Characterization and structural determination of cold-adapted monodehydroascorbate reductase, MDHAR, from the Antarctic hairgrass Deschampsia antarctica

Ae Kyung Park¹⁺, Il-Sup Kim²⁺, Hackwon Do¹, Hyun Kim¹, Woong Choi¹, Seung-Woo Jo³, Seung Chul Shin¹, Jun Hyuck Lee^{1,5}, Ho-Sung Yoon^{2,3,4}, Han-Woo Kim^{1,5+}

- ¹ Unit of Research for Practical Application, Korea Polar Research Institute, Incheon 21990, South Korea
- ² Advanced Bioresource Research Center, Kyungpook National University, Daegu 41566, South Korea
- ³ Department of Energy Science, Kyungpook National University, Daegu 41566, Korea
- ⁴ School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea
- ⁵ Department of Polar Sciences, University of Science and Technology, Incheon 21990, South Korea
- * Correspondence: hwkim@kopri.re.kr; Tel.: +82-32-760-5526
- †These authors contributed equally to this work.

Table S1. Genotype of the strains used in this study

Strain	Genotype	Source
Escherichia coli		
BL21 (DE3)	F^- ompT hsd S_B (r_B^- , m_B^-) gal dcm (DE3)	
DaMDHAR	F^- ompT hsd S_B (r_B^- , m_B^-) gal dcm (DE3),	This study
	pET28a(+)::DaMDAHR	
Saccharomyces cerevisiae		
BY4741	$MATa$; $his 3\Delta 1$; $leu 2\Delta 0$; $met 15\Delta 0$; $ura 3\Delta 0$	Euroscarf
WT	$MATa; his 3\Delta 1; leu 2\Delta 0; met 15\Delta 0; ura 3\Delta 0; p426GPD$	This study
DM	$MATa$; $his 3\Delta 1$; $leu 2\Delta 0$; $met 15\Delta 0$; $ura 3\Delta 0$;	This study
	p426GPD::DaMDAHR	
A2 (ara2Δ)	$MATa$; $his 3\Delta 1$; $leu 2\Delta 0$; $met 15\Delta 0$; $ura 3\Delta 0$;	Euroscarf
	YMR041c::kanMX4	
DA	$MATa$; $his 3\Delta 1$; $leu 2\Delta 0$; $met 15\Delta 0$; $ura 3\Delta 0$;	This study
	YMR041c::kanMX4; p426GPD::DaMDAHR	

^{**}Euroscarf, European Saccharomyces cerevisiae Archive for Functional Analysis

Figure S1. Schematic diagram of expression vector constructs for *Saccharomyces* (A) and *Escherichia coli* (B). Each PCR amplicon of *DaMDHAR* was subcloned to pET28a(+) and p426GPD digested with endonuclease enzymes, respectively. *T7p*, T7 promoter; 6×Hig, Hitidine-tagged region; *T7t*, T7 terminator; *kanR*, kanamycin-resistant gene; *GPDp*, *glycelaldehyde-3-phosphate dehydrogenase* promoter; *CYC1t*, *CYC1* terminator; *ampR*, ampicillin-resistant gene.