Supplementary materials

NMR Spectroscopic Study of Orientational Order in Imidazolium-Based Ionic Liquid Crystals

Jing Dai, Debashis Majhi, Boris B. Kharkov, Sergey V. Dvinskikh

1. Ionic liquid crystals samples C_{12} mimX data

C ₁₂ mimX CAS	X anion	X ionic volume [1], nm ³	H ₂ O content		$T_{Cr} \rightarrow T_{Sm}$	$T_{Iso} \rightarrow T_{Sm}$
			wt%	Mol%	°C	°C
114569-84-5	Cl	0.047	0.025	0.4	36	118
61546-00-7	Br	0.056	0.16	3	40	102
81995-09-7	Ι	0.072	0.14	3	37	67
244193-59-7	BF_4	0.079	0.027	0.5	30	48

Table S1. Structural and thermodynamic data.

2. Experimental details and pulse sequence for PDLF experiment

Experiments were performed using Bruker 500 Avance III spectrometer at Larmor frequencies of 500.1 and 125.7 for ¹H and ¹³C, respectively. The ¹H and ¹³C 90° pulse lengths were 8 and 9 μ s, respectively. For heteronuclear proton decoupling in the mesophase, Spinal64 sequence [2] with the ¹H nutation frequency of 23 kHz was used during acquisition time of 120 ms. To enhance the intensity of the ¹³C signal, proton-to-carbon cross polarization (CP) with adiabatic demagnetization in the rotating frame (ADRF) [3] was applied with maximum nutation frequency of 16 kHz and contact time in the range 10-20 ms.

Dipolar ¹H-¹³C spectra were recorded using proton detected/encoded local field (PDLF) NMR spectroscopy [4]. In the indirect time period t_1 of the PDLF experiment, ¹H magnetization evolves in the presence of the local dipolar fields of rare ¹³C (Figure S2). Application of the proton homonuclear decoupling sequence BLEW-48 scales the heteronuclear couplings d_{CH} with a factor of $k\approx0.42$ [5]. A pair of 180° pulses is applied at $t_1/2$ to refocus ¹H chemical shifts while retaining the ¹H-¹³C couplings. The proton magnetization is transferred to ¹³C spins via CP and the carbon signal is detected under ¹H heteronuclear decoupling. The evolution time in indirect time domain was incremented with 384 µs in 256 steps, at each with two collected transients. Proton homonuclear decoupling during the evolution time was achieved by the BLEW-48 sequence with nutation frequency of 31.2 kHz. The temperature was regulated with an accuracy of 0.1 °C. The temperature shift and temperature gradient within the sample, caused by the decoupling irradiation, were calibrated by observing the change in the ¹³C spectral line widths and positions. Decoupling power, irradiation time, and repetition delay were adjusted to limit heating effects to <0.5 °C.

Figure S1. PDLF pulse sequence to record dipolar ¹³C-¹H spectra.

3. One-dimensional ¹³C NMR spectra

Figure S2. 1D ¹³C CP NMR spectra in smectic phase of C_{12} mimCl at 107°C, C_{12} mimBr at 91°C, C_{12} mimI at 55°C, and C_{12} mimBF₄ at 38°C.

References

- 1. Marcus, Y. Ionic and molar volumes of room temperature ionic liquids. *J. Mol. Liq.* **2015**, *209*, 289-293.
- 2. Fung, B.M.; Khitrin, A.K.; Ermolaev, K. An improved broadband decoupling sequence for liquid crystals and solids. *J. Magn. Reson.* **2000**, *142*, 97-101.
- 3. Lee, J.S.; Khitrin, A.K. Thermodynamics of adiabatic cross polarization. *J. Chem. Phys.* **2008**, *128*, 114504.
- 4. Dvinskikh, S.V.; Zimmermann, H.; Maliniak, A.; Sandström, D. Separated local field spectroscopy of columnar and nematic liquid crystals. *J. Magn. Reson.* **2003**, *163*, 46-55.
- 5. Burum, D.P.; Linder, M.; Ernst, R.R. Low-power multipulse line narrowing in solid-state NMR. *J. Magn. Reson.* **1981**, *44*, 173-188.