotropy
for 11 is so high, that even µ0H = 7.0 T magnetic field is too weak to merge magnetization curves
of two orientations at 2.0 K [71]. The conventional and rotating magnetocaloric effects were studied
in a similar procedure to the low anisotropy case (10). However, in this case the difference between
magnetic entropy change for hard and easy orientations was relevant up to the highest measured field
µ0H = 7.0 T (Figure 31). Therefore, the absolute values of −∆SRMCE for the RMCE were one order
of magnitude higher than for 10 (Figure 32). The temperature dependences of ∆SRMCE for 11 have
peculiar shapes with two peaks for fields below 7.0 T and a single peak for the highest field. The double
peaks are related to different dependences of ∆S maxima for easy and hard orientation. The study
also showed that it is possible to obtain an inverse RMCE (Figures 31 and 32), as a consequence of
temperature region where the −∆Sm for hard axis is higher than for the easy plane.
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Figure 33 shows the ratio between the conventional and rotating MCE for 11. Similar to the low
anisotropy case of 10, there is a region where ∆SRMCE is more efficient than the MCE for easy plane.
However, the ∆SRMCE/∆Seasy ratio shows also negative values for lower fields (µ0H < 3.0 T) and
temperatures around 30 K. These negative values correspond to the conditions, where the sign of the
∆SRMCE is negative, in other words, where the inverse RMCE occurs.
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4.3. Final Remarks of Section 4

The rotational magnetocaloric effect is an alternative method for magnetic cooling. In our works
we were studying 2D molecular magnets with low and high anisotropy. We have proven that the
RMCE can be, in specific circumstances, more efficient than the conventional MCE and that the inverse
RMCE is also possible. In our opinion, the rotating magnetocaloric effect in molecular magnets
has potential application as cryogenic refrigerator. However, to compete with other types of low
temperature refrigerators (e.g., He-3 type), the good candidate for a molecular RMCE refrigerant
should be characterized by the following features [71]: (1) strong magnetic anisotropy, (2) Tc around
2 K, (3) large magnetic moments with ferromagnetic interactions, (4) easy plane anisotropy to achieve
the RMCE enhancement due to the inverse MCE.

5. Final Conclusions

In this review, the magneto-thermal properties of octacyanometallate-based molecular magnets
showing the different types of crystal architecture have been discussed. The investigation of
magnetocaloric effect has been performed by two experimental methods: calorimetry and magnetometry.
The highest value of magnetic entropy change and the change of adiabatic temperature was observed
for the high-spin dodecanuclear cluster Ni9[W(CN)8]6 making this compound a suitable candidate for
application in cryogenic magnetic cooling. The systematic study of magnetocaloric effect in the ligand
tunable coordination compounds is based on manganese and octacyanoniobate, showing the wide
temperature range in which Tc occurs, allowing us to confirm the ∆Sm ~ Tc

−2/3 relation stemming from
the molecular field theory. The set of critical exponents obtained for these compounds series belong to
the 3D Heisenberg universality class. Finally, we have presented the study of rotating magnetocaloric
effect (RMCE) in two 2D molecular magnets: ferromagnetic {MnII(R-mpm)2]2[NbIV(CN)8]}·4H2O and
strongly anisotropic (tetren)Cu4[W(CN)8]4 bilayered magnet showing the topological Berezinskii-
Kosterlitz-Thouless transition.
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40. Konieczny, P.; Pełka, R.; Zieliński, P.M.; Pratt, F.L.; Pinkowicz, D.; Sieklucka, B.; Wasiutyński, T. Scaling
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Sieklucka, B.; Wasiutyński, T. Self-Enhancement of Rotating Magnetocaloric Effect in Anisotropic
Two-Dimensional (2D) Cyanido-Bridged MnII–NbIV Molecular Ferrimagnet. Inorg. Chem. 2017, 56, 2777.
[CrossRef] [PubMed]
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75. Czapla, M.; Pełka, R.; Zieliński, P.M.; Budziak, A.; Bałanda, M.; Makarewicz, M.; Pacyna, A.; Wasiutyński, T.;
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